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From	LTE	to	5G
Key new features of 5G vs. LTE: 
• Millimeter wave (mmWave), esp. beam 

management and alignment features
• Variable bandwidths (“bandwidth parts”) 

and scalable OFDM subcarrier widths
• Flexible self-contained slots and control 

channels, more TDD emphasis
• Ultra-reliable low latency communication 

(URLLC) support
• Designed for max “forward compatibility”

Inherited/modified features from LTE: 
• OFDMA with most data and control 

channel structures preserved
• Carrier aggregation including unlicensed 

spectrum and now mmWave
• Most of the multi-antenna (MIMO) and 

CoMP (multi-transmission point) 
frameworks

• Overall – 5G can be viewed as largely an 
evolution from 4G (LTE), as opposed to a 
clean break as in previous G’s.
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Predictions: 
1. 5G will have a longer life cycle than previous Gs
2. 6G will not be a clean break from 5G (so defn. of 6G is “open”)



6G@UT:	UT	Austin’s	New	6G	Research	Center
Four	Main	Research	Directions.				More	info:	http://6g-ut.org/

1. Deeply Embedded Machine Learning
a. At PHY, MAC, Network layers – focusing on disruptive approaches
b. From modem up to a network-level scale, leveraging sensing

2. Pervasive Sensing
a. High integrity localization and mapping via 6G network infrastructure 
b. Sensing as a service; sensing as an input to ML algorithms

3. New Spectrum and Topologies
a. New spectrum (e.g. > 100 GHz) and new spectrum access modalities
b. Non-terrestrial network integration (esp. LEO) for global coverage

4. Network Architectures, Slicing and Sharing
a. True network slicing, separation of data and control planes 
b. Intensive softwarization; cellular in the cloud
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ML’s	Role	in	Future	Wireless
• ML is a broad set of ever-evolving techniques

• Determining the most appropriate approach is often the key research problem
• Incredibly, in some cases, you may even determine you don’t need or want ML!

• It is useful to think in terms of time scales and the training procedure
• Deep Neural Networks (DNNs)

• Often require considerable training, but then can make fast inferences or classifications and fully leverage GPU 
architectures.

• A DNN is in my mind basically a powerful form of adaptive signal processing
• Reinforcement learning (RL)

• Requires considerable “start up” (offline) training, and then can learn and adapt to slow changes in the environment 
(online phase), very powerful for complex time-varying problems

• However – we’ve found RL for wireless systems to often have convergence problems, and to be quite data hungry 
and slow.

• A DNN is typically more suitable for the physical layer (PHY).   
• RL for the upper layers and at a network level (with above caveats), although also for some “trial and 

error” type problems at the PHY/MAC

• In this talk we focus on Deep Learning at the PHY for two different (but related) problems; and 
we use two very different architectures
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Deep	Learning	at	the	PHY
• The 5G and WiFi PHY is highly optimized in both theory and practice

• Guided by information theory and decades of implementation, its very tough to beat state of the art 
– e.g. MIMO-OFDMA + LDPCs in a Qualcomm ASIC – in any meaningful way in a generic setting.

• For example, [AuoHoy21, ZhaDos21] recently show one can learn from scratch a competitive DNN-
based transceiver, that even has some possible advantages.   Impressive, but is it compelling?

• Instead of supplanting known PHY principles, I see the role of DL as more specific.
1. For nonlinear physical realities that defy good models

Examples: Low resolution A/D [BalAnd19], highly nonlinear RF/power amps [AuoHoy21], MIMO channel 
estimation with insufficient pilots and/or feedback [today’s example 2]

2. Finding approximate solutions to open problems in information theory
Examples: feedback channel codes [Kim20], many-user interference channels at moderate SINR [Mis21]

3. Site-specific learning & design where a “one-size fits all” approach is highly suboptimal
Examples: BS parameter optimization, beam alignment in a specific environment [today’s example 1], 
learned MIMO transceivers [O’Shea17], multiuser MIMO user selection
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[AouHoy21] F. Aoudia, J. Hoydis, “Waveform Learning for Next-Generation Wireless Communication Systems”, Sep. 2021, https://arxiv.org/abs/2109.00998
[ZhaDos21] Y. Zhang, A. Doshi, et al, “DeepWiPHY: Deep Learning-Based IEEE 802.11ax Receiver”, IEEE Trans. on Wireless Comm, March 2021.
[Kim20] H. Kim et al, “Deepcode: Feedback Codes via Deep Learning”, IEEE J. on Sel. Areas in Info. Theory, May 2020.
[Mis21] R. Mishra et al, “Distributed Interference Alignment for K-user Interference Channels via Deep Learning”, IEEE ISIT, July 2021.
[BalAnd19]  E. Balevi and J. G. Andrews, “One-Bit OFDM Receivers via Deep Learning”, IEEE Trans. on Communications, June 2019.
[O’Shea17] T. O’Shea, T. Erpek, and T. C. Clancy, “Deep Learning Based MIMO Communications”, https://arxiv.org/abs/1707.07980

