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Abstract: Truck weight data plays an important 
role in weight enforcement and pavement condition 
assessment. This data is primarily obtained through 
weigh stations and weigh-in-motion stations which 
are currently very expensive to install and maintain. 
This paper presents results of the implementation of 
an inexpensive wireless sensor-based vibration 
Weigh-In-Motion (WIM) system. The proposed 
wireless sensor network (WSN) consists of 
acceleration sensors that report pavement 
vibration; vehicle detection sensors that report a 
vehicle's arrival and departure times; and an 
access point (AP) that synchronizes all the sensors 
and records the sensor data. The paper also 
describes a new method for speed compensation, an 
energy efficient algorithm (adaptive sampling 
method) to increase battery life, and a new 
modeling procedure to estimate gross vehicle 
weights. The system deployed near a conventional 
WIM system on I-80W in Pinole, CA passed the 
accuracy standards for WIM systems and 
outperformed a nearby commercial WIM station, 
based on conventional technology.  

1. INTRODUCTION 

Roads are valuable assets of the nation and 
contribute significantly to a nation's economy. 
However, construction and maintenance of road 
pavements is expensive. According to the U.S. 

Federal Highway Administration (FHWA), $46 
billion is spent annually on highway construction 
and maintenance but significant savings can be 
made by improving our pavement monitoring and 
management systems (FHWA, 2010). Pavement 
monitoring enables engineers to predict road 
deterioration and design an optimal repair (or 
rehabilitation) schedule to minimize costs and 
extend pavement lifetime. In the United States, the 
long-term pavement performance (LTPP) program 
collects data for pavement monitoring and 
management including traffic volume, truck 
weights, climate, structural and material properties 
for pavement sections, and other field testing data 
(FHWA, 2003).  

Since heavy trucks cause significantly more 
pavement damage than passenger vehicles (TRB, 
2007), accurate truck count and weight data must be 
collected. FHWA recognizes the importance of 
weight data and recommends an increase in the 
number of stations collecting such data. However, 
traditional static weigh stations are very expensive 
to install and operate, and also require trucks to be 
stopped and weighed individually. An alternative to 
traditional weigh station is a weigh-in-motion 
(WIM) system that is installed on an existing 
highway lane and can estimate the weight of 
vehicles at highway speeds without disrupting the 
traffic flow. However, since the typical costs of 
conventional bending plate and load cell type WIM 
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system are very high, they are too expensive for 
widespread deployment. The main reasons for such 
high cost include the use of expensive force sensors; 
construction work required to embed the wired 
sensors in the road; and the prolonged road closures 
during installation and maintenance. In this paper, 
an alternative system comprising an embedded 
wireless sensor network that measures pavement 
vibration, temperature and vehicle speed to infer the 
individual axle loads (weight) of moving vehicles is 
described. Unlike current WIM systems, the 
wireless WIM uses relatively inexpensive sensors 
and a much easier installation procedure to reduce 
the overall cost. Table 1 summarizes the estimated 
initial equipment and installation costs for the 
wireless WIM developed in this study and other 
WIM technologies. It is believed that this is the first 
wireless sensor network capable of weigh-in-
motion in individual lanes at highway speeds. 

 
Table 1.WIM system cost comparison(costs/lane) 

 System($) 
Lane 

Closure2($) 
Labor($) Total($) 

Wireless 
WIM 

19,500 2,000 2,000 23,500 

Piezoelec. 
sensor1 

13,500 10,000 6,500 30,000 

Piezoquar. 
sensor1 

29,000 20,000 12,000 61,000 

Bending-
plate1 

21,500 40,000 13,500 75,000 

Deep pit 
load cell1 

50,500 60,000 20,800 131,300 

Note: 1 : Hallenbeck and Weinblatt (2004) 
    2 : Herbsman and Glagola (1998) 

1.1. Current WIM technologies 

The most widely used WIM systems consist of a 
pair of wired magnetic loops and a force sensor. 
The magnetic loops detect vehicles and estimate 
their speed. The force sensors [piezoelectric (Alavi 
et al., 2001) sensors (piezo-ceramic, piezo-polymer 
and piezo-quartz sensors) (Jiang et al., 2009), 
bridge WIM systems, load cells or bending plates] 
measure the instantaneous load applied by the tires 
of a vehicle. A major drawback of these 
technologies is that they require smooth pavement 
to be built around the force sensors to achieve the 
desired accuracy. Smooth pavement is required to 
minimize the difference between dynamic and 

static loads by reducing the vertical dynamic 
movement of the vehicle. The force sensors are 
installed first and smooth concrete pavement is built 
around it. Pavement roughness excites the vehicle's 
suspension system, thus, causing the instantaneous 
axle load to be different from the static load. The 
difference between the instantaneous and static load, 
known as the dynamic component of applied load, 
is reduced by having a smooth (asphalt or concrete 
pavement with lower surface texture) pavement. 
However, this construction increases the system 
cost and the installation time, typically requiring 
several days or even weeks of lane closure. As an 
alternative to this approach, the use of multiple 
force sensors on existing pavement has been 
suggested to improve the estimate of static load 
(Cebon, 1999), but current technologies are too 
costly to make this approach practical. 
 
While WIM technologies have not advanced much 
in the last decade, focus has shifted on using 
multiple WIM sensors to improve system accuracy 
as opposed to requiring special material pavement 
near the sensors (FHWA, 2001; Burnos et al., 2007; 
Kwon, 2016). A novel WIM sensor based on 
perturbation theory of microwave resonant cavities 
was presented in (Liu et al., 2007), and a special 
fiber optic sensor based on measuring light loss 
under mechanical stress was discussed in (Ramesh 
et al., 2008). However, both sensors were tested in 
a controlled laboratory setting, and challenges of 
road installation and sensor durability under heavy 
loads were not addressed. 

1.2. Problem statement and proposed solution: 
Wireless WIM 

The system developed in this study addressed three 
main problems. The first problem involves building 
a wireless sensor network (WSN) to detect traffic 
and measure corresponding ultra-low elastic 
pavement vibrations. For detecting traffic, off-the-
shelf vehicle detection sensors, which can also 
estimate vehicle speed and length (Haoui et al., 
2008), were used (Sensys Networks Inc., 2013).  
 
