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Ocean Wavenumber Estimation From
Wave-Resolving Time Series Imagery

1

2

Nathaniel G. Plant, K. Todd Holland, and Merrick C. Haller3

Abstract—We review several approaches that have been used to4
estimate ocean surface gravity wavenumbers from wave-resolving5
remotely sensed image sequences. Two fundamentally different6
approaches that utilize these data exist. A power spectral density7
approach identifies wavenumbers where image intensity variance8
is maximized. Alternatively, a cross-spectral correlation approach9
identifies wavenumbers where intensity coherence is maximized.10
We develop a solution to the latter approach based on a tomo-11
graphic analysis that utilizes a nonlinear inverse method. The12
solution is tolerant to noise and other forms of sampling deficiency13
and can be applied to arbitrary sampling patterns, as well as to14
full-frame imagery. The solution includes error predictions that15
can be used for data retrieval quality control and for evaluating16
sample designs. A quantitative analysis of the intrinsic resolution17
of the method indicates that the cross-spectral correlation fitting18
improves resolution by a factor of about ten times as compared19
to the power spectral density fitting approach. The resolution20
analysis also provides a rule of thumb for nearshore bathymetry21
retrievals—short-scale cross-shore patterns may be resolved if22
they are about ten times longer than the average water depth23
over the pattern. This guidance can be applied to sample design to24
constrain both the sensor array (image resolution) and the analysis25
array (tomographic resolution).26

Index Terms—Adaptive signal processing, image processing, sea27
floor, sea surface, wavelength measurement.28

I. INTRODUCTION29

INCREASINGLY, observations of coastal processes are re-30

quired over wide areas and at high spatial and temporal31

resolutions. In particular, recent modeling advances enable32

the simulation of wave parameters and wave-driven flows at33

resolutions as fine as a few meters. These model predictions34

require initial and boundary conditions, and because model35

results are often very sensitive to the details of the water36

depths, the bathymetry is an important boundary condition. In37

addition, the bathymetry may evolve significantly in several38

hours during storms or over longer time periods under more39

quiescent conditions. Therefore, providing models with up-to-40

date bathymetry is required to achieve accurate predictions.41

Furthermore, continuous bathymetric observations are essential42
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in understanding the overall sediment and morphologic dy- 43

namics in coastal regions. As these observations are required 44

both over large spatial regions and continuously in time, direct 45

surveying methods are not up to this challenge, and remote 46

sensing methods are required. 47

Shore-based remote sensing platforms can provide a con- 48

tinuous data stream that is also synoptic, typically spanning 49

the region from the shoreline out to intermediate depths. For 50

example, video camera stations are a numerous and well- 51

established data source [1], [2]. With these data, it is possible 52

to see the kinematic interaction of the incident wave field with 53

the bathymetry (i.e., wave shoaling and refraction); hence, this 54

information can be used to obtain estimates of bathymetry [3], 55

[4]. An alternative approach for estimating bathymetry that 56

utilizes time-averaged estimates of dissipation from remote 57

sensing data [5]–[7] can only be applied in the surf zone and 58

at the shoreline [8], [9]. It is possible to estimate bathymetry 59

using other remote sensing approaches, such as multispectral or 60

hyperspectral analysis [10], [11], which are typically deployed 61

from aircraft. 62

Approaches to bathymetry estimation that are based on wave 63

kinematics utilize the depth dependence of the wave speed 64

or, equivalently, the wavelength and frequency, since c = f/k, 65

where c is the wave phase speed, f is the wave frequency, and 66

k is the wavenumber = 1/L, in which L is the wavelength. 67

Overall, this approach requires image sequences, or time series 68

of intensity at discretely sampled locations, that adequately 69

resolve the wave motions. This situation differs from typical ap- 70

plications that use airborne or space-borne platforms, as those 71

systems do not have long-enough dwell time to temporally 72

resolve the surface waves but may be able to resolve the slowly 73

varying current field [12]. 74

The underlying methodology to solve this surface wave 75

kinematics estimation problem has taken a number of different 76

forms. These include finding the frequency and wavenumbers 77

where spectral energy is a maximum [13]–[15], estimating the 78

wavelength directly from a cross-shore-oriented pixel array at 79

particular frequencies [3], estimating the time delay between a 80

pair of image locations [16], and estimating spatial translations 81

of the image field (the so-called particle image velocimetry) 82

from sequential image pairs [17]. Once the wave speeds (or 83

wavelengths) have been estimated, the data can be used to 84

estimate depth via a wave dispersion relationship. This last 85

step requires an inverse model solution that solves for a depth AQ286

that minimizes differences between the predicted speed (from 87

the dispersion relationship) and the estimated speed (from the 88

imagery). 89

The diverse methodologies listed above are similar in 90

that most are designed to extract estimates of wavenumber 91
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components at discrete frequencies from the imagery. However,92

it is not clear how well each method performs in a wide range93

of environments, including the laboratory, open water (where94

wavenumber variations that are controlled by currents may95

be important), open coasts (i.e., long straight beaches), and96

enclosed coasts (which have inlets and strong wave–current97

interactions). In addition, it is not clear how well each method98

can be applied to other imaging modalities, such as microwave99

radar [18], [19]. Therefore, the objective of this paper is to100

quantify the sensitivity of wavenumber estimation methods101

to variations in the sample design (e.g., spatial and temporal102

resolutions) and signal-to-noise ratios of the imaging system.103

To understand the situation, we will decouple the wavenumber104

estimation problem from that of estimating water depth. To105

this end, we define the problem, and we derive a formal106

inverse model that solves for the unknown spatially variable107

wavenumbers from image sequences (or intensity time series108

from a subset of image pixels). We evaluate the suitability109

of various sampling scenarios, including 1- and 2-D spatial110

arrays. In addition, we evaluate the abilityto predict the errorsAQ3 111

of the wavenumber estimates. Error predictions are essential for112

quantitative quality control and impact the results of subsequent113

bathymetry estimations as well as field evaluations of, for114

example, wave dispersion models [4], [20].115

This paper is organized as follows. In Section II, we describe116

the general problem of wave phase speed estimation and its117

equivalent wavenumber estimation problem, and we derive an118

inverse model for estimating spatially varying wavenumbers.119

In Section III, we evaluate the skill of the newly developed120

method using both synthetic and real-world data sets applied to121

both 1- and 2-D spatial domains. In Section IV, we discuss the122

similarity and differences between existing wavenumber esti-123

mation approaches, and we quantify the theoretical constraints124

on the spatial resolution of wavenumber and bathymetry esti-125

mates. Section V summarizes the important results, including126

the following: 1) that the proposed method provides improved127

spatial resolution and quantitative error predictions and 2) that128

it is well suited to solve the bathymetry inversion problem.129

II. THEORY130

We assume that georeferenced image sequences exhibiting131

intensity modulations attributable to surface gravity waves are132

available and that their sampling rate is sufficient to resolve a133

significant portion of the gravity wave spectrum. The imagery134

can be expressed as I(xi, yi, t), where xi, yi is the spatial coor-135

dinate of the ith image pixel, and t represents discrete sampling136

times. At frequencies of interest, we wish to characterize the137

spatial variation of the wave field, including the changes in138

wavelength and direction that occur in nearshore areas due to139

shoaling and refraction.140

Our first objective is to describe an efficient and accurate141

method of calculating estimates of c (or, equivalently, k).142

We will make some additional simplifying assumptions. For143

example, many details regarding the sensor imaging mecha-144

nisms, such as light absorption, reflection, and scattering, are145

ignored [21]. Variance introduced at sum/difference frequen-146

cies and wavenumbers via wave nonlinearity is also ignored147

[22]. The (spatially) unresolved portion of the image signal, 148

corresponding to water waves that are shorter than the Nyquist 149

wavelength of the image samples, is not treated in detail other 150

than to assume that it will appear as white noise. This aliased 151

component can be resolved [15], [23], but this is probably only 152

required if we were attempting to reconstruct the details of the 153

time-varying sea surface. Instead, our focus is on extracting the 154

resolvable spatial variability of the wavenumber vector field. 155

Finally, we assume that this variability can be described by a 156

finite number of modes. For example, a particularly egregious 157

assumption will be that the wave field at a single frequency is 158

locally well represented by a single wavelength and direction. 159

Our approach tests this particular hypothesis with a quantitative 160

model so that violations can be identified. 161

A. Time Delay Problem Definition 162

We assume that time delay information is available from 163

the spatially separated pixels such that an intensity time series 164

at one location can be predicted from observations at another 165

location, i.e., 166

I(xi, yi, t) = gi,j,nI(xj , yj , t+∆ti,j,n) + ei,j,n(t) (1a)

where the time lag ∆ti,j,n maximizes the correlation or min- AQ4167

imizes the variance of the error ei,j,n between observations at 168

sample locations xi, yi and xj , yj due to the nth wave compo- 169

nent. The parameter gi,j,n is a tunable correlation coefficient. In 170

one spatial dimension (e.g., normal to the shoreline), the time 171

lag is related to the wave properties as 172

∆ti,j,n =

xj∫
xi

cos (αn[x])
cn[x]

dx

=

xj∫
xi

cos (αn[x]) kn[x]
fn

dx (1b)

where αn is the direction of the nth wave component (e.g., it 173

corresponds to a discrete frequency and wavenumber fn, kn, 174

respectively), and cn is the celerity of that wave component. AQ5175

The cosine inside the integral indicates that the analysis only 176

resolves the wave component in the shore-normal direction. 177

This equation is the basis for any tomographic analysis applied 178

to physical properties of the Earth [24], including the speed of 179

sound waves in the ocean [25]. 180

The wave field can be described in a discrete spatial domain 181

with spacing ∆x. The discrete time delay equation becomes 182

∆ti,j,n =∆x

M∑
m=1

Di,j,m
cos (αn[xm])

cn[xm]

=∆x
M∑

m=1

Di,j,m
cos (αn[xm])

fn
kn[xm] (2)

where the matrix D is a design matrix defined on both the 183

sample domain xi, xj and the estimation domain described 184

by location xm. (We will refer to the estimation domain as 185
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the tomographic domain to maintain that analogy.) The design186

matrix describes how each observation contributes information187

to the estimate of the unknown model parameters αn,m and188

kn,m. In 1-D, elements of D are equal to unity between two189

sensors and are zero elsewhere. Smoothness constraints can be190

implemented through filtering of D such that sharp changes in191

the estimated celerity are not permitted.192

Clearly, in this form, the time delay equation is linear with193

respect to the unknown wavenumbers. The number of obser-194

vations required to solve the problem must be at least equal195

to the number of elements M in the tomographic domain.196

Furthermore, the spatial distribution of the observations is197

important. For instance, an element in the center of an array of198

observations will have many contributions, whereas elements199

at the ends of the array will have fewer contributions. Thus,200

while the resolution of xm is arbitrary, the resolvable scales of201

intensity variance depend on the data sampling resolution.202

To utilize the time delay equation with remotely sensed203

imagery, one must estimate the time lag ∆t associated with204

the propagation of the visible wave signal. The time lag will205

differ for all sensor pairs. This requires some sort of a search for206

the ∆t that corresponds to a maximum in the cross correlation207

function ri,j , as given by208

ri,j(∆t) = W (∆t)∗ 〈I(xi, t)I(xj , t+∆t)〉 (3)

where W is a bandpassed filter that is convolved against the209

cross correlation, and the angle brackets indicate an ensemble210

average over all observation times. This method has recently211

been used, for instance, in the estimation of flow speeds with212

fiber optic sensors [26]. At this stage, the estimation of the213

time delays typically requires a nonlinear search algorithm;214

therefore, the linearized version of the time delay equation does215

not avoid a nonlinear estimation step.216

B. Phase Delay Problem Definition217

Since it is natural to work with wave processes in the218

frequency domain, an alternative approach is to apply a discrete219

Fourier transform to the observations and rewrite the time delay220

as a phase delay by computing the cross-spectral correlation221

between two sensors as follows:222

COBS
i,j,f =

〈
Ĩ(xi, f)Ĩ∗(xj , f)

〉
= γi,j,f exp{

√
−1Φi,j,f} (4)

where the tilde indicates the Fourier transform, the asterisk223

indicates the complex conjugate, angle brackets indicate en-224

semble or band averaging, γ is the coherence, and Φ is the225

phase shift between two sample locations xi and xj for a226

particular frequency. Since the phase shift between two sensors227

is Φi,j,f = f∆ti,j,f , replace ∆t with the right-hand side of (2),228

and insert the resulting expression for Φ into (4) to get a model229

for the cross-spectral correlation, which is described as follows:230

CMODEL
i,j,f = exp

{
2π∆x

√
−1

M∑
m=1

Di,j,mkm,f cos(αm,f )

}
.

(5)

While the time delay equation is linear in the cross-shore 231

wavenumber km,f cos(αm,f ), the cross-spectral correlation 232

equation is a nonlinear function of the wavenumber. 233

An apparent advantage of the spectral formulation is that the 234

problem of filtering the time series within particular frequency 235

bands is accomplished via Fourier transform, and the nonlin- 236

ear problem of identifying time delays in the observations is 237

avoided. A disadvantage of the Fourier transform approach 238

is a requirement for sufficient sample duration to resolve the 239

frequencies of interest. This disadvantage is mitigated by the 240

use of coherence to identify robustness of the analysis. A 241

further disadvantage is that a phase ambiguity exists such that 242

Φestimate = Φtrue − (2πb), where b is the phase ambiguity, and 243

Φestimate lies on the interval (−π, π). Thus, sample locations 244

that are separated by more than a wavelength are susceptible to 245

aliasing when the phase ambiguity is unknown. (Piotrowski and 246

Dugan [15] deal with this by guessing at the ambiguities.) This 247

problem is well known and has received much recent attention 248

in applications of synthetic aperture radar interferometry. The 249

solutions for cases with potentially large phase ambiguities may 250

be solved via simulated annealing [27]. In the present approach, 251

we will assume that there are a sufficient number of sensor 252

separations that suffer no phase ambiguity—given a decent 253

initial guess of the true wavenumbers, these sensor separations 254

can be identified a priori. A data-adaptive identification method 255

is explained in Section II-C-3. 256

C. Wavenumber Estimation Solution Methods 257

Previous approaches to estimating wavenumbers (and 258

directions) at a particular frequency contain different mixtures 259

of local and nonlocal solutions to the problem. For instance, 260

the approach of Piotrowski and Dugan [15] assumes locally 261

horizontal bathymetry (implying spatially constant wavenum- 262

ber magnitude and wave direction over an analysis region) 263

and calculates the image intensity spectrum as a function of 264

two wavenumber components and frequency via Fourier trans- 265

forms. This spatially homogeneous spectrum assumption is 266

applied over a large number of nearby sample locations (com- 267

monly a 256 × 256 patch of pixels, with a typical resolution 268

of 1 m2pixel−1). For all wavenumber components, a frequency 269

of maximum spectral density is identified. This approach 270

does not directly utilize correlations across regions where the 271

wavenumber is changing (in the shoaling region), which are 272

explicitly contained in the formulation given by (2). There are 273

other approaches used to analyze spectral energy distribution 274

of wavenumber (e.g., [28] and [29]), but these also assume 275

spatial homogeneity. 276

We seek to avoid the restriction of spatial homogene- 277

ity because, for example, it is commonly not applicable in 278

nearshore areas where bathymetry and currents can induce 279

rapid wavenumber variations over short distances and where a 280

higher resolution is required. Hence, we turn our attention to so- 281

lution methods that fully utilize the available spatial correlation 282

information. These allow a highly resolved spatially variable 283

wavenumber field. Furthermore, we will focus on the spectral 284

approach based on (4) rather than the time-domain approach 285

that would be based on (2). 286
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1) Single-Mode Analysis: In general, at a single frequency,287

numerous wave trains, each with different directions, could288

contribute to the cross-spectral correlation estimate defined by289

(4). Thus, the original tomographic equation relating time delay290

to wave speed is inherently a stochastic problem, with each291

wave train contributing to and blurring the best-fit speeds and292

the corresponding time delays. One possible approach for sep-293

aration of the various contributing wave trains is to decompose294

the cross-spectral correlation into the most coherent modes as295

follows:296

COBS
i,j,f =

Q∑
q=1

Pi,q,fΓq,fP
∗
j,q,f (6)

where Γq,f is the Q×Q diagonal matrix with eigenvalues of297

COBS
i,j,f , and Pi,q,f are the corresponding eigenvectors. In their298

approach to estimating bathymetry from video imagery this299

way, Stockdon and Holman [3] selected the first (dominant)300

eigenmode to approximate the cross-spectral matrix at a single301

dominant frequency. The magnitude of the eigenvector at each302

location xi indicates its contribution to the total correlation,303

and the spatial phase differences are described by the phase of304

the eigenvector. To extract wavenumber information, which is305

related to the gradient of the phase, Stockdon and Holman [3]306

unwrapped the phases of P and estimated the local gradient of307

the potentially noisy phase estimates, e.g.,308

k̂i,f =
1
2π

φ̂i+1,1,f − φ̂i−1,1,f

(xi+1 − xi−1)
. (7)