https://arxiv.org/abs/2109.00998
https://arxiv.org/abs/1707.07980


Example	1:	Learning	Site-Specific	Probing	
Beams	for	Fast	mmWave	Beam	Alignment

1. Y. Heng, J. Mo, J. G. Andrews, “Learning Site-Specific Probing Beams for Fast mmWave Beam 
Alignment”, under revision, IEEE Trans. on Wireless Comm.   Available: 
https://arxiv.org/abs/2107.13121

2. Y. Heng, J. Mo, and J. G. Andrews, “"Learning Probing Beams for Fast mmWave Beam 
Alignment”, IEEE Globecom, Madrid, Spain, Dec. 2021.
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This work has been done in collaboration with, and is 
supported by, Samsung research

https://arxiv.org/abs/2107.13121


Beam	Alignment	in	5G
• Wireless systems operating at a carrier frequency above roughly 15 GHz – ”mmWave” and Sub-TeraHz (THz) 

– need increasingly directional beamforming (BF) to achieve viable received signal strength
• 5G mmWave base stations (BS) and user equipment (UE) at have large – 64 or 128 at BS side – codebooks of 

indexed analog beams, from which a good beam pair needs to be selected.
• A typical approach is an exhaustive search over a “DFT” codebook of 64 evenly spaced beams over a 3D cone 

or pyramid shape: slow and does not scale well to higher frequencies or mobile scenarios
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For an overview of beam alignment in 5G and a
view to the future, we have a recent paper with
Samsung research:

Y. Heng, J. G. Andrews, J. Mo, V. Va, A. Ali, B. Ng, and C.
Zhang, “Six Key Challenges for Beam Management in 5.5G
and 6G Systems”, IEEE Communications Magazine, July 2021.



Beam	Alignment	in	5G
• Downlink Beam alignment in 5G is based on this beam sweep (exhaustive search) approach. 

1. The BS sweeps through the transmit (Tx) codebook using Synchronization Signal Block (SSB) “wide” beams, UE 
transmits a random access preamble back to BS corresponding to the best SSB (beam)

2. Channel State Information Reference Signal (CSI-RS) “narrow beams" are used for beam refinement, up to 4 signal 
strength measurements can be fed back by the UE

3. The UE may also need to sweep its receive (Rx) codebook – causing a multiplicative increase in latency
4. Eventually/hopefully, the best beam pair is selected. 

• Although the limitations of this brute-force approach are obvious, it is hard to use many of 
the more “intelligent” methods, which may miss detecting new UEs or new UE positions
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Beam alignment is 
the #1 bottleneck to 
mmWave and THz 
communication.



Enhancements	to	Beam	Alignment
• Hierarchical beam search iteratively reduce the search space by 

sweeping wide beams first, then narrower child beams [1].
• Reduces the beam sweeping overhead compared to the 

exhaustive search 
• Prone to search errors caused by noisy measurements
• We will use this as a baseline

• Context information such as location [2], out-of-band 
information [3] and vision [4] can assist beam alignment.
• Feedback of context information requires additional 

standards support
• Possible privacy issues for localization and vision

• Site-specific codebooks can reduce beam sweeping overhead 
[5].   This is more related to our approach.

• Many other clever methods for beam alignment have been 
proposed, e.g. [6], but nearly all have important limitations in a 
real-world cellular system with many mobile users.

• Our goal is to develop a practical technique that fits into the 
5G framework, yet achieves big gains over the current 
exhaustive and hierarchical search methods
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[1] C. Qi, K. Chen, O. A. Dobre and G. Y. Li, "Hierarchical Codebook-Based Multiuser Beam Training 
for Millimeter Wave Massive MIMO," in IEEE Trans. Wireless Commun., 2020.
[2] Y. Heng and J. G. Andrews, “Machine Learning-Assisted Beam Alignment for mmWave Systems”, 
to appear, IEEE Trans. on Cognitive Comm. and Networking.  (early access on IEEExplore)
[3] A. Ali, N. Gonzalez-Prelcic, and R. W. Heath, “Millimeter wave beam-selection using out-of-band 
spatial information,” IEEE Trans. Wireless Commun., 2018.
[4] W. Xu, et al. "3D Scene-Based Beam Selection for mmWave Communications." IEEE Wireless 
Commun. Letters, 2020
[5] M. Alrabeiah, Y. Zhang, and A. Alkhateeb. "Neural Networks Based Beam Codebooks: Learning 
mmWave Massive MIMO Beams that Adapt to Deployment and Hardware." arXiv preprint 
arXiv:2006.14501, 2020
[6] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi and R. W. Heath, "Spatially Sparse Precoding in 
Millimeter Wave MIMO Systems," in IEEE Transactions on Wireless Communications, March 2014.