Problem 1: A vehicle moves at an unknown speed, 
ranging from a few miles per hour to highway 
speeds. Design a wireless vibration sensor that can 
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be embedded in the pavement to measure 
corresponding vertical pavement acceleration and 
temperature.  
 
Once a capable WSN is available, it can be used to 
solve the following application-specific problems. 

Problem 2: A vehicle of N axles moves at an 
unknown speed, ranging from a few miles per hour 
to highway speeds. Use the designed WSN to 
automatically detect axles of the vehicle and 
classify it using FHWA's vehicle classification 
scheme (Stevens et al., 1984). 

Problem 3: Use the designed WSN to estimate 
the individual axle weights and the gross-weight of 
the truck. The above two applications can enable a 
cost-effective way of monitoring truck traffic for 
pavement design. The system can be calibrated 
once a year, utilizing a few pre-weighed vehicles. 

There are some important additional 
requirements that any solution to this problem must 
meet. The system should weigh vehicles in 
individual lanes and should be accurate 
independent of time and weather conditions. It 
should also be able to account for vehicle wander, 
i.e., vehicles moving slightly off-center in a given 
lane. In addition, installation and maintenance costs 
should be kept at a minimum to enable widespread 
deployment. A significant portion of the cost is due 
to traffic disruption from lane closures during 
installation and maintenance (Table 1). Finally, 
sensor batteries should last at least 2 to 4 years to 
make the system an economical alternative. 

Reducing cost of the WIM system requires 
rethinking the most critical component of the 
system: the force sensor. The force sensor in 
conventional bending plate WIM stations works by 
replacing part of the pavement with a platform that 
bears the full load of each axle, and providing 
signals to estimate it. In order to avoid replacing the 
pavement, in this study, utilizing the existing 
pavement itself as the transducer and estimating 
individual axle loads (referred to as modeled 
response in this study) from the measured vertical 
vibration response (referred to as measured 
response in this study) of the roadway is proposed. 
Small vibration and vehicle detection sensors are 
embedded in the pavement utilizing a convenient 
and low cost procedure. Multiple arrays of vibration 

sensors are used to average out the dynamic 
component of load and get equivalent of static 
weights.  The vehicle detection sensors (TRB, 2007) 
report the arrival and departure times of a vehicle, 
which are used to calculate its speed and length. 
The vibration sensors report the pavement's vertical 
acceleration and its temperature. Multiple arrays of 
vibration sensors are used to average out the 
dynamic component of load. The acceleration data 
is processed to extract the pavement's response to 
each individual axle. This, along with speed and 
temperature data are then used to estimate axle 
loads. The axle loads are simply added to get gross 
vehicle weight (GVW). Vehicle length, number of 
axles and axle spacing are estimated using the Axle 
Detection (ADET) algorithm described in (FHWA, 
1992). 

1.3. Contributions  

A prototype-easy to install embedded wireless 
vibration sensor system was developed by Bajwa et 
al. (2013) to measure truck weights. A novel load 
estimation procedure that relates individual axle 
load to pavement acceleration and calibrates for 
temperature, vehicle speed, and local pavement 
conditions was developed. However, 
implementation of wireless WIM system required 
additional testing, overcoming significant 
challenges in sensing and battery use, pavement 
modeling, signal processing and estimation. The 
main contributions of this paper are: 
 Testing, calibration and validation of developed 

wireless WIM system with a larger dataset. 
 A new method for speed compensation. 
 An energy efficient algorithm (adaptive 

sampling  method) to increase battery life from 
5 months to 22 months. 

 A new modeling procedure to estimate gross 
vehicle weights. 

 Implementation and validation of developed 
wireless WIM system. 

2. Developed wireless WIM system 

Figure 1 shows the schematic of the prototype 
system. There are four components: vibration 
sensors (2.5x2.5x2inches - 6.35x6.35x5cm), 
vehicle detection sensors (2.5x2.5x2 inches-
6.35x6.35x5cm), access point (AP) (4x7x6inches - 
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10x18x15cm), and a pan-tilt-zoom (PTZ) camera 
(not shown) connected to the AP. The vibration and 
vehicle detection sensors are installed in the 
pavement whereas the rest of the equipment is 
mounted on a 15ft (4.57 m) pole on the side of the 
road. The vibration and vehicle detection sensors 
follow a time division multiple access (TDMA) 
schedule to transmit their data to the AP. TDMA 
allows multiple sensors to use the same frequency 
channel by coordinating and using assigned time 
slots for each sensor’s individual use. The camera 
captures images of vehicles to validate that the 
sensor data corresponds to the correct vehicles. For 
accurate time stamps on the data, the sensors, the 
AP, and the camera are periodically synchronized 
to a common Network Time Protocol (NTP) server. 
Data from the site can be collected 24/7 and the AP 
saves all this data locally. The data can be retrieved 
through a local WiFi connection to the AP or 
remotely via a cellular connection. The entire 
system can be monitored and controlled remotely. 
The network components and their communication 
protocol are described below. 
 

 

Fig.1. Image showing a general setup of the system 
(Bajwa et al., 2013). 

2.1. Sensor network components 

2.1.1. Wireless vibration sensor 

Figure 2 shows the block diagram for the sensor. 
Vibrations from the pavement are converted to 
analog voltage by a Micro-Electro Mechanical 
System (MEMS) accelerometer (Colibrys, 2010). 
The voltage signal is then passed through a filter 
stage. The output of the filter stage is sampled at 
512 Hz by a 12-bit ADC included in MSP430 
microprocessor. The collected samples are then 
transmitted via the radio transceiver using a TDMA 

based, low power consuming protocol. Along with 
each packet of acceleration data, the vibration 
sensor also sends out a temperature reading using 
the on-board analog temperature sensor. The 
average current consumption of the vibration sensor 
is 1.96 mA in active mode and 35A in idle mode. 
Using a 7200 mAhr battery, the respective lifetimes 
are around 5 months and 23 years, respectively. For 
data collection purposes, lifetime is sufficient and 
techniques such as in-sensor processing (rather than 
transferring all data to AP without for processing) 
or adaptive sampling (described in section 3.4) can 
extend this for other applications. Wireless WIM 
system is expected to generate 6 megabytes (MB) 
of data every day, which can be remotely 
downloaded in about 10 to 20 seconds. 
 