This estimate is the cross-shore component of the dominant309

wavenumber, and the full wavenumber requires an estimate310

of the alongshore component, which they obtained from a311

different analysis approach and was assumed constant across312

the domain.313

Although this method is computationally efficient, it suffers314

several disadvantages. First, using only the first eigenmode315

requires significant coherence across the entire domain. Typ-316

ically, the center of the domain will dominate the first mode317

[30]. Thus, the phase estimates at the offshore and onshore318

ends of the array and at the location of wave breaking (where319

coherence and phase are disrupted by changes in the imaging320

mechanism for optical data) may be poorly estimated. Second,321

phase errors due to observation noise or phase ambiguity are322

difficult to estimate, which is problematic because error pre-323

dictions are essential for assessing the value of the extracted324

data. A potentially devastating situation is that of an array with325

very dense samples such that the denominator of (7) approaches326

zero and the estimate primarily amplifies measurement errors,327

rather than identifying the slowly varying wavenumber. Fi-328

nally, there is potentially useful information at multiple wave329

frequencies in addition to that at the “dominant” frequency.330

The identification of a “dominant” frequency involves tradeoffs331

between signal strength, spatial coherence, and spatial resolu-332

tion. These attributes are not necessarily the maximum at all333

spatial locations at the “dominant” frequency. As we will show,334

there are several advantages utilizing information from multiple335

frequencies.336

2) Nonlinear Inversion Method: Since wavenumber is non- 337

linearly related to the cross-spectral correlation, a typical 338

nonlinear inversion method, such as Levenberg–Marquardt 339

(LM) [31], can be used. The objective is to minimize the 340

weighted squared difference between successive estimates of 341

the modeled cross-spectral correlation when compared to the 342

observations, i.e., 343

∆Cτ
i,j,f =

{
γi,j,fC

MODEL,τ
i,j,f − COBS

i,j,f

}
(8)

where, at each iteration τ , the model–observation mismatch 344

is weighted by the observed coherence. For the 1-D case, we 345

cannot estimate the wave angle and, therefore, will only obtain 346

estimates of the cross-shore component of the wavenumber. 347

However, extension to two horizontal dimensions is straight- 348

forward (see Section III-C), given 2-D image sequences. 349

Linearized models for the wavenumbers on the tomographic 350

domain are solved iteratively as follows: 351

kτ+1
f,m = kτ

f,m +∆kτ
f,m

∆kτ
f,m =

(
[Rτ ]TRτ

)−1
[Rτ ]T∆Cτ

i,j,f

Rτ =Rτ
i,j,m,f

= γi,j,f

√
−1Di,j,mCMODEL,τ

i,j,f ∆x. (9)

The model–observation mismatch is ordered as a column vec- 352

tor, with each element corresponding to a particular i−j pair 353

of observation locations. The matrix R describes the sensi- 354

tivity of the cross-spectral correlation to the variation in each 355

wavenumber in the tomographic domain. Thus, each column of 356

R corresponds to the elements in the tomographic domain xm, 357

and each row corresponds to a xi−xj spatial separation pair. It 358

is possible to efficiently compute R by evaluating CMODEL,τ 359

at the observation locations. In the case where the predicted 360

wavenumber updates ∆kτ
f,m do not converge (according to an 361

a priori tolerance), the LM method diagonalizes R such that the 362

minimization method is equivalent to gradient descent search. 363

Error predictions for the wavenumber estimates are com- 364

puted as 365

(ετ
f )

2 = diag
(
[Rτ ]T [Rτ ]

)−1
([
∆Cτ

f

]T [
∆Cτ

f

])
/ν (10)

where the degrees of freedom ν equals the sum of the co- 366

herences. This error prediction assumes that the errors in the 367

wavenumber updates are normally distributed, and that the 368

data are independent. The latter assumption is certainly not 369

true, since data from a single observation location contributes 370

to many observation pairs in the cross-spectral correlation 371

estimate. However, the error predictions should provide good 372

estimates of the relative error at different locations. Those lo- 373

cations with strong sample support (D > 0, γ > 0) and strong 374

sensitivity (d/dk|CMODEL| > 0) will have the lowest error. 375

The nonlinear inverse method satisfies some important cri- 376

teria for providing robust wavenumber estimates. First, it 377

allows a spatially variable solution that can be applied to 378

all available frequencies. Second, error estimates that reflect 379

the sample design, the signal coherence, and the desired 380
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solution resolution are easily computed for use in assessing data381

quality. We therefore suggest this to be the most appropriate382

approach to wavenumber estimation in nearshore settings. The383

primary drawback to implementation of the method is addi-384

tional computational complexity. However, this drawback can385

be handled using existing computational capabilities, includ-386

ing efficient matrix operations, multiprocessor computers, and387

ever-increasing memory.388

3) Implementation Issues: Some final implementation is-389

sues are addressed here. They encompass choices that must be390

made about the analysis domain, which can have very different391

and typically coarser resolution properties compared to the392

image data. The tomographic resolution is a free parameter for393

any application of this methodology. The cost of high resolution394

is a larger sample design matrix D and a larger sensitivity395

matrix R. Both must be stored in the computer memory, and the396

latter must be squared and inverted. The cost of low resolution397

is an inaccurate representation of the spatial variations of the398

wavenumber. To balance these two costs, we chose to represent399

the wavenumber estimate with basis functions such that400

ki =
M∑

m=1

ai,mkm (11)

where a km basis set is defined on a relative coarse domain, and401

ai,m represents smoothing weights used to project the basis set402

to an arbitrary location xi. The smoothing weights can be any403

filter function. We used a Hanning filter404

a(δi,m) = {1− cos (0.5π[1 + δi,m])}2 , if ri,m < 1

δi,m = |xi − xm|L−1
x (12)

where Lx is a smoothing lengths scale. A smooth solution405

requires Lx > ∆xm (where ∆xm is the tomographic domain406

resolution). The sample design matrix must be modified to407

include the spatial correlation imposed by the basis function408

Di,j,m =
j∑

i′=i

ai′,m. (13)

Additionally, to impose continuity on estimates in regions409

where there might be large data gaps, the sensitivity matrix R410

used in (9) was augmented with the basis autocorrelation such411

that R′ = R+ µQ and Q = [am,m′ ]Tam,m′ , where µ = 0.1412

was used. This solution balances minimizing the cross-spectral413

correlation errors against errors due to spatially erratic results414

that are associated with unresolved scales of the solution.415

While the coarse resolution (∆xm) of the tomographic do-416

main should be designed to adequately resolve the bathymetry,417

it does not adequately resolve the much shorter scale of the418

wave phase variations. Using xm directly in (5) would lead to419

integration errors in the model for the cross-spectral correla-420

tions. To solve this problem, the coarsely defined and smoothly421

varying wavenumbers on the xm domain were interpolated to422

a much finer grid spacing of 1 m, using (11). Phases were423

then integrated to each observation location on this fine grid424

using (5).425

Phase ambiguity remains to be a problem. A particular 426

phase difference at large spatial separations might result from 427

the integration over a large number of short wavelengths, or 428

integration over a fraction of a larger wavelength. Mismatches 429

between the observed and predicted phase of the cross-spectral 430

coherence at these large lags may not be very useful in indicat- 431

ing whether a wavenumber estimate should be locally increased 432

or decreased to improve the fit to the observations. Since the 433

LM method assumes small phase errors, the coherence can 434

be artificially reduced at long lags by applying a Hanning 435

window mask (12) with a length scale parameter that adaptively 436

depended on the wavenumber estimate: Lτ
m = 1/kτ

max, where 437

kmax is the maximum computed wavenumber in the domain. 438

The mask was applied to the sensitivity as R′
i,j = Ri,jai,j (i.e., 439

an element-wise multiplication, not convolution). We found 440

that this approach worked well for initial wavenumber guesses 441

that were either too high or too low. In principle, as the 442

estimate converges, more distant sensor pairs may be allowed 443

to contribute to the solution by increasing the length scale of 444

the mask. 445

Finally, the iterative estimation scheme requires an initial 446

wavenumber estimate. We suggest generating an initial esti- 447

mate using linear wave theory and an estimate of the water 448

depths. 449

III. APPLICATIONS 450

A. Synthetic Example 451

To evaluate the suggested wavenumber estimation approach, 452

we applied it to a synthetic data set. Cross-spectral correlations 453

[Figs. 1(a) and (b) and 2(a) and (b)]were computed for two 454

frequencies (i.e., 0.1 and 0.2 Hz) using linear wave theory 455

to construct wavenumber profiles from a planar depth profile 456

[Figs. 1(c) and 2(c)]. Random errors were included in the cross- 457

spectral correlation by adding 50% random noise to the “true” 458

wavenumber profile [Figs. 1(d) and 2(d)] and summing the 459

resulting phases over 100 realizations. This combination of 460

noise level and number of realizations produced cross-spectral 461

correlations with a realistic coherence decay with increasing 462

sensor separation distances. The phases were sampled at loca- 463

tion xj , with spacing ∆x of 5 m. The cross-spectral correlation 464

phases are, by definition, zero along the diagonal (i.e., where 465

the signal from location xj is compared to itself) and are an- 466

tisymmetric about the diagonal (Φij = −Φji). The simulation 467

shows that the wavelength is longer offshore (phase differences 468

change slowly with spatial lags) and is shorter nearshore. 469

The low-frequency (longer) waves are better resolved (broader 470

coherence and clearly periodic phase structure) than the high- 471

frequency waves (narrow coherence, random phase structure at 472

large spatial separations). 473

Wavenumber estimates and corresponding error predictions 474

were obtained using the nonlinear inverse method on a to- 475

mographic domain with spacing ∆xm = 20 m. We performed 476

several experiments, including using all of the data, removing 477

some of the sample data in a patch located between 50 m < x < 478

100 m, and initializing the iterative method with wavenumbers 479

that were too large and too small. Fig. 3 shows the estimation 480

results applied to both frequencies. The estimated wavenumbers 481
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Fig. 1. Cross-spectral correlation (a) phase and (b) coherence for 0.1-Hz (10 s) wave propagation over (c) plane-sloping bathymetry. (d) Wavenumber samples
were generated using linear wave theory plus a random variation. Error bars show one standard deviation. Wavenumbers are shown normalized by the sample
spacing such that the Nyquist wavenumber occurs at a value of 0.5. Shading scale is (a) black = −π, white = π and (b) black = 0, white = 1.

Fig. 2. Cross-spectral correlation phase and coherence for 0.2-Hz (5 s) wave propagation. Description of each panel is the same as in Fig. 1.

were very accurate at nearly all locations. At locations where482

the estimate was relatively inaccurate, such as near the location483

of the data gap, the error predictions (10) were also large.484

It is worth noting that the wavenumber estimate depends on485

the initial guess of the wavenumber in the region where data486

were missing. While such dependence on the initial guess is487

undesirable, the predicted errors correctly identify the region488

that is susceptible to the problem.489

B. Field Data Example 490

We evaluated the nonlinear inversion method for wavenum- 491

ber estimation using observations from a set of video cameras 492

mounted on a tower at the U.S. Army Corps of Engineers Field 493

Research Facility (FRF), Duck, NC. The cameras did not store 494

full image frames (Fig. 4) during the study period, but instead, 495

time series of intensity at a sparse set of spatial locations 496



IE
EE

Pr
oo

f

PLANT et al.: OCEAN WAVENUMBER ESTIMATION FROM WAVE-RESOLVING TIME SERIES IMAGERY 7

Fig. 3. Example wavenumber estimates using synthetic data for (a–c) a 10-s period and (d–f) a 5-s period. The estimation is started out with initial guess (circles)
that is half the true value (a and d). The estimate (+) is nearly identical to the true value (solid line). The rms error predictions (dashed line) are larger for the
less well-resolved 5-s period data. In the second experiment (b and e), a 50-m patch of the observations was removed between 50 < x < 100 m. In the third
experiment (c and f), the initial guess is twice the true value.

Fig. 4. Camera view of the Duck field site, showing the image time series
sample locations (black dots). The camera orientation and distortion are used to
map the data to georeferenced locations. The cameras are mounted on a tower,
whose shadow on the beach provides a self-portrait.4/C

were retained for analysis (Fig. 5). This sampling scheme was497

implemented to balance data storage constraints against the498

requirements for resolving the important components of the499

incident wave field. With a cross-shore sample spacing of about500

Fig. 5. Duck sampling pattern with the shoreline at the left near x = 100.
Bathymetric survey locations are indicated by dots (very densely spaced in
the cross-shore direction); image time series (+) were sampled over the
2-D domain. The samples used in the 1-D analysis are indicated with bold
symbols. Wavenumbers were estimated on a sparse tomography domain, which
is indicated by circles (1-D case).