Hierarchical 
search



Overview	of	our	proposed	beam	alignment	method

11

Our method utilizes two neural networks:
1. A probing codebook W, which is learned via site-specific 

training.    W consists of a small number (~10) of beams that 
learn to efficiently cover the key parts of the whole angular 
space.   

2. A beam selection function f() that uses UE measurements & 
feedback on W’s probing beams to and predict the optimal 
narrow beam in a standard codebook V (e.g. DFT, size 128)

The proposed method does not require additional context 
information, and is compatible with the 5G beam alignment 
framework.  

How it works:
1. BS sweeps probing codebook W
2. UE measures and reports the received 

power of each beam in W
3. BS predicts the optimal narrow beam in V

using f() based on the UE feedback
4. BS transmits data to a UE using its 

predicted  v*

Publications:
1. Y. Heng, J. Mo, J. G. Andrews, “Learning Site-Specific Probing Beams for Fast mmWave Beam Alignment”, 

under revision, IEEE Trans. on Wireless Comm.   Available: https://arxiv.org/abs/2107.13121
2. Y. Heng, J. Mo, and J. G. Andrews, “"Learning Probing Beams for Fast mmWave Beam Alignment”, IEEE 

Globecom, Madrid, Spain, Dec. 2021.

https://arxiv.org/abs/2107.13121


System	and	Signal	Model	(Baseline)
• DL multiple-input single-output (MISO) channel model, ULA (planar also possible), analog BF only:
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• The BS will transmit a data symbol s using a BF vector v, and the received signal can be written as:

• The BS has a narrow beam codebook V with NV Tx beams, our goal is to use beam v achieving the best SNR: 

• To do so, after sweeping the small (learned) probing codebook W, with NW << NV beams, the received power 
of each beam in W is measured and reported to form the feature vector x:



Neural	Network	Architecture:	Learning	(Training)	Phase

• The entire probing-beam sweeping and narrow-beam 
selection procedure are stacked and trained as an end-to-
end deep neural network (NN).
• The probing codebook W is a complex-valued NN.
• Beam selector f() is a multilayer perceptron (MLP) classifier. 

• During training, the channel vector h is the input 
• The output is the probability of each beam in V being the 

optimal narrow beam. 
• The loss function is the cross-entropy between this predicted 

distribution and the true optimal beam.
• Both NN’s are updated via the same loss function

• The proposed method requires an offline training phase. 
• The training data consists of measured/estimated channel 

vectors throughout the cell area.  
• These can be obtained through ray-tracing simulation (our 

approach) before deployment or through channel estimation 
in an actual deployment.
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Our	Architecture:	Deployment	Phase

• For an actual BS deployment, after training, the learned 
probing codebook W is extracted and implemented in RF 
e.g. as phase shifters

1. The BS periodically sweeps through its site-specific learned probing 
codebook W

2. The UEs measure and feed back the received power of each probing 
beam, forming the input feature x. 

3. The BS predicts the optimal (top-1) narrow beam or the top-k
candidate beams in V to try using the learned MLP beam selection 
function f().

• If the environment or the overall UE location distribution 
changes (occurs slowly, on the order of hours or more), 
we can re-enter the training phase to update W and f().
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Experimental	Setup
• Channel data is from our own Rosslyn dataset [2] and the public DeepMIMO dataset [7]:

• Generated using a commercial ray-tracing by “Wireless InSite”
• 4 different environments containing LOS and NLOS UEs. 
• 0.6/0.2/0.2 is training/validation/testing split

• NN parameters:
• MLP has 2 hidden layers with ReLu activation
• NN Trained for 200 epochs using the Adam optimizer

• We train models with different sizes of W: NW = [6, 8, 10, 12, 16,20]
• Baselines:

1. Genie (true optimum, a hard upper bound): picks the beam in V with the highest BF gain
2. Exhaustive search: picks the beam in V with the highest received power (measurement is degraded by noise)
3. 2-stage hierarchical search: first searches NW wide beams covering the entire angular space, then searches all child beams 

of the best wide beam, finally selects the child beam with the highest received power.
4. Binary search: repeatedly splits the search space into two equal partitions and search two wide beams covering each 

partition until reaching the final narrow beam
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[2] Y. Heng and J. G. Andrews, “Machine Learning-Assisted Beam Alignment for mmWave Systems”, to appear, IEEE Trans. on Cognitive Comm. and Networking. 
Dataset: https://github.com/YuqiangHeng/ML-mmWave-Beam-Alignment

[7] A. Alkhateeb,"DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications ,“ in Proc. ITA, Feb. 2019.

https://github.com/YuqiangHeng/ML-mmWave-Beam-Alignment


Rosslyn	Ray-tracing	Dataset
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• The ray-tracing environment is a 3-D reconstruction of 
an urban outdoor area of “Rosslyn” in Arlington, VA 

• The buildings and terrain are modeled with concrete 
material with the appropriate dielectric properties

• BS placed at the center of an intersection with 10-
meter elevation, with 64 antennas

• 73,884 UEs are placed uniformly around the AP on the 
terrain surface in a roughly (90 meters)2 grid with 0.35 
meter spacing and 2-meter elevation.

• 28 GHz carrier, 100 MHz bandwidth

[2] Y. Heng and J. G. Andrews, “Machine Learning-Assisted Beam Alignment for mmWave Systems”, to appear, IEEE Trans. on Cognitive Comm. and Networking. 
Dataset: https://github.com/YuqiangHeng/ML-mmWave-Beam-Alignment

https://github.com/YuqiangHeng/ML-mmWave-Beam-Alignment


DeepMIMO Datasets
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DeepMIMO O1_28 & O1_28B
• Outdoor street environment (O) with buildings on 

both sides. 
• O1_28 contains 72,581 LOS UEs.
• O1_28B includes an additional metal screen in front 

of the BS and reflectors on both sides.
• Contains 497,931 LOS + NLOS UEs

• Both are at 28 GHz carrier

DeepMIMO I3
• Indoor office environment (I) with a grid of LOS 

UE in the room and NLOS UEs in the corridor.
• Contains 118,959 LOS + NLOS UEs

• 60 GHz carrier

[7] A. Alkhateeb,"DeepMIMO: A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications ,“ in Proc. ITA, Feb. 2019.



Evaluation:	beam	alignment	accuracy	in	NLOS scenarios

• The beam alignment accuracy is the probability (relative frequency) that the BS selects the optimal narrow beam from V.

• The genie (UB) has probability 1 of selecting the best beam.

• The proposed method outperforms the hierarchical searches with just 6 probing beams and no additional beam sweeping (k = 1). 

• By trying the top-3 predicted candidate beams, the proposed method quickly outperforms even the exhaustive search!
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Beats exhaustively 
sweeping 128 

beams with just 9 
or 11 beams 

(14x or 11x gain)



Evaluation:	beam	alignment	accuracy	in	LOS	scenarios

• There is less gain compared to in the NLOS scenarios, since there is considerably less 
structure to learn and the angle of arrival (AoA) distribution is more uniform 

• The proposed method can still beat hierarchical searches with 14 probing beams and 
the exhaustive search with 16.
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Beats exhaustively 
sweeping 128 beams 

by sweeping 19 
beams (6x gain)



Beam	sweeping	complexity/latency	for	many	UEs
• When considering simultaneous beam alignment for 

multiple UEs (5, 10 and 15 UEs) the proposed method 
still achieves much lower beam sweeping complexity 
(sweeps far fewer total beams).

• For 10 UEs, the proposed method reduces the beam 
sweeping overhead of the hierarchical search methods by 
around 3x with 12 probing beams and k=3 and by around 
10x with 12 probing beams and k=1.

• Note: the multiple UE scenario is when the apparent 
gains of many other approaches evaporate

20

Beam Sweeping Complexity for K UEs



Probing	codebook	beams:	what	do	they	look	like?

• The architecture consistently learns probing 
beam patterns that “make sense” in the context 
of the propagation environment.

• NLOS environment:
• Strong beams tend to point towards the reflectors 

and LOS UEs on either side
• Little energy directed towards blockage areas or 

dead zones
• Important to note that we do not optimize the 

probing codebook W for average BF gain or SNR. 
• Rather, the probing codebook is optimized to 

learn the propagation environment to benefit 
the downstream MLP beam selector f()
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For LOS, 
learns a 
nontrivial 
but fairly 
uniform 
pattern

For NLoS, 
learns best 
reflectors 
and to avoid 
obstacles: 



Wrap-up	of	Example	1
• We proposed a promising, 5G-plausible, deep-learning based beam alignment method that 

predicts the optimal narrow beam(s) after sweeping a learned site-specific probing codebook
• There is significant gain in the challenging NLOS scenarios

• The proposed method can reach or even exceed the exhaustive search accuracy, while reducing the 
search latency by over 10x. 

