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In  recent  years,  there  has  been  an  increasing  interest  in  understanding  the  contributory  factors  to  run-off-
road  (ROR)  crashes  in  the  US, especially  those  where  large  trucks  are  involved.  Although  there  have  been
several  efforts  to understand  large-truck  crashes,  the  relationship  between  crash  factors,  crash  severity,
and  ROR  crashes  is  not  clearly  understood.  The  intent  of this  research  is  to  develop  statistical  models that
provide  additional  insight  into  the  effects  that  various  contributory  factors  related  to  the  person  (driver),
vehicle,  crash,  roadway,  and environment  have  on ROR  injury  severity.  An  ordered  random  parameter
probit  was  estimated  to predict  the likelihood  of  three  injury  severity  categories  using  Oregon  crash
data:  severe,  minor,  and  no injury.  The  modeling  approach  accounts  for  unobserved  heterogeneity  (i.e.,
unobserved  factors).  The  results  showed  that  five  parameter  estimates  were  found  to  be  random  and
normally  distributed,  and  varied  across  ROR  crash  observations.  These  were  factors  related  to  crashes
that  occurred  between  January  and  April,  raised  median  type,  loss  of  control  of  a  vehicle,  the  indicator
variable  of  speed  not  involved,  and  the  indicator  variable  of  two  vehicles  or more  involved  in  the  crashes.
In  contrast,  eight  variables  were  found  to be  fixed across  ROR  observations.  Looking  more  closely  at  the

fixed  parameter  results,  large-truck  drivers  who  are  not  licensed  in Oregon  have  a  higher  probability  of
experiencing  no injury  ROR crash  outcomes,  and human  related  factor,  fatigue,  increases  the  probability
of  minor  injury.  The  modeling  framework  presented  in  this  work  offers a flexible  methodology  to  analyze
ROR  crashes  involving  large  trucks  while  accounting  for unobserved  heterogeneity.  This information  can
aid safety  planners  and  the  trucking  industry  in identifying  appropriate  countermeasures  to help mitigate
the number  and severity  of  large-truck  ROR crashes.
. Introduction

In recent years, there has been an increasing interest in under-
tanding the contributory factors to run-off-road (ROR) crashes in
he US, especially those where large trucks are involved (Davis et al.,
006; Lee and Mannering, 2002; McLaughlin et al., 2009; Peng and
oyle, 2012; Roy and Dissanayake, 2011). One reason for this is that

n 2010, approximately 57% of all fatal crashes were ROR crashes,
hereas nonfatal crashes accounted for 16% (Blincoe et al., 2015).
ccordingly, those crashes led to roughly $64 billion in economic

osts and $298 billion in comprehensive costs, accounting for 27%
f all economic costs and 36% of all societal harm (Blincoe et al.,
015). Although, statistically, the number of large-truck-involved
rashes has decreased over the past two decades, there is still a
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higher fatal crash involvement rate per 100 million vehicle miles
traveled compared to passenger cars (1.34 versus 1.08 for the year
2014) (Federal Motor Carrier Safety Administration, 2016). As a
result, several state agencies have today developed and/or have
adopted mitigation programs to reduce the number and sever-
ity of these crashes. For example, in Oregon, where nearly 66%
of all fatal crashes were due to ROR crashes in 2010, the Oregon
Department of Transportation (ODOT) partnered with the Federal
Highway Administration (FHWA) to implement appropriate and
low-cost countermeasures with the goal of reducing the number
of ROR fatalities by 20%. However, the implemented countermea-
sures focused primarily on reducing ROR crashes for passenger
cars, with little focus on large trucks (gross vehicle weight rating
[GVWR] greater than 10,000 pounds). With this in mind, there is
a clear need for continued research into identifying and/or devel-

oping cost-effective countermeasures to reduce the number and
severity of ROR crashes involving large trucks.

Various methodological models have been used in analyzing
severity and frequency of crashes. The selection of an appropri-
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te statistical model depends primarily on the nature of the crash
ata. In this study, the injury severity sustained by trucks’ drivers
re the main interest. Therefore, only previous works that exam-
ned the crash severity will be reviewed. The current study has
imed to examine the impact of contributory factors on the run-
ff-the-road (ROR) crashes that involved large trucks. In terms of
he risk factors, several studies have been conducted to investi-
ate the effect of some possible factors on ROR crash severity. In
eneral, these factors can be summarized into three main groups,
uman factors, highways’ geometric design and environmental fac-
ors, and roadside factors. In terms of human factors, Davis et al.
2006) reviewed the previous works that studied the effect of speed
n ROR crashes on rural two-lane highways. They collected data
rom Australia and Minnesota for their study and used Bayesian
elative risk regression. In their study, they found that high speed
as associated with higher fatality risk. McGinnis et al. (2001) used

atality Analysis Reporting System (FARS) data for years 1975,1980,
985, 1990, 1996, and 1997 to investigate the contributory fac-
ors that might affect ROR crashes. They found that around half of
OR crashes occurred due to intoxicated drivers, particularly male
rivers whose age between 20 and 39 years. They also found that
everity of ROR crashes that involved male drivers were higher than
OR crashes that involved female drivers.