5 m, waves longer than 20 m (half the Nyquist wavenumber) 501

should be well resolved. This corresponds to waves with a 502

period longer than 6 s at a water depth of 1 m. At the Duck 503

field site, the annual mean wave period is about 8 s, which 504

means that a depth of 1 m, these waves have a 25-m wavelength 505
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Fig. 6. Cross-shore bathymetry transect surveyed on November 4, 1999, at
an alongshore location near 600 m (solid line), 560 m (long dash), and 640 m
(short dash).

and are well resolved. With this array design, these waves are506

resolvable until water depths reach about 0.75 m. Thus, for this507

field site, and depending on tidal height, wavenumber estimates508

should be possible for the region offshore of about x = 120 m509

(Fig. 6).510

As in the synthetic example, we chose a cross-shore res-511

olution of ∆xm = 20 m for the tomographic domain and a512

corresponding smoothing scale of Lx = 40 m. At the FRF,513

ground-truth bathymetry data were obtained from a three-514

wheeled (10-m footprint) survey vehicle, called the Coastal515

Research Amphibious Buggy [32]. The ground-truth bathym-516

etry along the 1-D cross-shore transect (Fig. 5, middle) that517

is used in this analysis is shown in Fig. 6. It includes a very518

steep swash zone (near x = 120 m), an inner sand bar (x =519

230 m), and an outer sand bar (x = 450 m). While the remote520

sensing data extend from 100 m < x < 500 m, we estimate521

the wavenumber both onshore and offshore of this extent. The522

error predictions should indicate the locations where robust523

wavenumber estimates are available.524

Using the pixel array data collected on November 4, 1999,525

at approximately 20:00 GMT, the sample cross-spectral cor-526

relation (4) was computed at a series of frequencies ranging527

from 0.07 Hz (15-s wave period) to 0.23 Hz (4-s wave period).528

The record length was 68 min, and the sample interval was529

0.5 s. The band-averaged frequency resolution was 0.03 Hz,530

with 136 nonoverlapping frequency samples used in each band.531

The phase and coherence are shown in Fig. 7 for each sample532

frequency. Only the lower portion of the symmetric correlation533

matrix was computed and stored. Spatial coherence, summed534

over all spatial separations, was highest at 0.167 Hz (6 s),535

followed by 0.10 Hz (10 s), and then 0.2 Hz (5 s) (Table I). We536

expect that these frequencies will yield accurate wavenumber537

estimates if the corresponding wavenumber structure is spa-538

tially well resolved. Note that the peak wave energy does not539

necessarily correspond to the peak coherence. In this case, the540

peak wave period based on sea surface height measured 8 m541

offshore was 8.9 s (0.11 Hz); the peak direction was 24◦ south542

of the shore normal; and the significant wave height was 0.5 m.543

The nonlinear inverse estimation method was applied to544

the sample cross-spectral correlations at each frequency over545

Fig. 7. (Left column) Phase and (Right column) coherence for individual
frequencies determined from pixel array data (Duck, NC).

TABLE I
COHERENCE AND WAVENUMBER ERROR STATISTICS

the entire array. To initialize the iterative method, at each 546

frequency, a linear dispersion model was used (assuming shore- 547

normal wave incidence) to generate initial wavenumbers at each 548

location xm. We used a bathymetry with a constant depth of 549

1 m for the initial guess. 550

For the purpose of comparison, linear wave theory was 551

used to compute the “true” wavenumber for each frequency. 552

The measured bathymetry and tide level at the time of the 553

image collection was used. (We acknowledge that linear wave 554

theory gives an imperfect ground-truth for parts of our analysis 555

domain [20].) Fig. 8 shows the comparison of the “true” and 556

estimated wavenumbers. The rms mismatch between the “true” 557

and estimated wavenumbers was computed by using the pre- 558

dicted errors as weights. Thus, locations where the predicted 559
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Fig. 8. Wavenumber estimates using Duck data. Error bars show the rms error prediction. Solid line shows linear wave theory prediction for each frequency.

errors (shown as error bars) were relatively high did not con-560

tribute as much to the rms error. The best estimates (Table I)561

were obtained for the lowest frequency (0.067 Hz, rms error562

0.02 m−1). This is a bit surprising, given the low coherence at563

this frequency. However, these waves are relatively long, and564

their spatial structure is well resolved by the sample design.565

The three frequencies with largest spatial coherence also had566

relatively low rms errors. Importantly, the spatial distribution of567

the predicted errors reflected the locations having high-quality568

data. Overall, the estimated wavenumbers were correlated to the569

“true” values with r2 = 0.96 and a slope of 1.0 (Fig. 9).570

C. Applications in 2-D571

The wavenumber estimation methods based on fitting the572

cross-spectral correlation can be extended to a 2-D domain.573

This allows the wave direction to be included as an unknown574

parameter. Drawbacks of such an extension are given as fol-575

lows: 1) the number of unknown variables is doubled (and this576

quadruples the computational effort for the wavenumber esti-577

mation procedure) and 2) the dimension of the cross-spectral578

correlation matrix is approximately squared, increasing both579

computational effort as well as memory requirements for the580

data analysis procedure. For example, the 2-D pixel array in the581

field data application included 1124 sample locations, yielding582

632 250 useful cross-spectral correlation elements, each with583

a real and an imaginary component, at each of the six sample584

frequencies. The result is 7.5 million data values. It should be585

noted that the spatial extent of this sampling array is not unusu-586

Fig. 9. Comparison of estimated and “true” wavenumbers [correlation
coefficient = 1.05 and skill(r2) = 0.96]. Data represent all analyzed frequen-
cies and all locations in the tomographic domain.

ally large, as it spans only a few hundred meters alongshore. 587

Many useful applications could extend at least several to tens of 588

kilometers alongshore. To overcome the data management hur- 589

dles, we solve the inverse problem locally over spatial regions 590

where we assume the wavenumber and direction to be slowly 591
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Fig. 10. (a) Estimates of (a) wavenumber magnitude and (c) wave direction and (b, d) predicted errors at a frequency of 0.10 Hz (10-s wave period). The medianAQ6
direction at the seaward boundary was −5◦ (waves approach from the south, but nearly shore normal). White dots on the wavenumber error prediction plot indicate
image pixel sample locations. (b) Estimates of wavenumber magnitude and wave direction and predicted errors at a frequency of 0.167 Hz (6-s wave period). The
median direction at the seaward boundary was +29◦ (waves from the north).4/C

varying. That is, we solve the problem at one spatial location at592

a time (i.e., with M = 1) rather than solving for wavenumbers593

at all locations simultaneously. Then, we move the analysis to594

each element of the tomographic domain. The revised approach595

still benefits from resolving both the frequency and spatial596

dependence of the cross-spectral correlation without having to597

assume a locally homogeneous bathymetry.598

Fig. 10(a) and (b) shows the analysis of a 2-D domain.599

The results are plotted for two different frequencies (0.10 and600

0.167 Hz). Fig. 10(a) (0.10 Hz) shows that the wavenum-601

ber is robustly estimated in much of the domain, indicated602

by error predictions that are much smaller than the mini-603

mum wavenumber. Errors are larger along the shoreline near604

x = 100 m. At the offshore boundary, the direction of wave605

approach varies somewhat but is generally close to shore606

normal. The median direction along the offshore boundary607

was −5◦ (waves approaching slightly from the south); the608

median direction over the whole domain was −1◦; and the609

median directional uncertainty was 7◦. Fig. 10(b) (0.167 Hz)610

shows that wavenumber is, again, robustly estimated. At the611

offshore boundary, the direction of wave approach was clearly612

from the north. The median direction along the offshore613

boundary was 28◦ (waves approach from the north); the median614

direction overall was 20◦; and the median directional uncer-615

tainty was 4◦. Fig. 11 shows independent estimates of the616

frequency- and direction-resolved spectrum obtained from an617

array of pressure sensors located 900 m offshore at a water 618

depth of 8 m [33]. It shows the same differences in approach 619

directions for the two frequencies presented in Fig. 10(a) and 620

(b). For both frequencies, the directions estimated from the 621

pressure sensors have larger magnitudes than the image-derived 622

directions. This is consistent with effects of refraction over 623

the 400-m propagation distance between the gage and the 624

seaward boundary of our estimation domain. Correcting for 625

refraction (symbols plotted in Fig. 11) significantly improves 626

the comparison between the image- and pressure-based wave 627

direction estimates. 628

D. Application to Bathymetry Inversion 629

While the wavenumber estimates are directly useful for char- 630

acterizing the wave directional distribution and for testing wave 631

dispersion relationships, a key motivation for this effort is to 632

facilitate robust remote-sensing-based bathymetry estimation. 633

Bathymetry estimation requires a solution of yet another inverse 634

problem using a dispersion model that relates wavenumber to 635

water depth. We use linear wave theory, i.e., 636

(2πf)2 = gk tanh(kh) → k = funct.(f, h) (14)

where g is the gravitational acceleration, and h is the local 637

water depth. Given values for f (i.e., sample frequencies) 638

and h (a guess at the correct depth), this equation can be 639
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Fig. 11. Slices from directional wave spectrum based on in situ measurements
at a water depth of 8 m. The two frequencies closest to 0.1 and 0.167 Hz were
selected. Peak directions were −18 (0.1 Hz) and 34◦ (0.17 Hz). The refracted
peak directions were computed for shoaling from a depth of 8 m to a depth of
5 m and are shown with symbols (+ for 0.1 Hz and ◦ for 0.167 Hz). The arrows
indicate the median direction at the offshore boundary corresponding to the 2-D
wavenumbers of the motion imagery analysis.

solved for wavenumbers (it is a transcendental equation, solved640

iteratively). We use the LM method to solve for the value of h641

that minimizes the error between the wavenumber predicted by642

(14) and that estimated from the imagery via (9). The advantage643

of separating the bathymetry inversion from the wavenumber644

inversion is that the quality of the image data can be objectively645

evaluated. Data with large errors can be rejected outright, or the646

errors can be used as weights in the inversion scheme, just as the647

coherence was used in (8). Furthermore, since each frequency648

is independent of the others, the depth inversion applied at each649

spatial location uses a number of independent wavenumber esti-650

mates. This should result in quantitatively accurate bathymetric651

error predictions, because the number of degrees of sampling652

freedom will not be overestimated. Otherwise, cross-spectral653

correlation estimates are not independent because data from654

each pixel are utilized multiple times as they is compared to655

itself and all the other pixels. Another reason for separating656

the wavenumber estimation from the bathymetry estimation is657

that the sensitivity of wavenumber to depth is very high in658

shallow water and is zero offshore. The near-zero sensitivity at659

the offshore region will destabilize a global bathymetry inver-660

sion, whereas this does not affect the wavenumber estimation661

problem.662

The wavenumber error predictions obtained from the non-663

linear inversion can be used to identify thresholds used to664

reject or weight the wavenumber estimates when applied to the665

depth inversion problem. Fig. 12 shows the spatial distribution666

of the errors and the error histogram from all the locations667

and frequencies. There appears to be a minimum error of668

approximately 0.05 m−1. Thus, errors that are much larger than669

this value indicate relatively low-quality data. Using a Gibb’s670

energy analogy [27], weights applied to the depth inversion671

were computed as E = exp(−ε/κ), where κ was 0.02 m−1,672

and ε is the error prediction (as long as κ < 0.1, the choice673

Fig. 12. Wavenumber error predictions and histogram.

Fig. 13. Water depth estimated from image-derived wavenumbers. The esti-
mates from the 1-D wavenumber inversion are shown with error bars and the
estimates from the 2-D analysis are shown as a solid line with dashed lines,
indicating one standard deviation error. The nearest survey observations are
shown as blue dots.

of κ was not too important). The weight E is largest for error 674

predictions approaching the minimum error, and E is small for 675

larger errors. 676

Fig. 13 shows the resulting water depth estimates based on 677

the 1-D (cross-shore) estimates of the wavenumber. Skillful 678

depth estimates are obtained from depths between 2 and 6 m. 679

The prediction is most accurate over the sandbar, where the 680

mismatch between surveyed and estimated bathymetry is less 681

than 10 cm, and the predicted errors are also small. Seaward of 682

about 300 m (depths > 5 m), the bathymetry estimate is less 683

accurate, and the error predictions are larger. Near the shore- 684

line, the wavelength is short and poorly resolved; wavenum- 685
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Fig. 14. Comparison of bathymetry derived using (a) 2-D wavenumber es-
timates and (c) surveyed (and spatially interpolated) bathymetry. Maps show
(b) the predicted errors from the wavenumber inversion and (d) the actual
differences between wavenumber inversion and survey. White dots on the
error maps indicate the sample locations for both (b) imagery and (d) survey
data sets.4/C

ber error predictions are large, and the bathymetry estimate686

is poor.687

The differences between the predicted and true bathymetries688

are not random. Offshore, the predictions are too deep. This689

is likely due to neglecting the wave direction for the 1-D690

analysis and interpreting the cross-shore wavenumber compo-691

nent as the wavenumber magnitude that appears in (14). In692

essence, the cross-shore wavenumber is too small, and the depth693

is overestimated. Near the shore, the bathymetry predictions694

are, again, too deep. This could result from neglecting the695

alongshore component of wavenumber, or it could be due to696

wave nonlinearity wherein waves travel faster than predicted by697

linear dispersion, and the resulting wavenumbers are smaller698

than expected. The offshore wave height of 0.5 m at the time699

of the analysis would lead to wave breaking at a water depth700

of roughly 1 m; hence, there was very little breaking over701

the bar—as evident in Fig. 4. Other mechanisms for causing702

discrepancies, such as setup or strong wave–current interactions703

are not likely to be too important because of the lack of wave704

breaking to force them.705

Using the wavenumbers from the 2-D analysis to estimate706

the bathymetry (Figs. 13 and 14) results in shallower (and707

mostly improved) bathymetry both offshore and at the shal-708

lower portions of the profile, suggesting that refraction was,709

indeed, largely responsible for the discrepancies observed in 710

the 1-D analysis. Larger errors in the middle of the 2-D 711

region appeared where there was strong alongshore bathy- 712

metric variability (Fig. 4). This variability was not allowed 713

by the smoothing properties inherent in the 2-D analysis 714

approach. 715

IV. DISCUSSION 716

A. Comparison to Other Methods 717

The proposed tomographic approach utilizing cross-spectral 718

correlations from coastal imagery resolves spatial and fre- 719

quency variability of the wavenumber field and includes er- 720

ror estimates that can be used to appropriately weight the 721

wavenumber estimates. The proposed approach comes with 722

a larger computational effort than other formulations. Is it 723

worth the effort? The formulations given in (1)–(9) show that 724

the theoretical underpinnings of all of the coherence-based 725

wavenumber estimation approaches are equivalent. Therefore, 726

applying each method to the 1-D test example should yield 727

similar results. Differences between methods will result from 728

the way that each approach rejects observation noise through 729

smoothing at the expense of spatial, frequency, or direction 730

resolution. Since we do not know the “true” answer (except 731

through forward modeling from the surveyed bathymetry), this 732

analysis will not necessarily identify the approach that is most 733

accurate. 734

1) Time Delay Approach: We use the method described in 735

[26] to filter the cross correlation (3) to estimate the time delays 736

between different sample locations. Fig. 15 shows the resulting 737

time delays between all sample pairs and the correlation at 738

each delay. Immediately apparent is the rapid decorrelation with 739

spatial separation. Nonetheless, time lag estimates are accurate 740

compared to “true” values derived using the known wave speed 741

via (2). The advantage of the time delay approach is that the 742

phase ambiguity problem is minimized. This is particularly 743

true in natural systems where the generally broad-band random 744

waves will guarantee that a single time delay will maximize 745

the correlation between sensors. (In laboratory settings with 746

monochromatic waves, strong correlations can be found at lags 747

that are multiples of the wave period.) Fig. 15 shows the phase 748

ambiguity appearing for time lags exceeding 20 s (or about 749

three cycles of the dominant 6-s wave period). A problem with 750

the time delay approach is that it is not clear how the quality 751

of the time delay estimates based on the correlation, which is 752

exceeding low at many relevant lags, is identified. Nonetheless, 753

we computed the wavenumber via an inverse solution of (2). 754

[Inverse solutions of (2) are, in principle, linear and do not 755

require iterations.] Fig. 16 shows wavenumber estimates based 756

on the time delays. In the middle of the computational domain, 757

the results are more or less equivalent to those in Fig. 8 at 758

f = 0.167 Hz. 759

Another problem with the time delay approach is that 760

comparisons to predictions from a wave dispersion equation 761

(or its inverse) require specification of a dominant wave pe- 762

riod. In the cross-spectral correlation methods, wave period 763

(or frequency) is an independent variable, not a required input 764

variable. The dependence of time delays for different wave 765
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Fig. 15. (a and c) Time lag estimates and (b and d) associated correlation for all sensor pairs (top row) and for a slice comparing all sample locations to
the location x = 250 m. The dashed line is the predicted time lag using the full dispersion equation at f = 0.167 Hz, and the solid line is the nondispersive
shallow-water approximation.