 

Fig.2. Block diagram of the vibration sensor 
(Bajwa et al., 2011). 

 
Simulations reported in Rajagopal (2009) revealed 
that the sensor must have a resolution of 500 g at 
a bandwidth of 50 Hz, and a range of  200 mg. 
The highway environment is extremely noisy, and 
noise from sound alone is a few mg if the sensor is 
not properly isolated. Filtering signals above 50Hz 
with a steep filter can eliminate sound noise 
significantly. It was shown by Bajwa et al. (2011) 
that a low pass filter with frequency response 
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sensor from most of the sound. Moreover, the 
sensor case attenuates sound before it reaches the 
accelerometer, providing additional isolation. 
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To provide isolation from traffic in 
neighboring lanes, the sensors are placed towards 
the middle of the lane. Pavement vibrations are 
maximum at the location of applied load and 
magnitude decreases exponentially away from that 
location (Fehler, 2009). Center placement 
maximizes the distance of neighboring-lane 
vehicles from the sensors, thus minimizing lane-to-
lane interference. 

2.1.2. Vehicle detection sensor 

The vehicle detection sensor measures changes in 
the local magnetic field to infer the presence of a 
vehicle. The sensors have been shown to be very 
accurate for vehicle detection and have a lifetime of 
10 years (Haoui et al., 2008). Each sensor samples 
the on-board magnetometer at 128 Hz and uses an 
edge-detection algorithm to estimate the arrival 
time ta and the departure time td of a vehicle. A pair 
of sensors (i,j) can be installed at a fixed distance dij 
apart from each other to estimate the speed and 
length of a vehicle. Given the arrival times tai and 
taj, and the departure times tdi and tdj at sensor i and 
j, the speed v , length L, and the time window Ti 
corresponding to the vehicle at sensor i can be 
estimated as, 
 

߭ ൌ
ௗ೔ೕ

ห௧ೌೕି௧ೌ೔ห
     (1)

   
ܮ ൌ ௗ௜ݐ|߭ െ |௔௜ݐ ൌ ߭หݐௗ௝ െ  ௔௝ห  (2)ݐ
  
௜ܶ ൌ ሾݐ௔௜, ௗ௜ሿ     (3)ݐ

       

2.1.3. Sensor casing 

In order to withstand large forces in a harsh 
environment, the sensors must be packaged for 
durability before installation. The circuit board and 
the battery are placed in a hard plastic casing as 
shown in Figure 3. The casing is then filled with 
fused silica and sealed airtight. This protects the 
electronics from rainwater, oil spills etc on the road 
and further attenuates interference from sound. 
 

 
Fig.3. Packaging of a sensor in a sealed case 

(Bajwa et al., 2011). 

2.1.4. Access point (AP) 

Figure 4 shows a block diagram for the access point. 
This equipment provides remote control and 
observation of the WSN. The AP contains: (i) a 
processor with attached radio transceiver and 2 TB 
hard drive storage; (ii) a power controller that 
controls power to each connected device; (iii) an 
ethernet hub through which a local area network 
(LAN) is setup for devices to communicate with 
each other; (iv) a 3G modem that acts as a gateway 
to the wide area network (WAN) and enables 
remote access to the system; (v) a Wi-Fi bridge and 
an ethernet data port for local access to the system; 
and (vi) an optional pan-tilt-zoom (PTZ) camera for 
taking roadside images. Once a remote computer is 
connected to the AP, it can communicate with any 
of the connected devices through the LAN. It can, 
for instance, use the power controller to turn on/off 
individual components in the box, send commands 
to the sensors via the radio, change the settings of 
the PTZ camera, and start collecting video and 
sensor data remotely. 

 

 
Fig.4. Access point (Bajwa et al., 2013). 
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2.2. Communication protocol 

The communication protocol followed by the 
wireless sensor nodes and the AP are described here. 
There are three major applications of this protocol: 
synchronization, sensor management, and firmware 
update. 

2.2.1. Synchronization 

This application ensures clock synchronization of 
all nodes within 60 s. Sync packets are sent by the 
AP on a periodic basis with very low jitter. Nodes 
must first synchronize their clocks before 
transmitting. When a sensor node first starts, it 
listens to sync packets every 125 ms. It learns the 
difference between its clock and the AP's clock, and 
over time improves its estimate of the AP's clock. 
As the estimate improves, the node converges to a 
steady state in which it listens for a sync packet only 
once in 30  s. If a node loses sync, it repeats the 
above process to get synchronized again. In 
addition to sending clock information, the sync 
application is also used to send commands to 
individual sensors such as change mode, set RF 
channel, reset sensor. 

2.2.2. Sensor management 

This is the most important application for both 
sensors. For the vibration sensor, the application 
controls when to turn on the accelerometer and 
related circuitry, when to sample, and when to wake 
up the radio to transmit the data collected. There are 
two main modes in this application: idle mode and 
raw data mode. In idle mode, the accelerometer and 
related conditioning circuitry are turned off by 
disabling the voltage regulator that powers this part 
of the circuit. Even the microcontroller and the 
radio transceiver are put in a low power consuming 
state most of the time. Once every 30 seconds, the 
microcontroller and the transceiver wake up and 
acquire the sync packet. In raw data mode, the 
accelerometer and related circuitry are turned on. 
The microcontroller wakes up every 1/512 seconds 
and samples the analog output from the 
accelerometer unit, as shown in Figure 2. In 
addition to waking up for the sync packet, the 
transceiver wakes up right before its allotted 
timeslots to send the sampled data. Due to the 
challenging environment of highways, sensors 

frequently suffer from packet loses. To fix this 
problem, every packet is transmitted twice after a 
slight delay. Average packet loss was around 1% 
when data from all sensors are checked. It should 
be noted that in the final system, packet error rate is 
not important since the compressed data is 
transmitted until a confirmation/acknowledgement 
from the access point is received. 