Turning to statistical approaches, several models have been
sed to determine the relationship between the potential con-
ributory factors and ROR crash severity. Liu and Subramanian
2009) conducted a univariate analysis with Chi-square tests and
ogistic regression to analyze FARS crash data for the period from
991 to 2007. In their study, they attempted to capture the effect
f various factors on ROR crashes such as roadway and environ-
ental factors, driver characteristics, and traffic-related factors.

hey stated that some variables were statistically significant and
ffected ROR crashes such as the presence of horizontal curves
n the roadway, alcohol impairment, number of lanes, inclement
eather, and driver age. Roy and Dissanayake (2011) developed

 Bayesian statistical approach to compare ROR with non-ROR
rashes in Kansas by using crash data for crashes that occurred
n the period between 1999 and 2008. They found some variables

ere highly associated with ROR crashes rather than non-ROR
rashes. These variables included road surface condition (i.e., wet
nd icy surfaces), time of the day (i.e., nighttime), rural area,
nclement weather conditions, horizontal curve sections, higher
peed, and fatigue and drowsiness. Dissanayake (2003) conducted

 study to identify the contributory factors that affect the sever-
ty of ROR crashes involving young drivers with age from 16 to 25
ears. In this study, Dissanayake obtained a crash data from Florida
raffic crash database. He categorized the injury severity into five
njury outcomes and then developed four sequential binary logis-
ic regression models. He concluded that some factors were highly
nfluencing the severity of young drivers involved in ROR crashes
uch as gender, lighting condition, area type, and roadway align-
ent.

The majority of the aforementioned studies primarily focused
n analyzing the injury severity of passenger cars involved ROR
rashes. However, works that study the injury severity of drivers
nvolved in large trucks ROR crashes are sparse. Some studies in
ecent years have specifically studied large-truck-involved crashes
rom various perspectives. Some of this work has dealt with
nderstanding the risk and human-related factors of ROR crashes
aused by speed, driver characteristics, driving under the influ-
nce of alcohol and/or drug impairments, fatigue or drowsiness,

oadway characteristics, vehicle characteristics, and environmen-
al factors (Aram, 2010; Compton and Berning, 2009; LeRoy et al.,
008; McGinnis et al., 2001; Neuman et al., 2003; Peng and Boyle,
012; NHTSA, 2012). Other studies have focused on identifying
he contributory factors to large-truck-involved crashes through
sis and Prevention 102 (2017) 93–100

econometric and statistical models. In those studies, ROR crashes
are represented as an indicator variable for crashes related to urban
settings, rural versus urban, time of day, manner of collision, and
vehicle type (Cerwick et al., 2014; Chang and Mannering, 1999;
Chen and Chen, 2011; Duncan et al., 1998; Islam and Hernandez,
2013a,b, 2015; Islam et al., 2014; Khorashadi et al., 2005; Lemp
et al., 2011; Pahukula et al., 2015; Romo et al., 2014).

Although there have been several efforts to understand large-
truck crashes, the relationship between contributory factors and
severity of ROR crashes is not clearly understood. One  reason for
this stems from the lack of detailed crash data to capture the com-
plex interactions of multiple factors under a single framework for
ROR crashes. Therefore, the purpose of this research is to develop
statistical models that provide additional insight into the effects
that various contributory factors related to the person (driver),
vehicle, crash, roadway, and environment have on ROR  injury
severity. This is done by analyzing the Oregon Statewide Crash Data
System, which is an extensive database collected and maintained by
ODOT. The findings of this study can provide information that can
aid safety planners and the trucking industry in identifying appro-
priate countermeasures to help mitigate the number and severity
of large-truck ROR crashes. To the best of the authors’ knowledge,
these are the first attempts at developing these types of models for
ROR crashes.

The rest of the paper is organized as follows. In Section 2, the
crash data used in the analysis and their descriptive statistics are
described. Section 3 presents details of the proposed econometric
modeling framework. In Section 4, estimation results along with
discussions are presented. Section 5 provides conclusions and sug-
gestions for future research.