Fig. 16. Wavenumber estimate (and rms error prediction) using time lag data
(assuming f = 0.167 Hz) compared to the linear wave theory prediction. The
solid line is the theoretical prediction for nondispersive waves, and the dashed
line is theoretical prediction for dispersive waves.

periods shows that there could be considerable time delay766

dependence on wave period (dashed line in Fig. 15), and that767

these errors accumulate at large spatial lags.768

2) Single-Mode (EOF) Approach: Given that the proposed769

nonlinear estimation routine worked well in the test case, we770

suspect that, due to the long time series and high coherence at771

several frequencies, the single-mode EOF approach would also772

be effective. Fig. 17 shows the results of that approach. The773

results are very good, with a few exceptions. There is clearly774

more short-scale variability in the EOF estimate, which did775

not include any smoothness constraint. Simple spatial filtering776

would achieve a smoother result. However, the EOF wavenum-777

ber estimate is clearly unstable in a few locations at frequencies778

with relatively low coherence. Unfortunately, there is not a clear 779

method to identify the errors. There is no reason to restrict the 780

EOF analysis to a single frequency, and therefore, consistency 781

of estimates across a few frequencies may be used to provide 782

improved uncertainty estimates, particularly if the results are 783

used for bathymetry inversion. Furthermore, if there are multi- 784

ple dominant wave trains at a single frequency, the EOF method 785

could be applied to separate them as a preprocessing step to the 786

nonlinear estimation approach. 787

B. Spatial Resolution 788

It is important to identify the spatial resolution of the 789

wavenumber estimator presented in this analysis. Nearshore, 790

spatial variations in the incident wavenumber (i.e., kwave) result 791

from corresponding variations in the bathymetry. The scale 792

of the bathymetric variations might be shorter or longer than 793

the wave scale, and they might be shorter or longer than 794

what can be resolved by the sampling scheme.Intuitively, it AQ7795

seems reasonable that we can resolve bathymetric variations 796

that are much longer than the incident wavelength. Can we 797

resolve bathymetric variations that are shorter than the incident 798

wavelength? How well must we resolve the incident waves? 799

To illustrate this problem, consider a flat seabed to which 800

small sinusoidal bathymetric perturbations are added. The flat 801

bottom yields a constant incident wave wavenumber kwave. If 802

the bathymetric perturbations are small, then the wavenumber 803

is modulated as k(x) = kwave(1 + β cos[2πxkbathy]), where 804

kbathy is the wavenumber of the bathymetric perturbation, β 805
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Fig. 17. Comparison of wavenumber estimates using the singular value method (+) to the linear wave theory prediction at each sample frequency (solid line).

is the resulting (small) amplitude of that perturbation relative to806

the undisturbed wavenumber. Inserting a modulated wavenum-807

ber into the equation for the cross-spectral correlation (5) yields808

(e.g., the imaginary component)809


[C] = sin (2π∆xkwave {1 + β cos[2π∆xkbathy]})
= sin(2π∆xkwave)

+
βkwave

2kbathy
sin (2π∆x[kwave + kbathy])

− βkwave

2kbathy
sin (2π∆x[kwave − kbathy])

+ o(β2). (15)

The interaction of the incident wave signal and the bathymetric810

signal produces two scales of variability (as a function of811

spatial lag ∆x) in addition to the wave scale. There is a812

longer scale response associated with the difference between813

the incident and bathymetric wavenumbers and a shorter scale814

response associated with their sum. The response of these815

contributions is linearly damped as kbathy increases relative816

to kwave.817

Fig. 18. Sensitivity of wavenumber estimation errors to bathymetric pertur-
bation length scales kbathy, normalized by the surface wavenumber kwave.
The two lines show the sensitivity for the case of no measurement noise
(solid) and 10% noise (dashed). Other parameters were kwave = 2π/25 m−1,
∆x = ∆xm = 2.5 m, and Lx = 5m.

This simple example indicates that there are several factors 818

that affect the ability to resolve short-scale bathymetric fea- 819

tures. First, these features modulate the cross-spectral correla- 820

tion most strongly when they are long compared to the incident 821

wavelength (i.e., small values of kbathy/kwave). In practice, 822

there is an additional damping of short features due to the 823

spatial filtering that is imposed by our analysis. Fig. 18 shows 824

the percent error associated with attempts to retrieve sinusoidal 825



IE
EE

Pr
oo

f

PLANT et al.: OCEAN WAVENUMBER ESTIMATION FROM WAVE-RESOLVING TIME SERIES IMAGERY 15

perturbations of the incident wavenumber. Synthetic cross-826

spectral correlation samples were generated from perturbed827

wavenumber profiles. In the second example, 10% percent828

noise was added to the “true” perturbed wavenumber profile.829

In the case without noise (Fig. 18, solid line), the retrieval830

errors are less than 20% for kbathy/kwave < 2.5. The error831

climbs rapidly for higher bathymetric wavenumbers due to832

the smoothing filter that completely removes features with a833

scale equal to the Nyquist wavenumber (kNyq = π/∆xm or834

kNyq/kwave = 5).835

In the more realistic scenario where 10% percent noise was836

added to the observations (Fig. 18, dashed line), the error837

sensitivity is different. There is a local peak in the retrieval838

error at kbathy/kwave = 1. This occurs because the difference839

wavenumber term in (15) is zero, and only the sum wavenum-840

ber contributes to the signal. The sum wavenumber (shorter841

wavelength) is not well resolved by the sample spacing, and842

consequently, the perturbation is not well estimated. As kbathy843

increases, the retrieval error slightly decreases because the844

difference wavenumber term, which is well resolved, once845

again contributes to the signal. Finally, further increases in846

kbathy are not resolved as the smoothing filter again dominates847

the error.848

There is a fortuitous relationship between sampling resolu-849

tion capabilities and typical estimation requirements. Shorter850

scale bathymetric features are found in the shallowest waters851

where waves are most sensitive to depth variations. Since shore-852

based imaging typically has higher resolution closer to the853

shoreline, the short wavelength signals of interest are most854

likely to be resolved. In deep water, the length scales of bathy-855

metric features are longer; the wavelengths that are sensitive856

to depth variations are also longer; and these longer scales still857

ought to be resolved by the shore-based sensor. As a rule-of-858

thumb (assuming measurement noise is unavoidable), the short-859

est (cross-shore dimension) resolved bathymetric feature will860

be about twice the wavelength of the incident waves that are861

resolved by the imaging system. Allowing that nearshore waves862

are inherently depth dispersive, which implies that kwaveh ≤ 1,863

this suggests that bathymetric features must be longer than864

about ten times the water depth. For average water depths of865

several meters, features that are tens of meters long are, in866

principle, resolvable. This resolution is about ten times better867

than what is achievable with the energy density identification868

approach [15], even with a similar pixel resolution (1–2 m),869

mainly because the assumption of a locally homogeneous870

bathymetry over the sampling array region is not required in871

the proposed method. The tradeoff is that the present approach872

only resolves a single dominant wavenumber, while the energy873

density approach resolves many different wavenumbers. The874

latter approach may perform better in the case of a directionally875

bimodal or very directionally broad-banded incident wave spec-876

trum where the assumption of a single dominant wavenumber877

may be overly simplistic.878

V. CONCLUSION879

We have reviewed several approaches that have been used880

to estimate ocean surface gravity wavenumbers from wave-881

resolving image sequences. Two fundamentally different ap- 882

proaches exist that utilize this type of data. A power spectral 883

density approach identifies wavenumbers that maximize image 884

intensity variance. Alternatively, a cross-spectral correlation 885

approach identifies wavenumbers that maximize intensity co- 886

herence. The first method finds, at an arbitrary wavenumber, 887

the frequency associated with maximum spectral density. This 888

approach requires application of a 2- or 3-D FFT to, typically, 889

full frame images. The spatial resolution of the wavenumber 890

estimates is typically O(100) times the image pixel resolution. 891

The second approach finds, at each resolved frequency, the 892

wavenumber that maximizes the observed cross-spectral coher- 893

ence. Numerous solution methods have been suggested for this 894

approach, including cross correlation and empirical orthogonal 895

function analysis. Here, we developed a solution based on a to- 896

mographic analysis that utilizes a nonlinear inverse method and 897

may be applied to both time- and frequency-domain analyses. 898

We demonstrate that a formal treatment of the problem leads to 899

a nonlinear inverse problem that can be solved to yield robust 900

wavenumber estimates and error predictions. 901

We expand in detail a frequency-domain solution approach 902

that yields robust retrievals of wavenumber estimates from the 903

imagery. The approach is tolerant to noise and other forms 904

of sampling deficiency and can be applied to arbitrary sample 905

patterns, as well as to full frame imagery. The approach pro- 906

vides error predictions that are useful for quality control and 907

subsequent applications to, for instance, bathymetry estimation. 908

A quantitative analysis of the resolution of the method indicates 909

that the cross-spectral correlation fitting approach has about 910

ten times better resolution than the power spectral density 911

fitting approach. Furthermore, the resolution analysis provides 912

a rule of thumb for bathymetry estimation: Cross-shore spatial 913

patterns may be resolved if their length is ten times the water 914

depth. This guidance can be applied to sample design to include 915

constraints on both the sensor array (image resolution) and the 916

analysis array (tomographic resolution). Finally, the method 917

supports bathymetry estimation through inversion of a wave 918

dispersion model. It does this by providing robust statistically 919

consistent and independent wavenumber estimates at multiple 920

wave frequencies. 921
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Ocean Wavenumber Estimation From
Wave-Resolving Time Series Imagery

1

2

Nathaniel G. Plant, K. Todd Holland, and Merrick C. Haller3

Abstract—We review several approaches that have been used to4
estimate ocean surface gravity wavenumbers from wave-resolving5
remotely sensed image sequences. Two fundamentally different6
approaches that utilize these data exist. A power spectral density7
approach identifies wavenumbers where image intensity variance8
is maximized. Alternatively, a cross-spectral correlation approach9
identifies wavenumbers where intensity coherence is maximized.10
We develop a solution to the latter approach based on a tomo-11
graphic analysis that utilizes a nonlinear inverse method. The12
solution is tolerant to noise and other forms of sampling deficiency13
and can be applied to arbitrary sampling patterns, as well as to14
full-frame imagery. The solution includes error predictions that15
can be used for data retrieval quality control and for evaluating16
sample designs. A quantitative analysis of the intrinsic resolution17
of the method indicates that the cross-spectral correlation fitting18
improves resolution by a factor of about ten times as compared19
to the power spectral density fitting approach. The resolution20
analysis also provides a rule of thumb for nearshore bathymetry21
retrievals—short-scale cross-shore patterns may be resolved if22
they are about ten times longer than the average water depth23
over the pattern. This guidance can be applied to sample design to24
constrain both the sensor array (image resolution) and the analysis25
array (tomographic resolution).26

Index Terms—Adaptive signal processing, image processing, sea27
floor, sea surface, wavelength measurement.28

I. INTRODUCTION29

INCREASINGLY, observations of coastal processes are re-30

quired over wide areas and at high spatial and temporal31

resolutions. In particular, recent modeling advances enable32

the simulation of wave parameters and wave-driven flows at33

resolutions as fine as a few meters. These model predictions34

require initial and boundary conditions, and because model35

results are often very sensitive to the details of the water36

depths, the bathymetry is an important boundary condition. In37

addition, the bathymetry may evolve significantly in several38

hours during storms or over longer time periods under more39

quiescent conditions. Therefore, providing models with up-to-40

date bathymetry is required to achieve accurate predictions.41

Furthermore, continuous bathymetric observations are essential42
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in understanding the overall sediment and morphologic dy- 43

namics in coastal regions. As these observations are required 44

both over large spatial regions and continuously in time, direct 45

surveying methods are not up to this challenge, and remote 46

sensing methods are required. 47

Shore-based remote sensing platforms can provide a con- 48

tinuous data stream that is also synoptic, typically spanning 49

the region from the shoreline out to intermediate depths. For 50

example, video camera stations are a numerous and well- 51

established data source [1], [2]. With these data, it is possible 52

to see the kinematic interaction of the incident wave field with 53

the bathymetry (i.e., wave shoaling and refraction); hence, this 54

information can be used to obtain estimates of bathymetry [3], 55

[4]. An alternative approach for estimating bathymetry that 56

utilizes time-averaged estimates of dissipation from remote 57

sensing data [5]–[7] can only be applied in the surf zone and 58

at the shoreline [8], [9]. It is possible to estimate bathymetry 59

using other remote sensing approaches, such as multispectral or 60

hyperspectral analysis [10], [11], which are typically deployed 61

from aircraft. 62

Approaches to bathymetry estimation that are based on wave 63

kinematics utilize the depth dependence of the wave speed 64

or, equivalently, the wavelength and frequency, since c = f/k, 65

where c is the wave phase speed, f is the wave frequency, and 66

k is the wavenumber = 1/L, in which L is the wavelength. 67

Overall, this approach requires image sequences, or time series 68

of intensity at discretely sampled locations, that adequately 69

resolve the wave motions. This situation differs from typical ap- 70

plications that use airborne or space-borne platforms, as those 71

systems do not have long-enough dwell time to temporally 72

resolve the surface waves but may be able to resolve the slowly 73

varying current field [12]. 74

The underlying methodology to solve this surface wave 75

kinematics estimation problem has taken a number of different 76

forms. These include finding the frequency and wavenumbers 77

where spectral energy is a maximum [13]–[15], estimating the 78

wavelength directly from a cross-shore-oriented pixel array at 79

particular frequencies [3], estimating the time delay between a 80

pair of image locations [16], and estimating spatial translations 81

of the image field (the so-called particle image velocimetry) 82

from sequential image pairs [17]. Once the wave speeds (or 83

wavelengths) have been estimated, the data can be used to 84

estimate depth via a wave dispersion relationship. This last 85

step requires an inverse model solution that solves for a depth AQ286

that minimizes differences between the predicted speed (from 87

the dispersion relationship) and the estimated speed (from the 88

imagery). 89

The diverse methodologies listed above are similar in 90

that most are designed to extract estimates of wavenumber 91

0196-2892/$25.00 © 2008 IEEE
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components at discrete frequencies from the imagery. However,92