For the detection sensor, the application is 
similar. The key difference is that instead of the raw 
data mode there is a vehicle detect mode. The 
magnetometer is constantly sampled at 128 Hz, 
followed by in-sensor processing to determine if the 
vehicle (heavy-light truck) is present or not. Only 
in case of a detection is any data transmitted, as 
opposed to the vibration sensor, which 
continuously transmits raw data. Since the data 
throughput from detection sensors is very small, 
each packet is retransmitted until an 
acknowledgement is received from the AP. 

The AP receives data from each sensor, 
appends useful information such as the timestamp, 
Received Signal Strength Indicator (RSSI), the 
Link Quality Indicator (LQI), and records it into a 
file that can be processed offline. 

2.2.3. Firmware update 

This application allows reprogramming the entire 
ash memory of a sensor node over the air, via the 
AP. Using this mode, any future upgrades in the 
sensor firmware can be made remotely and since no 
lane closures are needed, it considerably reduces 
maintenance costs. 

3. System installation, data collection, and load 
estimation 

3.1. Wireless WIM system installation 

A test system was installed on I-80 W (asphalt 
pavement) in Pinole, CA, about 300 ft (91.4m) 
away from an existing WIM station. This WIM 
station measures and records weights for every 
passing truck. A calibration truck was used to 
collect part of the ground truth data at different 
speed levels (16 passes). Since renting individual 
trucks to achieve a large calibration dataset was 
extremely expensive, research team collected 
ground truth data from a static weigh station in 
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Cordelia, CA. However, collecting truck weight 
data from a static weigh station required extensive 
coordination with local and state agencies, and 
posed additional challenges. Each truck had to be 
stopped and weighed individually, and required the 
presence of a California Highway Patrol (CHP) 
officer. Moreover, the station is located about 25 
miles upstream from the wireless WIM in Pinole, 
and some of the trucks take alternative routes and 
never arrive at our site. Identification of trucks that 
reach our site is also very challenging, given the 
volume of trucks that go over the wireless WIM 
every day. The trucks also cannot be directed to 
drive in our installation lane and often traveled in 
neighboring lanes. All these factors limited the size 
of our final dataset (75 truck passes). 

Figure 5 shows the detailed sensor layout. 
There are 4 arrays of vibrations sensors at a distance 
of 15 ft (4.57 m) from each other. Each array 
contains 5 sensors in the middle that are used for 
load estimation. Array 1 has additional sensors that 
cover the entire lane and can be used for estimating 
wheel locations along the array. The edge sensors 
can also be used to study the vibrations caused by 
vehicles in neighboring lanes. 

In order to minimize the system cost, the 
installation procedure must be quick and simple. To 
install a sensor in the pavement, a 4-inch (10 cm) 
diameter hole, approximately 2.25 inches (5.7cm) 
deep is drilled at the desired location. The sensor is 
placed in the hole, properly leveled with the 
pavement's surface, and the hole is sealed with fast 
setting epoxy (sensors almost flushed with the 
surface since sensor height is 2inches-50mm). Each 
sensor can be installed in the road in less than 10 
minutes. The AP and the PTZ camera are mounted 
on a 15ft (4.57 m) high pole on the side of the road, 
and do not require any lane closures. 
 

 

Fig.5. Sensor layout at Pinole site (Lane width is 
3.7m.) (Bajwa et al., 2011). 

3.2. Experiments 

3.2.1. Calibration truck runs 

A 5-axle truck [one single axle at the front (2 tires) 
and two dual-tandem axles in the middle and at the 
back (8 tires on each axle)] loaded with lumber was 
run over the system 16 times at 15, 35, 55, and 65 
mph (24, 56, 88.5, and 105 kph) to collect data. In 
addition to this, data were recorded for 525 random 
trucks during the same time period. The goal was to 
use the hired truck for system calibration, and 
compare load estimates of random trucks with the 
ground truth reported by the WIM station. Using the 
weight and classification data from the static weigh 
station, it was determined that the conventional 
WIM reported accurate vehicle classification data. 
However, it was also determined that the reported 
weight data were highly inaccurate and could not be 
used as ground truth.  

3.2.1. Statically weighed trucks 

To obtain accurate weight data, a static weigh 
station about 21 miles upstream from the sensors 
was used. Random trucks were stopped and 
weighed at the Cordelia weigh station on three 
separate days. Pictures of each truck were taken and 
matched with the road-side camera images in Pinole 
to extract the sensor data corresponding to these 
trucks. Since the station was far from the site, some 
of the trucks took alternative routes and only a 
subset of trucks that reached Pinole travelled in the 



8 
 

 

sensor lane. Table 2 shows the number of trucks 
weighed on each day, the number of trucks that 
actually reached Pinole, and the number of trucks 
that were matched in the correct lane. Vibration 
data, pavement temperature, detection data and 
ground truth weights for 61 trucks were obtained 
this way. 
 
Table 2. Summary of data collected from static 
weigh station in Cordelia. 

Date 
(2012) 

Trucks 
weighed 

Trucks 
reaching 
Pinole 

Trucks 
matched 

May 29 
July 3 

Sept 10 

47 
60 
50 

29 
32 
37 

18 
18 
25 

 
Due to technical difficulties, weights from the WIM 
station were not available for one of our testing 
days. This leaded to a reduced dataset for 
comparison, containing 59 truck runs. Combining 
the 16 calibration truck runs with 59 statically 
weighed trucks, sensor data for 75 Class 9 (see 
Figure 6) trucks with reliable static weights were 
obtained. It should be noted that ASTM E1318-09 
(2009) requires only 20 trucks for calibration. 
Corresponding data from the conventional WIM 
station was also obtained for comparison. This 
dataset included vehicle speed, length, 
classification, axle spacing, individual axle weights, 
and gross weight for each truck.  