• We conjecture the gains could be even larger for narrower beams at higher carrier frequencies (THz)
• My take on why it works so well (in light of the “no free lunch” principle):

• Instead of a one-size-fits-all solution, our probing codebook exploits the unique propagation and UE 
clustering in each cell site, which avoids most wasteful searches

• The end-to-end training of both the probing codebook and the beam selector f() allows synergies 
between them to develop

• Our scheme does increase the UL feedback per UE – we send feedback on all NW probing beams, 
instead of just the best beam(s).  However, this is probably a great tradeoff in most cases, since we 
achieve much faster downlink beam alignment.

• Considerable scope for future work and generalizations of this framework
22



Example	2:
Ultra	High	Dimensional	Channel	Estimation	
leveraging	Deep	Generative	Networks

1. E. Balevi, A. Doshi, A. Jalal, A. Dimakis, and J. G. Andrews, “High Dimensional Channel Estimation Using Deep 
Generative Networks”, IEEE Journal on Sel. Areas in Communications, Vol. 39, No. 1, pp. 18-30, Jan. 2021 

2. E. Balevi and J. G. Andrews, “Wideband Channel Estimation with A Generative Adversarial Network”, IEEE Trans. 
on Wireless Comm, Vol. 20, No. 5, pp. 3049-60, May 2021.

This work has been supported by NSF (and preliminary work by Intel)



Motivation	
(I	thought	Channel	Estimation	was	a	solved	problem?)

• At large bandwidths (e.g. > 1 GHz) and high frequencies (eventually > 100 GHz):
• Could have antenna spacings on the order of 2-3 mm (100-150 GHz carrier).
• 6G base stations could have ~10,000 antenna elements in a compact planar array

• Channel estimation and high gain beam alignment will be the most challenging
problems with dimensionality on the order of:

• 1,000-10,000 x 100-1,000 spatial channel dimensions (correlated)
• 1,000 subcarriers over 10+ coherence bandwidths
• 106-109 total (correlated) dimensions – ultra high dimensional (UHD)
• Current approaches won’t scale: too many pilots, too much computation

• Meanwhile, deep learning approaches for efficiently approximating large inverse
problems are experiencing rapid advancement, e.g. deep generative models (DGMs)

• From Ex. 1, also recall we need channel estimates to learn a probing codebook.
24



• Traditional channel estimators such as LMMSE are near-optimal for rich multipath channels
• However, ultra high-dimensional channels tend to exhibit extremely sparse structures [Bajwa10], which

these estimators cannot directly exploit
• Moreover, LS-type estimators require many pilots: at least equal to the number of transmit antennas, as well

as priors like the correlation matrix
• As a remedy, sparsity has been exploited via compressed sensing (CS), e.g. in underwater acoustic

channels [Berger10] and mmWave channels (e.g. [Alk14, Ven17]).
• High dimensional channels are often very sparse/low rank [Rappaport19], [Eliasi17], but not

necessarily in a known basis: basis can vary based on the environment
• Our approach: a site-specific DGM which learns the propagation environment via a GAN
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High	Dimensional	Channel	Estimation

[Bajwa10] W. Bajwa, J. Haupt, A. M. Sayeed, R. Nowak, “Compressed Channel Sensing: A New Approach to Estimating Sparse Multipath Channels’’, Proc. IEEE 2010. 
[Berger10] C. R. Berger, Z. Wang, J. Huang, S. Zhou, “Application of Sensing to Sparse Channel Estimation’’, IEEE Comm. Magazine, Nov. 2010. 
[Alk14] A. Alkhateeb, et al, “Compressive Channel estimation and hybrid precoding for millimeter wave cellular systems,” IEEE JSTSP, Oct. 2014. 
[Rappaport19] T. Rappaport et al. "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond." IEEE Access, Jun. 2019. 
[Eliasi17] P. Eliasi et al, “Low-rank spatial channel estimation for millimeter wave cellular systems,” IEEE Trans. on Wireless Comm., 2017
[Ven17] K. Venugopal et al, “Channel estimation for hybrid architecture-based wideband millimeter wave systems,” IEEE JSAC, Sep. 2017.