it is not clear how well each method performs in a wide range93

of environments, including the laboratory, open water (where94

wavenumber variations that are controlled by currents may95

be important), open coasts (i.e., long straight beaches), and96

enclosed coasts (which have inlets and strong wave–current97

interactions). In addition, it is not clear how well each method98

can be applied to other imaging modalities, such as microwave99

radar [18], [19]. Therefore, the objective of this paper is to100

quantify the sensitivity of wavenumber estimation methods101

to variations in the sample design (e.g., spatial and temporal102

resolutions) and signal-to-noise ratios of the imaging system.103

To understand the situation, we will decouple the wavenumber104

estimation problem from that of estimating water depth. To105

this end, we define the problem, and we derive a formal106

inverse model that solves for the unknown spatially variable107

wavenumbers from image sequences (or intensity time series108

from a subset of image pixels). We evaluate the suitability109

of various sampling scenarios, including 1- and 2-D spatial110

arrays. In addition, we evaluate the abilityto predict the errorsAQ3 111

of the wavenumber estimates. Error predictions are essential for112

quantitative quality control and impact the results of subsequent113

bathymetry estimations as well as field evaluations of, for114

example, wave dispersion models [4], [20].115

This paper is organized as follows. In Section II, we describe116

the general problem of wave phase speed estimation and its117

equivalent wavenumber estimation problem, and we derive an118

inverse model for estimating spatially varying wavenumbers.119

In Section III, we evaluate the skill of the newly developed120

method using both synthetic and real-world data sets applied to121

both 1- and 2-D spatial domains. In Section IV, we discuss the122

similarity and differences between existing wavenumber esti-123

mation approaches, and we quantify the theoretical constraints124

on the spatial resolution of wavenumber and bathymetry esti-125

mates. Section V summarizes the important results, including126

the following: 1) that the proposed method provides improved127

spatial resolution and quantitative error predictions and 2) that128

it is well suited to solve the bathymetry inversion problem.129

II. THEORY130

We assume that georeferenced image sequences exhibiting131

intensity modulations attributable to surface gravity waves are132

available and that their sampling rate is sufficient to resolve a133

significant portion of the gravity wave spectrum. The imagery134

can be expressed as I(xi, yi, t), where xi, yi is the spatial coor-135

dinate of the ith image pixel, and t represents discrete sampling136

times. At frequencies of interest, we wish to characterize the137

spatial variation of the wave field, including the changes in138

wavelength and direction that occur in nearshore areas due to139

shoaling and refraction.140

Our first objective is to describe an efficient and accurate141

method of calculating estimates of c (or, equivalently, k).142

We will make some additional simplifying assumptions. For143

example, many details regarding the sensor imaging mecha-144

nisms, such as light absorption, reflection, and scattering, are145

ignored [21]. Variance introduced at sum/difference frequen-146

cies and wavenumbers via wave nonlinearity is also ignored147

[22]. The (spatially) unresolved portion of the image signal, 148

corresponding to water waves that are shorter than the Nyquist 149

wavelength of the image samples, is not treated in detail other 150

than to assume that it will appear as white noise. This aliased 151

component can be resolved [15], [23], but this is probably only 152

required if we were attempting to reconstruct the details of the 153

time-varying sea surface. Instead, our focus is on extracting the 154

resolvable spatial variability of the wavenumber vector field. 155

Finally, we assume that this variability can be described by a 156

finite number of modes. For example, a particularly egregious 157

assumption will be that the wave field at a single frequency is 158

locally well represented by a single wavelength and direction. 159

Our approach tests this particular hypothesis with a quantitative 160

model so that violations can be identified. 161

A. Time Delay Problem Definition 162

We assume that time delay information is available from 163

the spatially separated pixels such that an intensity time series 164

at one location can be predicted from observations at another 165

location, i.e., 166

I(xi, yi, t) = gi,j,nI(xj , yj , t+∆ti,j,n) + ei,j,n(t) (1a)

where the time lag ∆ti,j,n maximizes the correlation or min- AQ4167

imizes the variance of the error ei,j,n between observations at 168

sample locations xi, yi and xj , yj due to the nth wave compo- 169

nent. The parameter gi,j,n is a tunable correlation coefficient. In 170

one spatial dimension (e.g., normal to the shoreline), the time 171

lag is related to the wave properties as 172

∆ti,j,n =

xj∫
xi

cos (αn[x])
cn[x]

dx

=

xj∫
xi

cos (αn[x]) kn[x]
fn

dx (1b)

where αn is the direction of the nth wave component (e.g., it 173

corresponds to a discrete frequency and wavenumber fn, kn, 174

respectively), and cn is the celerity of that wave component. AQ5175

The cosine inside the integral indicates that the analysis only 176

resolves the wave component in the shore-normal direction. 177

This equation is the basis for any tomographic analysis applied 178

to physical properties of the Earth [24], including the speed of 179

sound waves in the ocean [25]. 180

The wave field can be described in a discrete spatial domain 181

with spacing ∆x. The discrete time delay equation becomes 182

∆ti,j,n =∆x

M∑
m=1

Di,j,m
cos (αn[xm])

cn[xm]

=∆x
M∑

m=1

Di,j,m
cos (αn[xm])

fn
kn[xm] (2)

where the matrix D is a design matrix defined on both the 183

sample domain xi, xj and the estimation domain described 184

by location xm. (We will refer to the estimation domain as 185
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the tomographic domain to maintain that analogy.) The design186

matrix describes how each observation contributes information187

to the estimate of the unknown model parameters αn,m and188

kn,m. In 1-D, elements of D are equal to unity between two189

sensors and are zero elsewhere. Smoothness constraints can be190

implemented through filtering of D such that sharp changes in191

the estimated celerity are not permitted.192

Clearly, in this form, the time delay equation is linear with193

respect to the unknown wavenumbers. The number of obser-194

vations required to solve the problem must be at least equal195

to the number of elements M in the tomographic domain.196

Furthermore, the spatial distribution of the observations is197

important. For instance, an element in the center of an array of198

observations will have many contributions, whereas elements199

at the ends of the array will have fewer contributions. Thus,200

while the resolution of xm is arbitrary, the resolvable scales of201

intensity variance depend on the data sampling resolution.202

To utilize the time delay equation with remotely sensed203

imagery, one must estimate the time lag ∆t associated with204

the propagation of the visible wave signal. The time lag will205

differ for all sensor pairs. This requires some sort of a search for206

the ∆t that corresponds to a maximum in the cross correlation207

function ri,j , as given by208

ri,j(∆t) = W (∆t)∗ 〈I(xi, t)I(xj , t+∆t)〉 (3)

where W is a bandpassed filter that is convolved against the209

cross correlation, and the angle brackets indicate an ensemble210

average over all observation times. This method has recently211

been used, for instance, in the estimation of flow speeds with212

fiber optic sensors [26]. At this stage, the estimation of the213

time delays typically requires a nonlinear search algorithm;214

therefore, the linearized version of the time delay equation does215

not avoid a nonlinear estimation step.216

B. Phase Delay Problem Definition217

Since it is natural to work with wave processes in the218

frequency domain, an alternative approach is to apply a discrete219

Fourier transform to the observations and rewrite the time delay220

as a phase delay by computing the cross-spectral correlation221

between two sensors as follows:222

COBS
i,j,f =

〈
Ĩ(xi, f)Ĩ∗(xj , f)

〉
= γi,j,f exp{

√
−1Φi,j,f} (4)

where the tilde indicates the Fourier transform, the asterisk223

indicates the complex conjugate, angle brackets indicate en-224

semble or band averaging, γ is the coherence, and Φ is the225

phase shift between two sample locations xi and xj for a226

particular frequency. Since the phase shift between two sensors227

is Φi,j,f = f∆ti,j,f , replace ∆t with the right-hand side of (2),228

and insert the resulting expression for Φ into (4) to get a model229

for the cross-spectral correlation, which is described as follows:230

CMODEL
i,j,f = exp

{
2π∆x

√
−1

M∑
m=1

Di,j,mkm,f cos(αm,f )

}
.

(5)

While the time delay equation is linear in the cross-shore 231

wavenumber km,f cos(αm,f ), the cross-spectral correlation 232

equation is a nonlinear function of the wavenumber. 233

An apparent advantage of the spectral formulation is that the 234

problem of filtering the time series within particular frequency 235

bands is accomplished via Fourier transform, and the nonlin- 236

ear problem of identifying time delays in the observations is 237

avoided. A disadvantage of the Fourier transform approach 238

is a requirement for sufficient sample duration to resolve the 239

frequencies of interest. This disadvantage is mitigated by the 240

use of coherence to identify robustness of the analysis. A 241

further disadvantage is that a phase ambiguity exists such that 242

Φestimate = Φtrue − (2πb), where b is the phase ambiguity, and 243

Φestimate lies on the interval (−π, π). Thus, sample locations 244

that are separated by more than a wavelength are susceptible to 245

aliasing when the phase ambiguity is unknown. (Piotrowski and 246

Dugan [15] deal with this by guessing at the ambiguities.) This 247

problem is well known and has received much recent attention 248

in applications of synthetic aperture radar interferometry. The 249

solutions for cases with potentially large phase ambiguities may 250

be solved via simulated annealing [27]. In the present approach, 251

we will assume that there are a sufficient number of sensor 252

separations that suffer no phase ambiguity—given a decent 253

initial guess of the true wavenumbers, these sensor separations 254

can be identified a priori. A data-adaptive identification method 255

is explained in Section II-C-3. 256

C. Wavenumber Estimation Solution Methods 257

Previous approaches to estimating wavenumbers (and 258

directions) at a particular frequency contain different mixtures 259

of local and nonlocal solutions to the problem. For instance, 260

the approach of Piotrowski and Dugan [15] assumes locally 261

horizontal bathymetry (implying spatially constant wavenum- 262

ber magnitude and wave direction over an analysis region) 263

and calculates the image intensity spectrum as a function of 264

two wavenumber components and frequency via Fourier trans- 265

forms. This spatially homogeneous spectrum assumption is 266

applied over a large number of nearby sample locations (com- 267

monly a 256 × 256 patch of pixels, with a typical resolution 268

of 1 m2pixel−1). For all wavenumber components, a frequency 269

of maximum spectral density is identified. This approach 270

does not directly utilize correlations across regions where the 271

wavenumber is changing (in the shoaling region), which are 272

explicitly contained in the formulation given by (2). There are 273

other approaches used to analyze spectral energy distribution 274

of wavenumber (e.g., [28] and [29]), but these also assume 275

spatial homogeneity. 276

We seek to avoid the restriction of spatial homogene- 277

ity because, for example, it is commonly not applicable in 278

nearshore areas where bathymetry and currents can induce 279

rapid wavenumber variations over short distances and where a 280

higher resolution is required. Hence, we turn our attention to so- 281

lution methods that fully utilize the available spatial correlation 282

information. These allow a highly resolved spatially variable 283

wavenumber field. Furthermore, we will focus on the spectral 284

approach based on (4) rather than the time-domain approach 285

that would be based on (2). 286
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1) Single-Mode Analysis: In general, at a single frequency,287

numerous wave trains, each with different directions, could288

contribute to the cross-spectral correlation estimate defined by289

(4). Thus, the original tomographic equation relating time delay290

to wave speed is inherently a stochastic problem, with each291

wave train contributing to and blurring the best-fit speeds and292

the corresponding time delays. One possible approach for sep-293

aration of the various contributing wave trains is to decompose294

the cross-spectral correlation into the most coherent modes as295

follows:296

COBS
i,j,f =

Q∑
q=1

Pi,q,fΓq,fP
∗
j,q,f (6)

where Γq,f is the Q×Q diagonal matrix with eigenvalues of297

COBS
i,j,f , and Pi,q,f are the corresponding eigenvectors. In their298

approach to estimating bathymetry from video imagery this299

way, Stockdon and Holman [3] selected the first (dominant)300

eigenmode to approximate the cross-spectral matrix at a single301

dominant frequency. The magnitude of the eigenvector at each302

location xi indicates its contribution to the total correlation,303

and the spatial phase differences are described by the phase of304

the eigenvector. To extract wavenumber information, which is305

related to the gradient of the phase, Stockdon and Holman [3]306

unwrapped the phases of P and estimated the local gradient of307

the potentially noisy phase estimates, e.g.,308

k̂i,f =
1
2π

φ̂i+1,1,f − φ̂i−1,1,f

(xi+1 − xi−1)
. (7)

This estimate is the cross-shore component of the dominant309

wavenumber, and the full wavenumber requires an estimate310

of the alongshore component, which they obtained from a311

different analysis approach and was assumed constant across312

the domain.313

Although this method is computationally efficient, it suffers314

several disadvantages. First, using only the first eigenmode315

requires significant coherence across the entire domain. Typ-316

ically, the center of the domain will dominate the first mode317

[30]. Thus, the phase estimates at the offshore and onshore318

ends of the array and at the location of wave breaking (where319

coherence and phase are disrupted by changes in the imaging320

mechanism for optical data) may be poorly estimated. Second,321

phase errors due to observation noise or phase ambiguity are322

difficult to estimate, which is problematic because error pre-323

dictions are essential for assessing the value of the extracted324

data. A potentially devastating situation is that of an array with325

very dense samples such that the denominator of (7) approaches326

zero and the estimate primarily amplifies measurement errors,327

rather than identifying the slowly varying wavenumber. Fi-328

nally, there is potentially useful information at multiple wave329

frequencies in addition to that at the “dominant” frequency.330

The identification of a “dominant” frequency involves tradeoffs331

between signal strength, spatial coherence, and spatial resolu-332

tion. These attributes are not necessarily the maximum at all333

spatial locations at the “dominant” frequency. As we will show,334

there are several advantages utilizing information from multiple335

frequencies.336

2) Nonlinear Inversion Method: Since wavenumber is non- 337

linearly related to the cross-spectral correlation, a typical 338

nonlinear inversion method, such as Levenberg–Marquardt 339

(LM) [31], can be used. The objective is to minimize the 340

weighted squared difference between successive estimates of 341

the modeled cross-spectral correlation when compared to the 342

observations, i.e., 343

∆Cτ
i,j,f =

{
γi,j,fC

MODEL,τ
i,j,f − COBS

i,j,f

}
(8)

where, at each iteration τ , the model–observation mismatch 344

is weighted by the observed coherence. For the 1-D case, we 345

cannot estimate the wave angle and, therefore, will only obtain 346

estimates of the cross-shore component of the wavenumber. 347

However, extension to two horizontal dimensions is straight- 348

forward (see Section III-C), given 2-D image sequences. 349

Linearized models for the wavenumbers on the tomographic 350

domain are solved iteratively as follows: 351

kτ+1
f,m = kτ

f,m +∆kτ
f,m

∆kτ
f,m =

(
[Rτ ]TRτ

)−1
[Rτ ]T∆Cτ

i,j,f

Rτ =Rτ
i,j,m,f

= γi,j,f

√
−1Di,j,mCMODEL,τ

i,j,f ∆x. (9)

The model–observation mismatch is ordered as a column vec- 352

tor, with each element corresponding to a particular i−j pair 353

of observation locations. The matrix R describes the sensi- 354

tivity of the cross-spectral correlation to the variation in each 355

wavenumber in the tomographic domain. Thus, each column of 356

R corresponds to the elements in the tomographic domain xm, 357

and each row corresponds to a xi−xj spatial separation pair. It 358

is possible to efficiently compute R by evaluating CMODEL,τ 359

at the observation locations. In the case where the predicted 360

wavenumber updates ∆kτ
f,m do not converge (according to an 361

a priori tolerance), the LM method diagonalizes R such that the 362

minimization method is equivalent to gradient descent search. 363

Error predictions for the wavenumber estimates are com- 364

puted as 365

(ετ
f )

2 = diag
(
[Rτ ]T [Rτ ]