3.3. Load estimation 

In this section, a model for pavement-vehicle 
interaction that directly relates pavement 
acceleration, vehicle speed, and pavement 
temperature to applied axle load is proposed. Then 
the procedure used to extract pavement response 
due to individual axles from the measured response 
is described. The section is ended by describing 
how the model is calibrated for load estimation. 

3.3.1. Pavement-vehicle interaction model 

The simplest pavement-vehicle interaction model is 
a composite one-dimensional Euler beam resting on 
an elastic Winkler foundation (Cebon, 1999; 
Rajagopal, 2009). The vehicle is modeled as a 
moving force modulated by its suspension system. 

As an axle approaches, the pavement is pushed 
down, but it returns to its original location after the 
axle has passed. The response of the pavement at 
any fixed location can be approximated as 

 vtFty )(  (Rajagopal, 2009), where y(t) is the 
vertical displacement or deflection of the pavement, 
and the function    mainly depends on the 
structural and material properties of the pavement. 
The model is linear in F, and vehicle speed v just 
scales the function    in time. This is a 
simplifying assumption, and in general    has 
some dependency on v and unknown suspension 
frequencies of the vehicle (Rajagopal, 2009). 

Based on typical measured responses and 
theory developed in (Cebon, 1999; Rajagopal, 
2009), it was assumed that the shape of pavement 
response due to a single axle load is closely 
approximated by a Gaussian function.  vt , in our 
model, can be interpreted as the pavement response 
due to a unit force moving at speed v. Let  be the 
amplitude of pavement response for a unit force, 
then  t and )t(y can be written as: 
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The last step is obtained by assuming 
v

0  , 

where 0  is the width of pavement response due to 
a unit force, which depends on pavement properties. 
Since we measure acceleration and not 
displacement, model can be converted into a more 
appropriate form, 
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the following relation for pavement acceleration 
due to a single load: 
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From the definition of  , it can be observed that 
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The last step is obtained by combining Equations 4 
and 5. The unknowns  and   can be estimated 
from the measured acceleration, but  depends on 
axle type and pavement properties, and needs to be 
calibrated using trucks of known weights. For a K 
axle truck, with the ith axle arriving at the sensor at 
time i  and applying a force if , the response can be 
written as the superposition of individual axle 
responses   tai  i.e. 
 
   iiii ,tta       (6) 

 

   



K

i
iii ,tta

1

    (7) 

 
Using a non-linear curve fitting procedure, i , i , 
and i  for each axle can be estimated. Once these 
have been estimated, each axle can be treated 
separately to estimate quantities like individual axle 
loads ( iF ) and pavement displacement (  tyi ) due 
to each axle, 
 

2v
F i

ii


 ,    

 
 

2

2

22 i

it

iii ety 





                 (8) 
 
One of the simplifying assumptions that was made 
in our model was that the amplitude of the 
pavement displacement  is independent of vehicle 
speed v, see Equation (4). However, there is a 
dependency between  and v as peak displacement 
decreases with increasing vehicle speed (Cebon, 
1999). This dependency was modeled as  (v)= 
v-. Substituting this into equation (4) and following 
the derivation for a(t) and F, the following 
equations are obtained: 
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





 FF
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

   (9) 






v
F i

ii       (10) 

The updated model has an additional unknown 
parameter ߩ	 that needs to be calibrated. This 
parameter can be estimated using a single truck of 
known weight. Equation (9) shows that  for each 
axle increases with speed and follows a power law. 
Therefore, repeated runs of the same truck at 
different speeds can be used to estimate ߩ. For this 
purpose, 16 runs of the calibration truck were used 
to calculate 4 .ߩ passes out of 16 runs were at low 
speeds (less than 20mph) while 4 passes were at 
medium speeds (30 mph to 40mph). Rest was close 
to highway speeds. 
 
Figure 6 shows the individual axle response plotted 
against the truck speed. A curve fit for the power-
law is obtained using the data and ߩ for Axle 2 is 
found to be 1.95. Similarly, ߩ for Axle 1 and 3 were 
found to be 1.92 and 1.94 respectively. 

 
Fig.6. Effect of speed on measured sensor response. 

3.3.2. Temperature compensation 
procedure 

The above model is valid for a constant temperature 
but pavement response for asphalt concrete layer is 
highly dependent on temperature. Using the 
thickness of different layers and material 
parameters for the pavement at this site, a layered 
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elastic theory (LET) model was developed to 
simulate the effect of temperature on the pavement 
response (Park et al., 2001). Details of the LET 
modeling procedure are available in Bajwa (2013). 
Pavement response can change by 15% with 
changes in temperature alone and proper 
temperature compensation is needed for accurate 
load estimation. 

Let ߬(T) be the ratio of the modeled response at 
25oC and at temperature T. To compensate for 
temperature, all our measurements were normalized 
to the reference temperature of 25oC as a(t, T = 
25oC) = a(t, T)	߬(T), where τ(T) is calculated using 
the LET model. It can be seen from Equation (7) 
that ߙi(T = 25) = ߙi(T)	߬(T), and accordingly: 

 



v

T
F ii       (11) 

3.3.3. Extracting individual axle response 

In order to extract individual axle response, a two-
stage process is followed. In the first stage, 
measurements from multiple sensors are combined 
to get an average pavement response for the whole 
vehicle. In the second stage, this response was fitted 
to the model described by Equation (7) and estimate 
,iߙ i , and i for each axle. 
 

 
Fig.7. Axle response (a) raw acceleration signal 
measured by the reference sensor (b) average 
pavement response am(t) (processed raw 
acceleration signal) and the fitted response a(t). 
 