• Compressed Sensing (CS) using Matching Pursuit (MP) algorithms [Alk14] [Lee16] 
• Need to find appropriate sparsifying basis
• Solve complex optimization problem at each coherence interval

• Message Passing (EM-GM-AMP, VAMP) [VilaSchniter13] [Rangan19] 
• Works well for a large class of random sensing matrices, but require a sparsifying basis 

• Recent Deep Learning techniques [Wen18] [Yang19] [Gao19] [Dong19]
• Supervised, excessive time required to generate the necessary labeled data and then train
• Unsupervised techniques would in general be far preferable
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State of the art in high dimensional channel estimation
(not an exhaustive list)

Our idea: use the structure captured by a deep generative model as a 
prior, eliminating the need for a sparsifying basis or supervised learning

[Lee16] J. Lee et al. "Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications." IEEE T. Comm., Apr. 2016.
[VilaSchitner13] J. Vila and P. Schniter. "Expectation-maximization Gaussian-mixture approximate message passing." IEEE Trans. on Signal Process., Jul. 2013. 
[Rangan19] S. Rangan et al. "Vector approximate message passing." IEEE Trans. on Info. Theory, May 2019. 
[Wen 18] C. K. Wen et al., "Deep learning for massive MIMO CSI feedback." IEEE Wireless Communications Letters, Oct. 2018. 
[Yang19] Y. Yang et al., “Deep learning-based channel estimation for doubly selective fading channels.” IEEE Access, Mar. 2019 
[Gao19] S. Gao et al, “Deep learning based channel estimation for massive MIMO with mixed-resolution ADCs,” IEEE Communications Letters, Aug. 2019
[Dong19] P. Dong et al, “Deep CNN-Based Channel Estimation for mmWave Massive MIMO Systems,” IEEE Jour of Sel Top in Signal Processing , Sep 2019. 
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Deep	Generative	Models
• A deep generative model is a feed-forward NN 

• Input vector 𝑧 ∈ ℝ! , output vector 𝐺 𝑧 ∈ ℝ" where 𝑑 ≪ 𝑛.  
• For small images, perhaps 𝑑 = 100 and 𝑛 = 64×64×3 (= 12,288). 

• This NN can be trained to take a iid Gaussian input 𝑧 and produce samples of 
complicated distributions, e.g. human faces [Radford16]

• One powerful method for training generative models is Generative 
Adversarial Nets (GANs).

𝑧 G(𝑧)

[Radford16] Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” ICLR, May 2016. 
[Karras18] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of GANs for improved quality, stability, and variation,” ICLR 2018

GAN faces [Karras18]
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Generative	Adversarial	Net	(GAN)
• A GAN [Goodfellow2014] consists of two feed-forward NNs, a generator 𝔾 & discriminator 𝔻

engaging in an iterative minimax game:  

• 𝔾 attempts to learn the data distribution ℙ! , while 𝔻 learns to discriminate between real data
samples ~ ℙ! and fake ones from 𝔾 ~ ℙ".

https://cntk.ai/pythondocs/CN
TK_206A_Basic_GAN.html

[Goodfellow14] Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

https://cntk.ai/pythondocs/CNTK_206A_Basic_GAN.html


Compressed Sensing (for image reconstruction) 
using Generative NNs
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Prior Algorithm [Bora17]:
1. Train a GAN using an image dataset.
2. Extract the trained generator G.
3. Given a noisy compressed observation r, 

reconstruct the true image r encodes by 
solving the following optimization 
problem using gradient descent:

where f is a loss function. For example,  

4.   The reconstructed image is then G(𝑧∗).

[Bora17] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using generative models,” 
in Intl. Conf. on Machine Learning (ICML), Aug. 2017, pp. 537–546.
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Part	1:	Narrowband	Channel	Estimation
• Training-based channel estimation approach for narrowband point-to-point DL MIMO setup

with Np pilots & Nt transmit antennas & Nr receive antennas.
• In each time slot, BS employs a training beamformer to transmit a pilot symbol 𝑥 =

1, while the UE makes Nr measurements.
• Np distinct beamforming vectors are employed during training. Denote
• Assuming the spatial channel matrix remains constant over the Np time slots,

received training signal at UE:

• Vectorizing, and utilizing Kronecker products:

Challenge: Assuming 𝑁p < 𝑁t, finding H from y is an ill-posed inverse problem.
Our idea: Use the structure captured by a pretrained deep generative model as a prior.

where
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Narrowband	Generative	Channel	Estimator	(GCE)
Adapting [Bora17] to channel estimation:
1. Train a GAN using a set of “real” channel 

realizations (details shortly).
2. Extract the trained generator G.
3. Given noisy pilot measurements y, reconstruct 

the channel by solving the following 
optimization problem using gradient descent:

4. The reconstructed channel estimate is then  
G z∗ , which is 𝑁!×𝑁$

We refer to this framework as the Generative 
Channel Estimator (GCE).

where 𝑑 is the GAN’s input vector dimension, 
and         is a regularization parameter. 
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Wireless	System	Parameters

Delay Profile CDL-D*

𝑁t 64

𝑁r 16

Antenna Array ULA

Carrier Frequency 40 GHz

Antenna Spacing ⁄𝜆 10

Before using the simulated channel matrices for training the 
GAN, we normalize them element-wise:

For generating the baselines, considering the clustered channel 
model (CDL), we use 2D DFT array response matrices AT and 
AR to obtain the sparse channel representation

The received signal at the UE is:
Denote by                                       .

* From 3GPP specs TR 38.901, a spatial LOS channel model used for UMi scenarios. CDL – Clustered Delay Line
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Performance	Benchmarks

Lasso Channel Estimation: Considering the ℒ1 convex relaxation of the OMP problem (Basis 
Pursuit Denoising), we solve the following Lagrangian form using a convex solver:

EM-GM-AMP Channel Estimation [VilaSchniter13]: Given y & Asp, EM-GM-AMP recovers Hv 
from which we can recover H.

OMP Channel Estimation [Méndez-Rial16]: Solves this non-convex combinatorial problem:

The OMP stopping criterion is based on residual error power, chosen to be the noise variance. 

[Méndez-Rial16] R. Méndez-Rial et al. “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?”. IEEE Access, Jan. 2016
[VilaSchitner13] J. Vila and P. Schniter. "Expectation-maximization Gaussian-mixture approximate message passing." IEEE Trans. on Signal Process., Jul. 2013 
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GAN	Model	and	Training	Details

Training data size 3654
Testing data size 12
Optimizer RMSProp
Learning Rate 0.00005
Batch Size 200
Epochs 3000
𝜆reg 0.001

• Our Wasserstein GAN [Arjovsky17] was trained with 
simulated channel realizations. 

• The generator G(z) is a Deep Convolutional neural network, 
which is then extracted to use in the Algorithm given earlier.

• G takes an input 𝑧 𝜖 ℝ% , passes it through a dense layer with 
output size 128Nt Nr /16, and reshapes it to ( Nt /4 , (
)

Nr
/4 , 128).

• This latent representation is passed through 𝑘 = 2 layers, 
each consisting of the following units: up-sampling, 2D 
Convolution with a kernel size of 4 and Batch 
Normalization.

• Finally passed through a 2D Convolutional layer with linear 
activation to obtain G(𝑧), the 𝑁!×𝑁$ channel estimate

[Arjovsky17] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial 
networks,” in Intl. Conf. on Machine Learning (ICML), 2017, pp.214–223.
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GCE	requires	under	40	parameters	to	represent	a	
16x64	complex	CDL	channel

• We determine the optimal dimension 𝑑 of the input 𝑧
to the generator in absence of noise, plotting NMSE 
as a function of ⁄𝑁& 𝑁$. 

• 𝑑 = 35 appears sufficient, and increasing ⁄𝑁& 𝑁$
beyond 0.4 does not impact the NMSE: 
• Thus, we get over 50x compression (very 

useful for channel feedback, if needed)
• Using the input vector 𝑧∗ (of size d), we can recover 

the channel estimate without knowing that the 
channel is sparse in any particular (e.g. DFT) basis. 

• GCE provides a model-free approach for efficiently 
representing inherently sparse or structured channels.
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GCE	outperforms	OMP,	Lasso	&	EM-GM-AMP

GCE achieves about 8 dB NMSE gain over EM-GM-AMP at SNR = 15 dB 

⁄𝛼 = 𝑁! 𝑁" = 0.2 ⁄𝛼 = 𝑁! 𝑁" = 0.4
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Explanations/Comments:
1. GCE has prior information about the 

channel distribution, which the other 
techniques do not

2. However, the other techniques do know 
and exploit the sparsifying (e.g. DFT) 
basis: GCE does not

3. We exploit reduced antenna spacing = 
high spatial correlation to learn channel 
distribution

GCE	outperforms	OMP,	Lasso	&	EM-GM-AMP
⁄𝛼 = 𝑁! 𝑁" = 0.75



Part	2:	Wideband	Channel	Estimation
• Thus far we have assumed narrowband channel estimation, to simplify the problem and

focus on the spatial domain. However:
• Large bandwidth channels are frequency selective.
• Only the time and spatial domain correlation can be exploited for narrowband, so we used an
artificially small antenna spacing (𝜆/10) to generate sufficient correlation (which presumably a
real-world channel would also provide).