)−1
([
∆Cτ

f

]T [
∆Cτ

f

])
/ν (10)

where the degrees of freedom ν equals the sum of the co- 366

herences. This error prediction assumes that the errors in the 367

wavenumber updates are normally distributed, and that the 368

data are independent. The latter assumption is certainly not 369

true, since data from a single observation location contributes 370

to many observation pairs in the cross-spectral correlation 371

estimate. However, the error predictions should provide good 372

estimates of the relative error at different locations. Those lo- 373

cations with strong sample support (D > 0, γ > 0) and strong 374

sensitivity (d/dk|CMODEL| > 0) will have the lowest error. 375

The nonlinear inverse method satisfies some important cri- 376

teria for providing robust wavenumber estimates. First, it 377

allows a spatially variable solution that can be applied to 378

all available frequencies. Second, error estimates that reflect 379

the sample design, the signal coherence, and the desired 380
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solution resolution are easily computed for use in assessing data381

quality. We therefore suggest this to be the most appropriate382

approach to wavenumber estimation in nearshore settings. The383

primary drawback to implementation of the method is addi-384

tional computational complexity. However, this drawback can385

be handled using existing computational capabilities, includ-386

ing efficient matrix operations, multiprocessor computers, and387

ever-increasing memory.388

3) Implementation Issues: Some final implementation is-389

sues are addressed here. They encompass choices that must be390

made about the analysis domain, which can have very different391

and typically coarser resolution properties compared to the392

image data. The tomographic resolution is a free parameter for393

any application of this methodology. The cost of high resolution394

is a larger sample design matrix D and a larger sensitivity395

matrix R. Both must be stored in the computer memory, and the396

latter must be squared and inverted. The cost of low resolution397

is an inaccurate representation of the spatial variations of the398

wavenumber. To balance these two costs, we chose to represent399

the wavenumber estimate with basis functions such that400

ki =
M∑

m=1

ai,mkm (11)

where a km basis set is defined on a relative coarse domain, and401

ai,m represents smoothing weights used to project the basis set402

to an arbitrary location xi. The smoothing weights can be any403

filter function. We used a Hanning filter404

a(δi,m) = {1− cos (0.5π[1 + δi,m])}2 , if ri,m < 1

δi,m = |xi − xm|L−1
x (12)

where Lx is a smoothing lengths scale. A smooth solution405

requires Lx > ∆xm (where ∆xm is the tomographic domain406

resolution). The sample design matrix must be modified to407

include the spatial correlation imposed by the basis function408

Di,j,m =
j∑

i′=i

ai′,m. (13)

Additionally, to impose continuity on estimates in regions409

where there might be large data gaps, the sensitivity matrix R410

used in (9) was augmented with the basis autocorrelation such411

that R′ = R+ µQ and Q = [am,m′ ]Tam,m′ , where µ = 0.1412

was used. This solution balances minimizing the cross-spectral413

correlation errors against errors due to spatially erratic results414

that are associated with unresolved scales of the solution.415

While the coarse resolution (∆xm) of the tomographic do-416

main should be designed to adequately resolve the bathymetry,417

it does not adequately resolve the much shorter scale of the418

wave phase variations. Using xm directly in (5) would lead to419

integration errors in the model for the cross-spectral correla-420

tions. To solve this problem, the coarsely defined and smoothly421

varying wavenumbers on the xm domain were interpolated to422

a much finer grid spacing of 1 m, using (11). Phases were423

then integrated to each observation location on this fine grid424

using (5).425

Phase ambiguity remains to be a problem. A particular 426

phase difference at large spatial separations might result from 427

the integration over a large number of short wavelengths, or 428

integration over a fraction of a larger wavelength. Mismatches 429

between the observed and predicted phase of the cross-spectral 430

coherence at these large lags may not be very useful in indicat- 431

ing whether a wavenumber estimate should be locally increased 432

or decreased to improve the fit to the observations. Since the 433

LM method assumes small phase errors, the coherence can 434

be artificially reduced at long lags by applying a Hanning 435

window mask (12) with a length scale parameter that adaptively 436

depended on the wavenumber estimate: Lτ
m = 1/kτ

max, where 437

kmax is the maximum computed wavenumber in the domain. 438

The mask was applied to the sensitivity as R′
i,j = Ri,jai,j (i.e., 439

an element-wise multiplication, not convolution). We found 440

that this approach worked well for initial wavenumber guesses 441

that were either too high or too low. In principle, as the 442

estimate converges, more distant sensor pairs may be allowed 443

to contribute to the solution by increasing the length scale of 444

the mask. 445

Finally, the iterative estimation scheme requires an initial 446

wavenumber estimate. We suggest generating an initial esti- 447

mate using linear wave theory and an estimate of the water 448

depths. 449

III. APPLICATIONS 450

A. Synthetic Example 451

To evaluate the suggested wavenumber estimation approach, 452

we applied it to a synthetic data set. Cross-spectral correlations 453

[Figs. 1(a) and (b) and 2(a) and (b)]were computed for two 454

frequencies (i.e., 0.1 and 0.2 Hz) using linear wave theory 455

to construct wavenumber profiles from a planar depth profile 456

[Figs. 1(c) and 2(c)]. Random errors were included in the cross- 457

spectral correlation by adding 50% random noise to the “true” 458

wavenumber profile [Figs. 1(d) and 2(d)] and summing the 459

resulting phases over 100 realizations. This combination of 460

noise level and number of realizations produced cross-spectral 461

correlations with a realistic coherence decay with increasing 462

sensor separation distances. The phases were sampled at loca- 463

tion xj , with spacing ∆x of 5 m. The cross-spectral correlation 464

phases are, by definition, zero along the diagonal (i.e., where 465

the signal from location xj is compared to itself) and are an- 466

tisymmetric about the diagonal (Φij = −Φji). The simulation 467

shows that the wavelength is longer offshore (phase differences 468

change slowly with spatial lags) and is shorter nearshore. 469

The low-frequency (longer) waves are better resolved (broader 470

coherence and clearly periodic phase structure) than the high- 471

frequency waves (narrow coherence, random phase structure at 472

large spatial separations). 473

Wavenumber estimates and corresponding error predictions 474

were obtained using the nonlinear inverse method on a to- 475

mographic domain with spacing ∆xm = 20 m. We performed 476

several experiments, including using all of the data, removing 477

some of the sample data in a patch located between 50 m < x < 478

100 m, and initializing the iterative method with wavenumbers 479

that were too large and too small. Fig. 3 shows the estimation 480

results applied to both frequencies. The estimated wavenumbers 481
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Fig. 1. Cross-spectral correlation (a) phase and (b) coherence for 0.1-Hz (10 s) wave propagation over (c) plane-sloping bathymetry. (d) Wavenumber samples
were generated using linear wave theory plus a random variation. Error bars show one standard deviation. Wavenumbers are shown normalized by the sample
spacing such that the Nyquist wavenumber occurs at a value of 0.5. Shading scale is (a) black = −π, white = π and (b) black = 0, white = 1.

Fig. 2. Cross-spectral correlation phase and coherence for 0.2-Hz (5 s) wave propagation. Description of each panel is the same as in Fig. 1.

were very accurate at nearly all locations. At locations where482

the estimate was relatively inaccurate, such as near the location483

of the data gap, the error predictions (10) were also large.484

It is worth noting that the wavenumber estimate depends on485

the initial guess of the wavenumber in the region where data486

were missing. While such dependence on the initial guess is487

undesirable, the predicted errors correctly identify the region488

that is susceptible to the problem.489

B. Field Data Example 490

We evaluated the nonlinear inversion method for wavenum- 491

ber estimation using observations from a set of video cameras 492

mounted on a tower at the U.S. Army Corps of Engineers Field 493

Research Facility (FRF), Duck, NC. The cameras did not store 494

full image frames (Fig. 4) during the study period, but instead, 495

time series of intensity at a sparse set of spatial locations 496
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Fig. 3. Example wavenumber estimates using synthetic data for (a–c) a 10-s period and (d–f) a 5-s period. The estimation is started out with initial guess (circles)
that is half the true value (a and d). The estimate (+) is nearly identical to the true value (solid line). The rms error predictions (dashed line) are larger for the
less well-resolved 5-s period data. In the second experiment (b and e), a 50-m patch of the observations was removed between 50 < x < 100 m. In the third
experiment (c and f), the initial guess is twice the true value.

Fig. 4. Camera view of the Duck field site, showing the image time series
sample locations (black dots). The camera orientation and distortion are used to
map the data to georeferenced locations. The cameras are mounted on a tower,
whose shadow on the beach provides a self-portrait.4/C

were retained for analysis (Fig. 5). This sampling scheme was497

implemented to balance data storage constraints against the498

requirements for resolving the important components of the499

incident wave field. With a cross-shore sample spacing of about500

Fig. 5. Duck sampling pattern with the shoreline at the left near x = 100.
Bathymetric survey locations are indicated by dots (very densely spaced in
the cross-shore direction); image time series (+) were sampled over the
2-D domain. The samples used in the 1-D analysis are indicated with bold
symbols. Wavenumbers were estimated on a sparse tomography domain, which
is indicated by circles (1-D case).

5 m, waves longer than 20 m (half the Nyquist wavenumber) 501

should be well resolved. This corresponds to waves with a 502

period longer than 6 s at a water depth of 1 m. At the Duck 503

field site, the annual mean wave period is about 8 s, which 504

means that a depth of 1 m, these waves have a 25-m wavelength 505
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Fig. 6. Cross-shore bathymetry transect surveyed on November 4, 1999, at
an alongshore location near 600 m (solid line), 560 m (long dash), and 640 m
(short dash).

and are well resolved. With this array design, these waves are506

resolvable until water depths reach about 0.75 m. Thus, for this507

field site, and depending on tidal height, wavenumber estimates508

should be possible for the region offshore of about x = 120 m509

(Fig. 6).510

As in the synthetic example, we chose a cross-shore res-511

olution of ∆xm = 20 m for the tomographic domain and a512

corresponding smoothing scale of Lx = 40 m. At the FRF,513

ground-truth bathymetry data were obtained from a three-514

wheeled (10-m footprint) survey vehicle, called the Coastal515

Research Amphibious Buggy [32]. The ground-truth bathym-516

etry along the 1-D cross-shore transect (Fig. 5, middle) that517

is used in this analysis is shown in Fig. 6. It includes a very518

steep swash zone (near x = 120 m), an inner sand bar (x =519

230 m), and an outer sand bar (x = 450 m). While the remote520

sensing data extend from 100 m < x < 500 m, we estimate521

the wavenumber both onshore and offshore of this extent. The522

error predictions should indicate the locations where robust523

wavenumber estimates are available.524

Using the pixel array data collected on November 4, 1999,525

at approximately 20:00 GMT, the sample cross-spectral cor-526

relation (4) was computed at a series of frequencies ranging527

from 0.07 Hz (15-s wave period) to 0.23 Hz (4-s wave period).528

The record length was 68 min, and the sample interval was529

0.5 s. The band-averaged frequency resolution was 0.03 Hz,530

with 136 nonoverlapping frequency samples used in each band.531

The phase and coherence are shown in Fig. 7 for each sample532

frequency. Only the lower portion of the symmetric correlation533

matrix was computed and stored. Spatial coherence, summed534

over all spatial separations, was highest at 0.167 Hz (6 s),535

followed by 0.10 Hz (10 s), and then 0.2 Hz (5 s) (Table I). We536

expect that these frequencies will yield accurate wavenumber537

estimates if the corresponding wavenumber structure is spa-538

tially well resolved. Note that the peak wave energy does not539

necessarily correspond to the peak coherence. In this case, the540

peak wave period based on sea surface height measured 8 m541

offshore was 8.9 s (0.11 Hz); the peak direction was 24◦ south542

of the shore normal; and the significant wave height was 0.5 m.543

The nonlinear inverse estimation method was applied to544

the sample cross-spectral correlations at each frequency over545

Fig. 7. (Left column) Phase and (Right column) coherence for individual
frequencies determined from pixel array data (Duck, NC).

TABLE I
COHERENCE AND WAVENUMBER ERROR STATISTICS

the entire array. To initialize the iterative method, at each 546

frequency, a linear dispersion model was used (assuming shore- 547

normal wave incidence) to generate initial wavenumbers at each 548

location xm. We used a bathymetry with a constant depth of 549

1 m for the initial guess. 550

For the purpose of comparison, linear wave theory was 551

used to compute the “true” wavenumber for each frequency. 552
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Fig. 8. Wavenumber estimates using Duck data. Error bars show the rms error prediction. Solid line shows linear wave theory prediction for each frequency.

The measured bathymetry and tide level at the time of the553

image collection was used. (We acknowledge that linear wave554

theory gives an imperfect ground-truth for parts of our analysis555

domain [20].) Fig. 8 shows the comparison of the “true” and556

estimated wavenumbers. The rms mismatch between the “true”557

and estimated wavenumbers was computed by using the pre-558

dicted errors as weights. Thus, locations where the predicted559

errors (shown as error bars) were relatively high did not con-560

tribute as much to the rms error. The best estimates (Table I)561

were obtained for the lowest frequency (0.067 Hz, rms error562

0.02 m−1). This is a bit surprising, given the low coherence at563

this frequency. However, these waves are relatively long, and564

their spatial structure is well resolved by the sample design.565

The three frequencies with largest spatial coherence also had566

relatively low rms errors. Importantly, the spatial distribution of567

the predicted errors reflected the locations having high-quality568

data. Overall, the estimated wavenumbers were correlated to the569

“true” values with r2 = 0.96 and a slope of 1.0 (Fig. 9).570

C. Applications in 2-D571

The wavenumber estimation methods based on fitting the572

cross-spectral correlation can be extended to a 2-D domain.573

This allows the wave direction to be included as an unknown574

parameter. Drawbacks of such an extension are given as fol-575

lows: 1) the number of unknown variables is doubled (and this576

quadruples the computational effort for the wavenumber esti-577

mation procedure) and 2) the dimension of the cross-spectral578

correlation matrix is approximately squared, increasing both579

Fig. 9. Comparison of estimated and “true” wavenumbers [correlation
coefficient = 1.05 and skill(r2) = 0.96]. Data represent all analyzed frequen-
cies and all locations in the tomographic domain.