Average pavement response: The average 
pavement response requires aligning the 
measurements from each sensor. Each signal is first 
passed through a low pass filter to filter out high 
frequency noise. The highest amplitude signal is 
then designated as the reference signal, and signals 
from all other sensors are time-shifted to align with 
the reference signal. Let ܽ௠௞ ሺݐሻ	be the time-shifted 
signal for the kth sensor, and I the number of 
available sensors. Then the average pavement 
acceleration ܽ௠ሺݐሻ	can be estimated as: 
 

   



I

k

k
mm ta

I
ta

1

1  

 
Figure 7 shows an example of the raw acceleration 
data from a sensor, and the average pavement 
response ܽ௠ሺݐሻ . The improvement from filtering 
and combining signals can be easily seen in the plot. 
Figure 7 also highlights another important 
challenge in estimating individual axle loads. 
Response due to each axle needs to be decoupled 
and extracted from ܽ௠ሺݐሻ. Because of high speeds 
and relatively short axle spacings, the trailing axles 
of a truck arrive at the sensor before the pavement 
has relaxed from the first axle's load. To extract 
each ܽ௜ሺݐሻ	 from ܽ௠ሺݐሻ, the following algorithm is 
used. 
 
Curve fitting algorithm: Let a(t) be the modeled 
response of a K axle truck, given by Equation (7). 
Let  t be the error between the measured and 
modeled response for the truck at time t i.e.  t =

 tam -  ta . The measured response now can be 
written as: 
 

     ttta
K

i
iiim  

1

,   (12) 

 

The unknown parameters  K

ii 1 ,  K

ii 1 and 

 K

ii 1  are estimated by minimizing the mean 

square error: 
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     (13) 

This is a non-linear least-squares problem that can 
be solved using standard techniques. Once the fit is 
performed, acceleration and displacement 
corresponding to each axle can be calculated using 
Equations (6) and (8). Figure 7 shows an example 
of how good the modeled response fits the 
measurements. 

3.3.4. Model calibration 

Calibration method and requirements described in 
ASTM E1318-09 (2009) were used for system 
calibration. Before individual axle loads can be 
estimated using Equation (11), the parameter i
needs to be calibrated. In general, i is site-specific 
and can depend on axle type but a set of pre-
weighed trucks can be used to estimate it. Let N be 
the number of trucks used in the training data, n

if̂  

be the load estimate for the ith axle of nth truck, n
if  

be the true weight, vn be the speed, n
i  be the 

corresponding fitted parameter *
i , and n

ie  be the 

percentage error associated with the load estimates. 
The optimal i can be calculated by minimizing the 
mean-square percentage errors for the load 
estimates, 

   
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n
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i
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i v
f̂ ,                       (14) 
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Equation 10 is a standard linear least squares 
problem and can be solved for *

i . Once *
i  is 

known, individual axle loads can be estimated using 
Equation 14.  

Sensor calibration was done by following the 
procedure verified in Bajwa (2009). Figure 8 shows 
the calibration setup. The idea is to use gage blocks 
of different heights to change the inclination of the 
sensor, thus changing the component of gravity (g) 
along its sensing direction. The accelerometer 
output for approximately 10 seconds at each height 
is recorded, and the mean and standard deviation of 
the recorded signal for each height are calculated. 
The mean value is used for sensitivity estimation 
while the standard deviation is used to estimate the 
sensor resolution. 
 

 
Fig. 8. Calibration set up for vibration sensors. 

3.4. Energy-efficient algorithm for load 
estimation 

The load estimation procedure described so far is 
very inefficient for a resource constrained wireless 
sensor network. All raw data is transmitted by the 
sensors; however, wireless data transmission is the 
most power consuming process and the amount of 
data transmitted should be minimized. This section 
discusses how adaptive rate sampling and the 
distribution of computation between the access 
point and sensors can lead to increased sensor 
lifetime while only minimally affecting the system 
accuracy. 

One possible approach to compress data is to 
implement the curve-fitting procedure inside the 
wireless sensor and transmit just the fitted 
parameters. However, there are many drawbacks to 
this approach: 
 It is not clear if the computationally intensive 

procedure can be implemented in a wireless 
sensor with limited processing power.  

 The curve-fitting procedure is performed using 
acceleration for the entire truck but the vibration 
sensors do not know the time window for the 
truck's presence. 
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 The parameters for curve-fitting are initialized 
based on tire-on-top sensor data and speed of the 
vehicle, both of which are unknown at sensor 
level. 

An alternative to the above approach is to perform 
the curve-fitting procedure at the AP level but 
reduce the sensor data required for the fitting 
procedure. The vibration sensor consumes an 
average current of 370 A without the radio 
transmissions and the required current consumption 
for a 2 year lifetime (using a single battery) is 410 
A. Assuming that an axle arrives about every 4.5 
seconds (based on Caltrans data) and the required 
average current consumption to be 410 A, a data 
budget of L0=72samples/axle is estimated for the 
vibration sensor. 

3.4.1. Adaptive sampling 

To reduce the amount of data transmitted, sensors 
should report data only when a loaded axle is 
detected. To detect an axle, the vibration sensor can 
filter measured data and look for any negative peaks 
that have magnitudes greater than a chosen 
threshold. The time period during which the axle 
pulse is “dominant” is called the pulse span (PS) 
and only the measurements that lie in this span 
should be transmitted. This change alone drastically 
reduces the amount of data being transmitted by the 
sensor. The conventional WIM at Pinole reports 
that the sensor lane, on average, receives a new axle 
after every 4.5 seconds. If just the pulse data from 
the time-series of measurements are transmitted, 
the corresponding average current consumption 
would have been 0.441 mA with an expected sensor 
lifetime of 1.86 years or 22 months. 