• GANs are utilized for wideband channel modeling [Dorner20], but this estimates only the
conditional distribution, and is not a channel estimator.

• Wideband model:
• Np pilots, Nt transmit antennas, Nr receive antennas & now Nf subcarriers
• Transmit pilot symbols from multiple RF chains as opposed to a single RF chain

• Same basic steps, i.e., vectorizing, and utilizing Kronecker product, then building upon
and modifying the previous generative channel estimation (GCE) architecture.
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[Dorner20] S. Dorner, M. Henninger, S. Cammerer, and S. ten Brink, “WGAN-based Autoencoder Training Over-the-air,” Arxiv:2003.02744, March 2020.
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Wideband	Generative	Channel	Estimator

The key differences vs. narrowband:
a. The measurement matrix has a different

(wideband) structure.
b. The channels are structured as NtNr distinct

complex planes of size Nf x Np Thus:
• We can exploit both frequency and time

correlations.
• Antenna spacing is the standard 𝜆/2.

𝑁!

𝑁"



Theoretical Result
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• To guarantee an upper bound to the channel estimation error, the measurement matrix must
have sub-Gaussian entries [Bora17].

• For channel estimation, there are 2 additional constraints for the measurement matrix due to:
1. Total transmission power constraint
2. Constant modulus constraint, due to the phase shifters in the analog precoder/combiner

• Recall that

[Bal20] E. Balevi and J. G. Andrews, “Wideband Channel Estimation with a Generative Adversarial Network,” IEEE Trans. Wireless, May 2021.

where

where : analog precoder: pilots : analog combiner

• Theorem. If the pilot symbols are zero mean bounded i.i.d. random variables, then the
measurement matrix A has sub-Gaussian entries for a given total transmission power [Bal20].
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Wideband	System	Details

Delay Spread TDL-E*

𝑁t 64

𝑁r 16

𝑁f 64

Antenna Array URA

Antenna Spacing ⁄𝜆 2

Channel parameters

* From 3GPP specs TR 38.901

Training data size 5000
Testing data size 10
Optimizer RMSProp
Learning Rate 0.00005
Batch Size 200
Epochs 3000
𝜆reg 0

We use a Wasserstein GAN, whose architecture is
the same as the narrowband estimator.
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GCE	outperforms	LS	and	approaches	LMMSE

For low SNR, GCE achieves superior (even optimum*) performance. 
delay spread = 10ns

• First, we benchmark with optimum performance, thus assume ⁄𝑁& 𝑁$ = 1 for each coherence
bandwidth, and compare it with:

1. Practical low-complexity LS estimator
2. Complex, but conventionally optimum* LMMSE estimator

delay spread = 100ns
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GCE	scales	well	with	decreasing	pilot	overhead

The pilot overhead can be reduced by 70% with just ~1 dB loss in NMSE.

⁄𝜂 = 𝑁! 𝑁#



Wrap-up	of	GAN-based	Channel	Estimation
• Channel estimation is an important bottleneck for high dimensional wireless

systems, such as mmWave and especially upper mmWave/THz
• Our novel generative channel estimator (GCE), leveraging deep generative

networks, achieves impressive estimation accuracy and robustness
• GCE does not require knowledge of the sparsifying basis of the channel, immensely

reduces the number of pilots required, and works especially well at low SNR
• The computational complexity of the proposed estimator is reasonable:

• Narrowband channel estimation: O(𝑁#𝑁$2), where in downlink 𝑁$ ≪ 𝑁#. Better than OMP which
has O(𝑁#3𝑁$2) and similar to EM-GM-AMP at O(𝑁#𝑁$log(𝑁#𝑁$)).

• Wideband channel estimation: O(𝑁#𝑁$𝑁%𝑁&2), where 𝑁$ , 𝑁& ≪ 𝑁# , 𝑁%, i.e., increases linearly with the
number of transmit antennas and subcarriers.
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Parting	Comments
• Deep Learning is a powerful tool for wireless systems – but not a panacea

• Learning when and how to use it (and also when not to!) is a key research 
challenge for the next decade

• Applying ML successfully for 5G/6G requires a strong communication theory 
and communication systems engineering background

• High dimensional channels are inherently “unknowable” (esp. with any 
mobility), complex/correlated, and require suboptimum RF electronics; so 
are a promising application space

• Industry is very excited about the potential of ML for 6G
• They follow and support our research, and are actively doing their own studies
• Desire for good datasets and simulators is substantial, and a big challenge right now –

academia can help
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