computational effort as well as memory requirements for the 580

data analysis procedure. For example, the 2-D pixel array in the 581

field data application included 1124 sample locations, yielding 582

632 250 useful cross-spectral correlation elements, each with 583

a real and an imaginary component, at each of the six sample 584
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Fig. 10. (a) Estimates of (a) wavenumber magnitude and (c) wave direction and (b, d) predicted errors at a frequency of 0.10 Hz (10-s wave period). The medianAQ6
direction at the seaward boundary was −5◦ (waves approach from the south, but nearly shore normal). White dots on the wavenumber error prediction plot indicate
image pixel sample locations. (b) Estimates of wavenumber magnitude and wave direction and predicted errors at a frequency of 0.167 Hz (6-s wave period). The
median direction at the seaward boundary was +29◦ (waves from the north).4/C

frequencies. The result is 7.5 million data values. It should be585

noted that the spatial extent of this sampling array is not unusu-586

ally large, as it spans only a few hundred meters alongshore.587

Many useful applications could extend at least several to tens of588

kilometers alongshore. To overcome the data management hur-589

dles, we solve the inverse problem locally over spatial regions590

where we assume the wavenumber and direction to be slowly591

varying. That is, we solve the problem at one spatial location at592

a time (i.e., with M = 1) rather than solving for wavenumbers593

at all locations simultaneously. Then, we move the analysis to594

each element of the tomographic domain. The revised approach595

still benefits from resolving both the frequency and spatial596

dependence of the cross-spectral correlation without having to597

assume a locally homogeneous bathymetry.598

Fig. 10(a) and (b) shows the analysis of a 2-D domain.599

The results are plotted for two different frequencies (0.10 and600

0.167 Hz). Fig. 10(a) (0.10 Hz) shows that the wavenum-601

ber is robustly estimated in much of the domain, indicated602

by error predictions that are much smaller than the mini-603

mum wavenumber. Errors are larger along the shoreline near604

x = 100 m. At the offshore boundary, the direction of wave605

approach varies somewhat but is generally close to shore606

normal. The median direction along the offshore boundary607

was −5◦ (waves approaching slightly from the south); the608

median direction over the whole domain was −1◦; and the609

median directional uncertainty was 7◦. Fig. 10(b) (0.167 Hz)610

shows that wavenumber is, again, robustly estimated. At the 611

offshore boundary, the direction of wave approach was clearly 612

from the north. The median direction along the offshore 613

boundary was 28◦ (waves approach from the north); the median 614

direction overall was 20◦; and the median directional uncer- 615

tainty was 4◦. Fig. 11 shows independent estimates of the 616

frequency- and direction-resolved spectrum obtained from an 617

array of pressure sensors located 900 m offshore at a water 618

depth of 8 m [33]. It shows the same differences in approach 619

directions for the two frequencies presented in Fig. 10(a) and 620

(b). For both frequencies, the directions estimated from the 621

pressure sensors have larger magnitudes than the image-derived 622

directions. This is consistent with effects of refraction over 623

the 400-m propagation distance between the gage and the 624

seaward boundary of our estimation domain. Correcting for 625

refraction (symbols plotted in Fig. 11) significantly improves 626

the comparison between the image- and pressure-based wave 627

direction estimates. 628

D. Application to Bathymetry Inversion 629

While the wavenumber estimates are directly useful for char- 630

acterizing the wave directional distribution and for testing wave 631

dispersion relationships, a key motivation for this effort is to 632

facilitate robust remote-sensing-based bathymetry estimation. 633

Bathymetry estimation requires a solution of yet another inverse 634
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Fig. 11. Slices from directional wave spectrum based on in situ measurements
at a water depth of 8 m. The two frequencies closest to 0.1 and 0.167 Hz were
selected. Peak directions were −18 (0.1 Hz) and 34◦ (0.17 Hz). The refracted
peak directions were computed for shoaling from a depth of 8 m to a depth of
5 m and are shown with symbols (+ for 0.1 Hz and ◦ for 0.167 Hz). The arrows
indicate the median direction at the offshore boundary corresponding to the 2-D
wavenumbers of the motion imagery analysis.

problem using a dispersion model that relates wavenumber to635

water depth. We use linear wave theory, i.e.,636

(2πf)2 = gk tanh(kh) → k = funct.(f, h) (14)

where g is the gravitational acceleration, and h is the local637

water depth. Given values for f (i.e., sample frequencies)638

and h (a guess at the correct depth), this equation can be639

solved for wavenumbers (it is a transcendental equation, solved640

iteratively). We use the LM method to solve for the value of h641

that minimizes the error between the wavenumber predicted by642

(14) and that estimated from the imagery via (9). The advantage643

of separating the bathymetry inversion from the wavenumber644

inversion is that the quality of the image data can be objectively645

evaluated. Data with large errors can be rejected outright, or the646

errors can be used as weights in the inversion scheme, just as the647

coherence was used in (8). Furthermore, since each frequency648

is independent of the others, the depth inversion applied at each649

spatial location uses a number of independent wavenumber esti-650

mates. This should result in quantitatively accurate bathymetric651

error predictions, because the number of degrees of sampling652

freedom will not be overestimated. Otherwise, cross-spectral653

correlation estimates are not independent because data from654

each pixel are utilized multiple times as they is compared to655

itself and all the other pixels. Another reason for separating656

the wavenumber estimation from the bathymetry estimation is657

that the sensitivity of wavenumber to depth is very high in658

shallow water and is zero offshore. The near-zero sensitivity at659

the offshore region will destabilize a global bathymetry inver-660

sion, whereas this does not affect the wavenumber estimation661

problem.662

The wavenumber error predictions obtained from the non-663

linear inversion can be used to identify thresholds used to664

reject or weight the wavenumber estimates when applied to the665

depth inversion problem. Fig. 12 shows the spatial distribution666

Fig. 12. Wavenumber error predictions and histogram.

Fig. 13. Water depth estimated from image-derived wavenumbers. The esti-
mates from the 1-D wavenumber inversion are shown with error bars and the
estimates from the 2-D analysis are shown as a solid line with dashed lines,
indicating one standard deviation error. The nearest survey observations are
shown as blue dots.

of the errors and the error histogram from all the locations 667

and frequencies. There appears to be a minimum error of 668

approximately 0.05 m−1. Thus, errors that are much larger than 669

this value indicate relatively low-quality data. Using a Gibb’s 670

energy analogy [27], weights applied to the depth inversion 671

were computed as E = exp(−ε/κ), where κ was 0.02 m−1, 672

and ε is the error prediction (as long as κ < 0.1, the choice 673

of κ was not too important). The weight E is largest for error 674

predictions approaching the minimum error, and E is small for 675

larger errors. 676

Fig. 13 shows the resulting water depth estimates based on 677

the 1-D (cross-shore) estimates of the wavenumber. Skillful 678

depth estimates are obtained from depths between 2 and 6 m. 679
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Fig. 14. Comparison of bathymetry derived using (a) 2-D wavenumber es-
timates and (c) surveyed (and spatially interpolated) bathymetry. Maps show
(b) the predicted errors from the wavenumber inversion and (d) the actual
differences between wavenumber inversion and survey. White dots on the
error maps indicate the sample locations for both (b) imagery and (d) survey
data sets.4/C

The prediction is most accurate over the sandbar, where the680

mismatch between surveyed and estimated bathymetry is less681

than 10 cm, and the predicted errors are also small. Seaward of682

about 300 m (depths > 5 m), the bathymetry estimate is less683

accurate, and the error predictions are larger. Near the shore-684

line, the wavelength is short and poorly resolved; wavenum-685

ber error predictions are large, and the bathymetry estimate686

is poor.687

The differences between the predicted and true bathymetries688

are not random. Offshore, the predictions are too deep. This689

is likely due to neglecting the wave direction for the 1-D690

analysis and interpreting the cross-shore wavenumber compo-691

nent as the wavenumber magnitude that appears in (14). In692

essence, the cross-shore wavenumber is too small, and the depth693

is overestimated. Near the shore, the bathymetry predictions694

are, again, too deep. This could result from neglecting the695

alongshore component of wavenumber, or it could be due to696

wave nonlinearity wherein waves travel faster than predicted by697

linear dispersion, and the resulting wavenumbers are smaller698

than expected. The offshore wave height of 0.5 m at the time699

of the analysis would lead to wave breaking at a water depth700

of roughly 1 m; hence, there was very little breaking over701

the bar—as evident in Fig. 4. Other mechanisms for causing702

discrepancies, such as setup or strong wave–current interactions703

are not likely to be too important because of the lack of wave 704

breaking to force them. 705

Using the wavenumbers from the 2-D analysis to estimate 706

the bathymetry (Figs. 13 and 14) results in shallower (and 707

mostly improved) bathymetry both offshore and at the shal- 708

lower portions of the profile, suggesting that refraction was, 709

indeed, largely responsible for the discrepancies observed in 710

the 1-D analysis. Larger errors in the middle of the 2-D 711

region appeared where there was strong alongshore bathy- 712

metric variability (Fig. 4). This variability was not allowed 713

by the smoothing properties inherent in the 2-D analysis 714

approach. 715

IV. DISCUSSION 716

A. Comparison to Other Methods 717

The proposed tomographic approach utilizing cross-spectral 718

correlations from coastal imagery resolves spatial and fre- 719

quency variability of the wavenumber field and includes er- 720

ror estimates that can be used to appropriately weight the 721

wavenumber estimates. The proposed approach comes with 722

a larger computational effort than other formulations. Is it 723

worth the effort? The formulations given in (1)–(9) show that 724

the theoretical underpinnings of all of the coherence-based 725

wavenumber estimation approaches are equivalent. Therefore, 726

applying each method to the 1-D test example should yield 727

similar results. Differences between methods will result from 728

the way that each approach rejects observation noise through 729

smoothing at the expense of spatial, frequency, or direction 730

resolution. Since we do not know the “true” answer (except 731

through forward modeling from the surveyed bathymetry), this 732

analysis will not necessarily identify the approach that is most 733

accurate. 734

1) Time Delay Approach: We use the method described in 735

[26] to filter the cross correlation (3) to estimate the time delays 736

between different sample locations. Fig. 15 shows the resulting 737

time delays between all sample pairs and the correlation at 738

each delay. Immediately apparent is the rapid decorrelation with 739

spatial separation. Nonetheless, time lag estimates are accurate 740

compared to “true” values derived using the known wave speed 741

via (2). The advantage of the time delay approach is that the 742

phase ambiguity problem is minimized. This is particularly 743

true in natural systems where the generally broad-band random 744

waves will guarantee that a single time delay will maximize 745

the correlation between sensors. (In laboratory settings with 746

monochromatic waves, strong correlations can be found at lags 747

that are multiples of the wave period.) Fig. 15 shows the phase 748

ambiguity appearing for time lags exceeding 20 s (or about 749

three cycles of the dominant 6-s wave period). A problem with 750

the time delay approach is that it is not clear how the quality 751

of the time delay estimates based on the correlation, which is 752

exceeding low at many relevant lags, is identified. Nonetheless, 753

we computed the wavenumber via an inverse solution of (2). 754

[Inverse solutions of (2) are, in principle, linear and do not 755

require iterations.] Fig. 16 shows wavenumber estimates based 756

on the time delays. In the middle of the computational domain, 757

the results are more or less equivalent to those in Fig. 8 at 758

f = 0.167 Hz. 759
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Fig. 15. (a and c) Time lag estimates and (b and d) associated correlation for all sensor pairs (top row) and for a slice comparing all sample locations to
the location x = 250 m. The dashed line is the predicted time lag using the full dispersion equation at f = 0.167 Hz, and the solid line is the nondispersive
shallow-water approximation.

Fig. 16. Wavenumber estimate (and rms error prediction) using time lag data
(assuming f = 0.167 Hz) compared to the linear wave theory prediction. The
solid line is the theoretical prediction for nondispersive waves, and the dashed
line is theoretical prediction for dispersive waves.

Another problem with the time delay approach is that760

comparisons to predictions from a wave dispersion equation761

(or its inverse) require specification of a dominant wave pe-762

riod. In the cross-spectral correlation methods, wave period763

(or frequency) is an independent variable, not a required input764

variable. The dependence of time delays for different wave765

periods shows that there could be considerable time delay766

dependence on wave period (dashed line in Fig. 15), and that767

these errors accumulate at large spatial lags.768

2) Single-Mode (EOF) Approach: Given that the proposed769

nonlinear estimation routine worked well in the test case, we770

suspect that, due to the long time series and high coherence at771

several frequencies, the single-mode EOF approach would also772

be effective. Fig. 17 shows the results of that approach. The 773

results are very good, with a few exceptions. There is clearly 774

more short-scale variability in the EOF estimate, which did 775

not include any smoothness constraint. Simple spatial filtering 776

would achieve a smoother result. However, the EOF wavenum- 777

ber estimate is clearly unstable in a few locations at frequencies 778

with relatively low coherence. Unfortunately, there is not a clear 779

method to identify the errors. There is no reason to restrict the 780

EOF analysis to a single frequency, and therefore, consistency 781

of estimates across a few frequencies may be used to provide 782

improved uncertainty estimates, particularly if the results are 783

used for bathymetry inversion. Furthermore, if there are multi- 784

ple dominant wave trains at a single frequency, the EOF method 785

could be applied to separate them as a preprocessing step to the 786

nonlinear estimation approach. 787

B. Spatial Resolution 788

It is important to identify the spatial resolution of the 789

wavenumber estimator presented in this analysis. Nearshore, 790

spatial variations in the incident wavenumber (i.e., kwave) result 791

from corresponding variations in the bathymetry. The scale 792

of the bathymetric variations might be shorter or longer than 793

the wave scale, and they might be shorter or longer than 794

what can be resolved by the sampling scheme.Intuitively, it AQ7795

seems reasonable that we can resolve bathymetric variations 796

that are much longer than the incident wavelength. Can we 797

resolve bathymetric variations that are shorter than the incident 798

wavelength? How well must we resolve the incident waves? 799
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Fig. 17. Comparison of wavenumber estimates using the singular value method (+) to the linear wave theory prediction at each sample frequency (solid line).

To illustrate this problem, consider a flat seabed to which800

small sinusoidal bathymetric perturbations are added. The flat801

bottom yields a constant incident wave wavenumber kwave. If802

the bathymetric perturbations are small, then the wavenumber803

is modulated as k(x) = kwave(1 + β cos[2πxkbathy]), where804

kbathy is the wavenumber of the bathymetric perturbation, β805

is the resulting (small) amplitude of that perturbation relative to806

the undisturbed wavenumber. Inserting a modulated wavenum-807

ber into the equation for the cross-spectral correlation (5) yields808

(e.g., the imaginary component)809


[C] = sin (2π∆xkwave {1 + β cos[2π∆xkbathy]})
= sin(2π∆xkwave)

+
βkwave

2kbathy
sin (2π∆x[kwave + kbathy])

− βkwave

2kbathy
sin (2π∆x[kwave − kbathy])

+ o(β2). (15)

The interaction of the incident wave signal and the bathymetric810

signal produces two scales of variability (as a function of811

spatial lag ∆x) in addition to the wave scale. There is a812

longer scale response associated with the difference between813

the incident and bathymetric wavenumbers and a shorter scale814

response associated with their sum. The response of these815

contributions is linearly damped as kbathy increases relative816

to kwave.817

Fig. 18. Sensitivity of wavenumber estimation errors to bathymetric pertur-
bation length scales kbathy, normalized by the surface wavenumber kwave.
The two lines show the sensitivity for the case of no measurement noise
(solid) and 10% noise (dashed). Other parameters were kwave = 2π/25 m−1,
∆x = ∆xm = 2.5 m, and Lx = 5m.