The filtered acceleration corresponding to each 
axle (axle pulse) can be modeled as a Mexican hat 
function in the presence of additive random noise: 

݉ሺ݊ሻ ൌ െߙ ቀ1 െ ௡మ

ఙమ
ቁ ݁

ష೙మ

మ഑మ൅∈ ሺ݊ሻ                 (16) 

The amplitude is linearly proportional to axle 
load,  is inversely proportional to axle speed, and 
the time of axle arrival  is assumed to be zero. 
To further reduce the data transmitted, the axle 
pulse is subsampled such that the reconstructed 
signal is minimally affected. Since peak 
acceleration is very important for load estimation, 
the time and the magnitude of each axle peak is 

always retained. To calculate the PS, an important 
feature of the measured signal: the zero-crossings 
around each axle peak is used. It should be noted 
that the zero crossings of the noise-free function 
m(n) are at n=േߪ  and an estimate of the zero 
crossings of the measured signal can be found by 
setting m(n)=0. Let tz+, tz- be the time of the positive 
and negative zero-crossings, the PS can be 
calculated as: 
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ଷ

ଶ
∙ ௭ାݐ| െ 	(17)							௭ି|ቃݐ

	

Now L points are selected around each axle peak 
with the peak being the central sample and with a 
sampling interval of: 

∆ ௅ܶ ൌ
ଷ|ݖݐ൅െݖݐെ|

௅ିଵ
                                                (18) 

To check the proposed procedure, we 
independently sample around each axle peak and 
use the samples corresponding to the entire truck to 
perform the curve fitting described in Section 3.3.3. 
Figure 9 shows an example fit for a class-9 truck. It 
can be observed that the proposed adaptive 
sampling worked well at even a low sampling rate 
of 9 samples/axle. 

 
Fig.9. Adaptive sampling-Example for a truck.  

Using the previously described cross-validation 
procedure, the accuracy of load estimates is 
evaluated using the compressed data. Table 4 lists 
the mean LTPP errors (ASTM E1318-09, 2009) for 
the individual axles and gross weight using L = 
9samples/axle. For comparison, the results from 
Section 3.3.3 were provided where raw signals from 
all sensors are averaged first and the entire time 
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series of the average pavement response is used for 
curve-fitting. Comparing the first two columns, it 
can be observed that the errors in load estimates for 
the compressed dataset are slightly higher for Axle 
1 but lower for the other axles and the gross weight. 

The sensor lifetime after the adaptation of 
energy-efficient algorithm increased from 5 months 
to 28 months. While this does not achieve our target 
lifetime of 4 years, there are other alternatives 
available to achieve this. Two batteries can be used 
to double the lifetime; this will increase the sensor 
cost slightly and increase the sensor size. The other 
alternative is to use a lower current consuming 
accelerometer; the current consumption of the 
current MEMS accelerometer is about 300 A by 
itself. While not available at the time of our sensor 
design, newer accelerometers are available in the 
market today that have similar noise density to our 
current sensor but lower current consumption. 
According to the datasheet, the current 
consumption of the newer accelerometer, Colibrys 
MS7002, is half of the current accelerometer 
(Colibrys, 2013). Using the new accelerometer is 
expected to provide a lifetime of about 4 years. 

3.5. Separate regression for gross vehicle 
weight 

Until now the estimate of gross weight was simply 
the sum of individual axle weights. In this section, 
a separate model is considered to estimate gross-
vehicle weight and calibrate this model by 
minimizing the LTPP error. Let the gross weight 
estimate for a truck be modeled as:  
 

்݂ ൌ ෍்ߚ௜

௄

௜ୀଵ

௜߬ሺܶሻߙ

߭ఘ೔
 

where i is the decoupled response for the ith axle 
and i is the corresponding scaling coefficient. The 
calibration factors (i) can be estimated by 
minimizing the LTPP error for gross weights over 
the training set. 1000 different training and testing 
trials were simulated and it was determined that the 
mean LTPP error for gross weight estimation with 
the new method is about 2.8% higher than the 
previously adapted method (summing up individual 
axle weights). Thus, there is no improvement from 
doing a separate regression for gross weights. 

4. Results and discussion 

Data from all 75 truck passes are used to calibrate 
the model and examine how closely it explains the 
data. Figure 10 compares the axle weights 
estimated by the wireless WIM system with their 
true weights. The estimated loads track the true 
loads very closely, with a R2 value of 0.99 for the 
fit. The means and standard deviations associated 
with these bell-shaped curves are summarized in 
Table 3. 

Figure 11(a) shows the percentage errors of 
load estimates at different temperatures. The errors 
are uncorrelated with temperature, implying that 
the compensation factor ߬(T) captures the effect of 
pavement temperature well. Figure 11(b) shows 
that the errors are much higher when no 
temperature compensation is used (i.e. ߬(T) = 1 ∀T). 
The mean errors are negative for low temperatures 
and positive for high temperatures. Consistent with 
pavement models, without temperature 
compensation loads are overestimated at higher 
temperatures and underestimated estimated at 
lower temperatures. This is because pavement 
response for any load increases with temperature 
(Park et al., 2001). The error distributions for both 
scenarios are summarized in Table 3. 

For the results in Figures 10 and 11 and Table 
3, the entire dataset was used for training our 
system. In general, this leads to overfitting and 
overestimation of the predictive power of a model. 
For a more realistic evaluation of the system 
accuracy, the repeated random sub-sampling 
validation technique of cross-validation was used. 
 

 
Fig.10. Model predictions - Estimated weights 
against the ground truth static weights. 
Note: 1 lbs = 0.45 kg . 
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Table 3. Effect of pavement temperature on load 
estimation. 

 T1. compensation No compensation 

 
Mean of 

errors 
(%) 

Std2 of 
errors 
(%) 

Mean of 
errors 
(%) 

Std of 
errors 
(%) 

Axle 1 -0.35 5.83 -0.18 6.41 
Axle 2 -0.68 5.36 -0.22 6.15 
Axle 3 -0.78 5.67 -0.41 6.26 
Total -0.63 4.46 -0.25 5.32 

Note: 1 T: Temperature; 2 Standard deviation.  
 

 
(a) 

 
(b) 

Fig.11. Percentage error in load estimates against 
pavement temperature (a) with temperature 
compensation (b) without temperature 
compensation.  
 
1000 different training and testing trials were 
simulated. In each trial, 25 out of 75 trucks were 
selected for training the model and the calculated 

i 's were used for estimating truck weights in the 

testing set. Then LTPP errors (e), an error measure 
for WIM stations that assumes a normal 

distribution for measurement errors and calculates 
the error bound at a confidence level of 95%, are 
calculated for all 1000 test sets. LTPP errors are 
used as an evaluation metric for system accuracy 
(ASTM E1318-09, 2009).  