This simple example indicates that there are several factors 818

that affect the ability to resolve short-scale bathymetric fea- 819

tures. First, these features modulate the cross-spectral correla- 820

tion most strongly when they are long compared to the incident 821

wavelength (i.e., small values of kbathy/kwave). In practice, 822

there is an additional damping of short features due to the 823

spatial filtering that is imposed by our analysis. Fig. 18 shows 824

the percent error associated with attempts to retrieve sinusoidal 825
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perturbations of the incident wavenumber. Synthetic cross-826

spectral correlation samples were generated from perturbed827

wavenumber profiles. In the second example, 10% percent828

noise was added to the “true” perturbed wavenumber profile.829

In the case without noise (Fig. 18, solid line), the retrieval830

errors are less than 20% for kbathy/kwave < 2.5. The error831

climbs rapidly for higher bathymetric wavenumbers due to832

the smoothing filter that completely removes features with a833

scale equal to the Nyquist wavenumber (kNyq = π/∆xm or834

kNyq/kwave = 5).835

In the more realistic scenario where 10% percent noise was836

added to the observations (Fig. 18, dashed line), the error837

sensitivity is different. There is a local peak in the retrieval838

error at kbathy/kwave = 1. This occurs because the difference839

wavenumber term in (15) is zero, and only the sum wavenum-840

ber contributes to the signal. The sum wavenumber (shorter841

wavelength) is not well resolved by the sample spacing, and842

consequently, the perturbation is not well estimated. As kbathy843

increases, the retrieval error slightly decreases because the844

difference wavenumber term, which is well resolved, once845

again contributes to the signal. Finally, further increases in846

kbathy are not resolved as the smoothing filter again dominates847

the error.848

There is a fortuitous relationship between sampling resolu-849

tion capabilities and typical estimation requirements. Shorter850

scale bathymetric features are found in the shallowest waters851

where waves are most sensitive to depth variations. Since shore-852

based imaging typically has higher resolution closer to the853

shoreline, the short wavelength signals of interest are most854

likely to be resolved. In deep water, the length scales of bathy-855

metric features are longer; the wavelengths that are sensitive856

to depth variations are also longer; and these longer scales still857

ought to be resolved by the shore-based sensor. As a rule-of-858

thumb (assuming measurement noise is unavoidable), the short-859

est (cross-shore dimension) resolved bathymetric feature will860

be about twice the wavelength of the incident waves that are861

resolved by the imaging system. Allowing that nearshore waves862

are inherently depth dispersive, which implies that kwaveh ≤ 1,863

this suggests that bathymetric features must be longer than864

about ten times the water depth. For average water depths of865

several meters, features that are tens of meters long are, in866

principle, resolvable. This resolution is about ten times better867

than what is achievable with the energy density identification868

approach [15], even with a similar pixel resolution (1–2 m),869

mainly because the assumption of a locally homogeneous870

bathymetry over the sampling array region is not required in871

the proposed method. The tradeoff is that the present approach872

only resolves a single dominant wavenumber, while the energy873

density approach resolves many different wavenumbers. The874

latter approach may perform better in the case of a directionally875

bimodal or very directionally broad-banded incident wave spec-876

trum where the assumption of a single dominant wavenumber877

may be overly simplistic.878

V. CONCLUSION879

We have reviewed several approaches that have been used880

to estimate ocean surface gravity wavenumbers from wave-881

resolving image sequences. Two fundamentally different ap- 882

proaches exist that utilize this type of data. A power spectral 883

density approach identifies wavenumbers that maximize image 884

intensity variance. Alternatively, a cross-spectral correlation 885

approach identifies wavenumbers that maximize intensity co- 886

herence. The first method finds, at an arbitrary wavenumber, 887

the frequency associated with maximum spectral density. This 888

approach requires application of a 2- or 3-D FFT to, typically, 889

full frame images. The spatial resolution of the wavenumber 890

estimates is typically O(100) times the image pixel resolution. 891

The second approach finds, at each resolved frequency, the 892

wavenumber that maximizes the observed cross-spectral coher- 893

ence. Numerous solution methods have been suggested for this 894

approach, including cross correlation and empirical orthogonal 895

function analysis. Here, we developed a solution based on a to- 896

mographic analysis that utilizes a nonlinear inverse method and 897

may be applied to both time- and frequency-domain analyses. 898

We demonstrate that a formal treatment of the problem leads to 899

a nonlinear inverse problem that can be solved to yield robust 900

wavenumber estimates and error predictions. 901

We expand in detail a frequency-domain solution approach 902

that yields robust retrievals of wavenumber estimates from the 903

imagery. The approach is tolerant to noise and other forms 904

of sampling deficiency and can be applied to arbitrary sample 905

patterns, as well as to full frame imagery. The approach pro- 906

vides error predictions that are useful for quality control and 907

subsequent applications to, for instance, bathymetry estimation. 908

A quantitative analysis of the resolution of the method indicates 909

that the cross-spectral correlation fitting approach has about 910

ten times better resolution than the power spectral density 911

fitting approach. Furthermore, the resolution analysis provides 912

a rule of thumb for bathymetry estimation: Cross-shore spatial 913

patterns may be resolved if their length is ten times the water 914

depth. This guidance can be applied to sample design to include 915

constraints on both the sensor array (image resolution) and the 916

analysis array (tomographic resolution). Finally, the method 917

supports bathymetry estimation through inversion of a wave 918

dispersion model. It does this by providing robust statistically 919

consistent and independent wavenumber estimates at multiple 920

wave frequencies. 921

ACKNOWLEDGMENT 922

The authors would like to thank the Beach Wizards who 923

contributed to the development of this effort. The authors 924

are particularly indebted to P. Catalan for the encouragement, 925

evaluation, and critical review. Comments from an anonymous 926

reviewer considerably improved the clarity of the manuscript. 927

Finally, we could not have performed a sensible field evaluation 928

without the stage set by both the Army Corps of Engineers’ FRF 929

and R. Holman’s Argus program. 930

REFERENCES 931

[1] R. A. Holman and J. Stanley, “The history and technical capabilities of 932
Argus,” Coast. Eng., vol. 54, no. 6/7, pp. 477–491, Jun./Jul 2007. 933

[2] S. G. J. Aarninkhof and R. A. Holman, “Monitoring the nearshore with 934
video,” Backscatter, vol. 10, no. 2, pp. 8–11, 1999. 935

[3] H. F. Stockdon and R. A. Holman, “Estimation of wave phase speed and 936
nearshore bathymetry from video imagery,” J. Geophys. Res.—Oceans, 937
vol. 105, no. C9, pp. 22 015–22 033, Sep. 15, 2000. 938



IE
EE

Pr
oo

f

16 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 9, SEPTEMBER 2008

[4] K. T. Holland, “Application of the linear dispersion relation with respect939
to depth inversion and remotely sensed imagery,” IEEE Trans. Geosci.940
Remote Sens., vol. 39, no. 9, pp. 2060–2072, Sep. 2001.941

[5] T. C. Lippmann and R. A. Holman, “Quantification of sand bar morphol-942
ogy: A video technique based on wave dissipation,” J. Geophys. Res.,943
vol. 94, no. C1, pp. 995–1011, 1989.944

[6] S. G. J. Aarninkhof, B. G. Ruessink, and J. A. Roelvink, “Nearshore945
subtidal bathymetry from time-exposure video images,” J. Geophys. Res.,946
vol. 110, no. C6, p. C06 011, 2005. DOI:10.1029/2004JC002791.947

[7] S. G. J. Aarninkhof and B. G. Ruessink, “Video observations and model948
predictions of depth-induced wave dissipation,” IEEE Trans. Geosci.949
Remote Sens., vol. 42, no. 11, pp. 2612–2622, Nov. 2004.950

[8] N. G. Plant and R. A. Holman, “Intertidal beach profile estimation using951
video images,” Mar. Geol., vol. 140, no. 1, pp. 1–24, Jul. 1997.952

[9] S. G. J. Aarninkhof, I. L. Turner, T. D. T. Dronkers, M. Caljouw, and953
L. Nipius, “A video-based technique for mapping intertidal beach bathym-954
etry,” Coast. Eng., vol. 49, no. 4, pp. 275–289, Oct. 2003.955

[10] S. M. Adler-Golden, P. K. Acharya, A. Berk, M. W. Matthew, and956
D. Gorodetzky, “Remote bathymetry of the littoral zone from AVIRIS,957
LASH, and QuickBird imagery,” IEEE Trans. Geosci. Remote Sens.,958
vol. 43, no. 2, pp. 337–347, Feb. 2005.959

[11] D. R. Lyzenga, N. P. Malinas, and F. J. Tanis, “Multispectral bathymetry960
using a simple physically based algorithm,” IEEE Trans. Geosci. Remote961
Sens., vol. 44, no. 8, pp. 2251–2259, Aug. 2006.962

[12] J. V. Toporkov, D. Perkovic, G. Farquharson, M. A. Sletten, and963
S. J. Frasier, “Sea surface velocity vector retrieval using dual-beam in-964
terferometry: First demonstration,” IEEE Trans. Geosci. Remote Sens.,965
vol. 43, no. 11, pp. 2494–2502, Nov. 2005.966

[13] J. P. Dugan, C. C. Piotrowski, and J. Z. Williams, “Water depth and surface967
current retrievals from airborne optical measurements of surface gravity968
wave dispersion,” J. Geophys. Res., vol. 106, no. C8, pp. 16 903–16 915,969
2001.970

[14] J. P. Dugan, H. H. Suzukawa, C. P. Forsyth, and M. S. Farber, “Ocean971
wave dispersion surface measured with airborne IR imaging system,”972
IEEE Trans. Geosci. Remote Sens., vol. 34, no. 5, pp. 1282–1284,973
Sep. 1996.974

[15] C. C. Piotrowski and J. P. Dugan, “Accuracy of bathymetry and current975
retrievals from airborne optical time-series imaging of shoaling waves,”976
IEEE Trans. Geosci. Remote Sens., vol. 40, no. 12, pp. 2606–2618,977
Dec. 2002.978

[16] T. C. Lippmann and R. A. Holman, “Phase speed and angle of break-979
ing waves measured with video techniques,” in Coastal Sediments ’91,980
N. Kraus, Ed. New York: ASCE, 1991, pp. 542–556.981

[17] K. T. Holland, J. A. Puleo, and T. N. Kooney, “Quantification of swash982
flows using video-based particle image velocimetry,” Coast. Eng., vol. 44,983
no. 2, pp. 65–77, Dec. 2001.984

[18] P. S. Bell, “Shallow water bathymetry derived from an analysis of X-band985
marine radar images of waves,” Coast. Eng., vol. 37, no. 3/4, pp. 513–527,986
Aug. 1999.987

[19] J. A. Puleo, G. Farquharson, S. J. Frasier, and K. T. Holland, “Com-988
parison of optical and radar measurements of surf and swash zone989
velocity fields,” J. Geophys. Res., vol. 108, no. C3, p. 3100, 2003.990
DOI:10.1029/2002JC001483.991

[20] P. A. Catálan and M. C. Haller, “Remote sensing of breaking wave phase992
speeds with application to non-linear depth inversions,” Coast. Eng.,993
vol. 55, no. 1, pp. 93–111, Jan. 2008.994

[21] B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: A995
critical theoretical review,” J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 11,996
no. 8, pp. 2197–2209, Aug. 1994.997

[22] C. M. Senet, J. Seemann, and F. Ziemer, “The near-surface current ve-998
locity determined from image sequences of the sea surface,” IEEE Trans.999
Geosci. Remote Sens., vol. 39, no. 3, pp. 492–505, Mar. 2001.1000

[23] C. G. Gelpi, B. C. Schuraytz, and M. E. Husman, “Ocean wave1001
height spectra computed from high-altitude, optical, infrared images,”1002
J. Geophys. Res., vol. 106, no. C12, pp. 31 403–31 413, 2001.1003

[24] W. Menke, Geophysical Data Analysis: Discrete Inverse Theory.1004
New York: Academic, 1989.1005

[25] W. Munk, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography.1006
Cambridge, U.K.: Cambridge Univ. Press, 1995.1007

[26] S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using1008
dual fiber Bragg grating sensors and cross-correlation technique,” Sens.1009
Actuators A, Phys., vol. 116, no. 1, pp. 66–74, 2004.1010

[27] S. Stramaglia, A. Refice, and L. Guerriero, “Statistical mechanics ap- 1011
proach to the phase unwrapping problem,” Phys. A, vol. 276, no. 3, 1012
pp. 521–534, Feb. 2000. 1013

[28] T. H. C. Herbers, S. Elgar, and R. T. Guza, “Generation and propagation 1014
of infragravity waves,” J. Geophys. Res., vol. 100, no. C12, pp. 24 863– 1015
24 872, 1995. 1016

[29] J. M. Oltman-Shay and R. T. Guza, “A data-adaptive ocean wave 1017
directional-spectrum estimator for pitch and roll type measurements,” J. 1018
Phys. Oceanogr., vol. 14, no. 11, pp. 1800–1810, Nov. 1984. 1019

[30] M. A. Merrifield and R. T. Guza, “Detecting propagating signals with 1020
complex empirical orthogonal functions: A cautionary note,” J. Phys. 1021
Oceanogr., vol. 20, no. 10, pp. 1628–1633, Oct. 1990. 1022

[31] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numer- 1023
ical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, 1024
U.K.: Cambridge Univ. Press, 1992. 1025

[32] W. A. Birkemeier and C. Mason, “The CRAB: A unique nearshore sur- 1026
veying vehicle,” J. Surv. Eng., vol. 110, no. 1, pp. 1–7, 1984. 1027

[33] C. E. Long and J. M. Oltman-Shay, “Directional characteristics of waves 1028
in shallow water,” Coastal Eng. Res. Center, Field Res. Facility, U.S. 1029
Army Eng. Waterways Experiment Station, Vicksburg, MS, Tech. Rep. 1030
CERC-91, 1991. 1031

Nathaniel G. Plant received the B.S. degree in earth 1032
sciences in 1989 and the M.S. degree in 1990 from 1033
the University of California, Santa Cruz, and the 1034
Ph.D. degree in oceanography from Oregon State 1035
University, Corvallis, in 1998. 1036

He was an Oceanographer with the Naval Re- 1037
search Laboratory, Stennis Space Center, MS, from 1038
2002 to 2007 and is currently an Oceanographer with 1039
the U.S. Geological Survey, St. Petersburg, FL. His 1040
research interests include studies of coastal processes 1041
and morphological evolution and prediction using 1042

both direct and remote sensing methods. 1043

K. Todd Holland received the B.S. degree from 1044
Duke University, Durham, NC, in 1986 and the 1045
M.S. and Ph.D. degrees in oceanography from 1046
Oregon State University, Corvallis, in 1992 and 1047
1995, respectively. 1048

Since 1995, he has been an Oceanographer 1049
with the Naval Research Laboratory, Stennis Space 1050
Center, MS. He is a leading expert in the applica- 1051
tion of remote sensing technologies to the study of 1052
nearshore processes, particularly with respect to the 1053
use of motion imagery. He is currently developing 1054

new innovative techniques to characterize coastal areas using camera systems 1055
on small aerial vehicles. 1056

Merrick C. Haller received the B.S. degree from 1057
Purdue University, West Lafayette, IN, in 1993, and 1058
the M.C.E. and Ph.D. degrees in civil engineering 1059
from the University of Delaware, Newark, in 1996 1060
and 1999, respectively. 1061

He currently holds joint appointments as an 1062
Assistant Professor in the School of Civil and Con- 1063
struction Engineering and the College of Oceanic 1064
and Atmospheric Sciences, Oregon State Univer- 1065
sity, Corvallis. He has also worked as a Research 1066
Engineer with Veridian Systems Division and the 1067

University of Michigan, Ann Arbor. His present research interests include 1068
multisensor remote sensing of the nearshore ocean, wave breaking, rip currents, 1069
and wave–current interactions. 1070



IE
EE

Pr
oo

f

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

ATTN: If you are paying to have all or some of your figures appear in color in the print issue, it is very
important that you fill out and submit a copy of the IEEE Page Charge & Reprint Form along with your
proof corrections. This form is available from the same URL where these page proofs were downloaded
from. Thank you.

AQ1 = Rephrased. Edits correct?
AQ2 = Edits correct?
AQ3 = Ability of?
AQ4 = Lone left parenthesis was deleted. Original meaning preserved?
AQ5 = Added “respectively.” Edits okay?
AQ6 = Several changes done. Original meaning preserved?
AQ7 = Please change figure labels to distinguish one from the other.

END OF ALL QUERIES