Let ሼ݁௜ሽ௜ୀଵ
ே 	be the observed errors, ݁̅		be the 

mean error, ߪො௘  be the standard deviation of 
observed errors, and tN-1 be the critical value at 95% 
confidence level for a Student t-distribution with    
N - 1 degrees of freedom, then e can be calculated 
as: 
   e݁̅| ൅ ො௘ߪேିଵݐ
The maximum allowed LTPP errors for Axle 1 is 
20% while the maximum allowed error for Axles 2 
and 3 is 15%. Maximum allowed error for GVW 
(total) is 10%. Figure 12 shows the cumulative 
distribution for the LTPP errors for 1000 cross-
validation trials. The wireless WIM errors for 
individual axles are below the LTPP allowed errors 
in every trial. The errors in gross weight are below 
the allowed limit for 95% of the trials. 

 
Fig.12. Cumulative distribution of LTPP errors (in 

%) for 1000 random test sets. 

4.1. Comparison with the conventional WIM 

A one-on-one comparison of wireless WIM with 
the nearby WIM station is provided in this section. 
Due to technical difficulties, weights from the WIM 
station were not available for one of our testing 
days. This leads to a reduced dataset for 
comparison, containing 59 truck runs, where 16 
runs correspond to a single calibration truck and 
remaining 43 runs correspond to random trucks that 
were stopped and individually weighed at the static 
weigh station. While the weights reported for the 
calibration truck had low errors, the overall 
accuracy of the conventional WIM was below 
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expectations. Table 4 compares the accuracy of 
both systems. The wireless WIM clearly 
outperforms the conventional WIM in every 
category. The conventional WIM meets the 
required LTPP accuracy levels for Axle 1 and 2 but 
fails for Axle 3 and the gross weight. 
 
Table 4. Comparison of mean LTPP errors between 
proposed system and the nearby convent. WIM. 

 W-WIM1 
error BC2 
(%) 

W-WIM 
error AC3 
(%) 

Convent.4 
WIM 
error (%) 

Max. 
allowed 
error (%) 

Axle1 10.84 10.93 10.96 20 
Axle2 12.01 11.79 14.53 15 
Axle3 12.22 11.84 24.65 15 
Total 9.48 9.10 13.13 10 

Note: 1Wireless WIM; 2 Before compression; 3After 
compression; 4Conventional. 

5. Conclusions and future work 

Existing weigh-in-motion (WIM) technologies are 
too expensive for widespread deployment and there 
is insufficient data for pavement management, 
resulting in higher maintenance costs. The goal of 
this project was to develop an inexpensive but 
accurate wireless weigh-in-motion system that can 
be easily installed on new or existing roads. Current 
WIM systems have high costs because they use 
large, expensive load sensors and require special 
pavement construction around them. Motivated to 
reduce costs, the road pavement itself was used as 
the weighing scale. Multiple wireless sensors are 
embedded in the pavement to sense its response to 
passing vehicles and the measured response is then 
used to estimate the magnitude of applied axle loads. 

The wireless vibration sensor designed for the 
developed wireless WIM system is capable of 
measuring very small pavement vibrations in an 
extremely noisy environment. A new pavement-
vehicle interaction model that relates applied load 
to pavement vibrations, temperature, and speed of 
the vehicle was also developed and evaluated. The 
system was tested on a real highway and passed the 
WIM accuracy standards. The system achieved the 
required accuracy of 15% for individual axle loads 
and 10% for total load (GVW), and outperformed a 
nearby conventional WIM system. The use of 
multiple arrays of vibration sensors averaged out 
the dynamic component of load and provided 

weight estimates that are close to static axle and 
gross vehicle weights. As part of load estimation, 
the system also estimates the pavement deflection, 
and therefore can be used for long-term pavement 
monitoring. 

While the system outperformed a commercial 
WIM station in terms of accuracy, it needs 
improvement in other areas. The sensor lifetime, 
currently 2 years for this application, needs to be at 
least doubled. This can be done easily by doubling 
the sensor battery. An alternative is to replace the 
MEMS accelerometer with one that has a similar 
noise floor but a lower current consumption 
(Colibrys, 2013). 
 
Some questions that need to be answered are: 
 How does the system perform for other classes 

of vehicles? Is the calibration parameter different 
for different classes? If yes, this can make the 
calibration procedure more complex and 
expensive as more vehicles will be required. 

 How would the pavement type (concrete or 
asphalt) affect the system errors? 

 How does the system accuracy change with 
pavement deterioration? The answer to this 
question determines how often calibration is 
required for the system. The system was tested 
on 4 different days, spanning from February to 
September, and observed no significant change 
in accuracy. 

 Can we improve the accuracy further by adding 
additional arrays of vibration sensors? 
Increasing the number of sensor arrays from 1 to 
4 progressively reduces the errors in load 
estimates.  

 Can we quantify the effect of vehicle wander 
(driving off the lane center) on load estimates? 
This requires a method to accurately determine 
the location of the wheels relative to the sensors. 
If possible, this can also help reduce the weight 
errors. In addition, straddling of vehicles needs 
to be captured and separated from the rest of the 
data sample. 

 Can we develop specific installation and 
calibration protocols as would be needed by 
ASTM and/or AASHTO specifications? 
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The wireless WIM technology presented here has 
the potential to reduce the cost of WIM systems. 
The system can be used as a Prepass (screening) 
WIM near static weigh stations. Prepass stations 
estimate the weight of trucks in motion and direct 
them to the weigh station if they are likely to be 
overweight. If truckers can be incentivized to carry 
wireless tags for automatic identification, more 
intelligence can be added to the system. For 
example, anytime a truck with a tag is flagged for 
static weighing, the data obtained from the weigh 
station can be used to automatically re-calibrate the 
wireless WIM. In addition to weight, wireless WIM 
can also provide pavement temperatures, speeds, 
axle configurations, and vehicle classes. 
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