2. Data description

This study utilizes data collected from the Oregon Statewide
Crash Data System provided by ODOT. The data obtained repre-
sents seven years of large-truck-involved crashes, from 2007 to
2013; large-truck-involved crashes for the seven-year period com-
prised 13,364 records. However, since ROR crashes are the main
interest of this study, only crashes belonging to this category are
considered, bringing the sample size down to roughly 2486 obser-
vations (data filtered by ROR indicator). Each ROR  observation
represents the maximum level of injury severity sustained by the
driver following the National Safety Council (NSC) injury severity
scale, KABCO. The KABCO injury severity scale characteristically
consists of five injury categories: fatality (K), incapacitating (A),
non-incapacitating (B), possible injuries (C), and non-injury (O) or
property damage only (PDO). For this study, any recorded incidents
that showed an injury severity of “not reported” or “unknown” were
rejected because the severity of those injuries could not be satis-
factorily determined. As was the case with other studies (Anarkooli
and Hosseinlou, 2016; Haleem and Abdel-Aty, 2010; Haleem and
Gan, 2013; Pahukula et al., 2015; Quddus et al., 2002), because
of low data observations for the higher injury severity outcomes,
the full KABCO scale was reduced to three injury categories. These
categories are severe injury (KA- fatal and incapacitating), minor
injury (BC- non-incapacitating and possible injury), and no injury
(O- property damage only or PDO).

Turning to the data, overall severe injury, minor injury, and
no injury accounted for 2.6% (N = 65), 24.6% (N = 612), and 72.8%
(N = 1809), respectively. Table 1 illustrates the descriptive statistics

of key variables for large-truck-ROR crash severity. These variables
were selected according to their statistical significance and minimal
correlation.

In terms of the driver-related factors, injury statistics, shown
in Table 1, show that 2.4% of truck drivers who were involved in
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Table  1
Frequency and percentage distribution of driver injury.

Variable Severe injury Minor injury No injury Total

Month of the year (1 if crash occurred between January and April, 0 otherwise) 13 (1.8%) 148 (20.7%) 555 (77.5%) 716
Median type (1 for raised median, 0 otherwise) 6 (1.3%) 73 (16.9%) 354 (81.8%) 433
Roadway surface condition (1 for dry, 0 otherwise) 50 (3.6%) 387 (27.5%) 969 (68.9%) 1406
Driver license status (1 for a license from other states or countries, 0 otherwise) 20 (1.9%) 242 (22.6%) 810 (75.5%) 1072
Vehicle maneuver just before impending crash (1 if going straight, 0 otherwise) 62 (3.0%) 578 (28.1%) 1417 (68.9%) 2057
Participant level action (1 for lost control of a vehicle, 0 otherwise) 32 (3.5%) 291 (32.2%) 582 (64.3%) 905
Participant level safety equipment use (1 if seatbelt was  fastened, 0 otherwise) 33 (1.6%) 511 (25.7%) 1445 (72.7%) 1989
Crash type (1 for overturn, 0 otherwise) 8 (2.0%) 182 (45.5%) 210 (52.5%) 400
Alcohol not a factor (1 for no alcohol involved, 0 otherwise) 59 (2.4%) 605 (24.7%) 1789 (72.9%) 2453
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Speed  not a factor (1 for non-speed involved, 0 otherwise) 

Roadway characteristics (1 for horizontal curve, 0 otherwise) 

Participant level action (1 for fatigue, 0 otherwise) 

Number of vehicles involved in the crash (1 if two or more vehicles, 0 otherwise)

OR crashes sustained severe injury when they were not under
he influence of alcohol at the time of the crash, whereas 72.9%
f those drivers sustained no injury. Moreover, 75.5% of drivers
hose driver license were not issued in Oregon were experienced

o injury, while drivers who were sustained severe injury were
.9%. The potential reason might be related to driver behavior,
robably because their driving is more cautious since they are unfa-
iliar with Oregon highways. Furthermore, fatigued drivers were

ound to be more likely to sustain minor- and no-injury since injury
tatistics show that those injury categories are 43.6% and 56.4%,
espectively. In addition, losing control of a vehicle constituted as
ighly as effect than aforementioned driver related factors because
.5% of ROR crashes that occurred due to losing control of vehicles
aused severe injury for drivers.

With regard to roadway and environmental factors, ROR crashes
hat occurred on horizontal curves and on dry roadway surfaces
ere associated with high probability of sustaining severe injury.

able 1 depicts that those crashes have slightly similar impact on
rivers’ injury since 3.5% of ROR crashes on horizontal curves and
.6% of ROR crashes on dry roadway surfaces caused severe injury
or drivers. Moreover, it is quite interesting to note that 77.5% of
OR crashes that occurred between January and April were asso-
iated with no injury outcome, whereas minor and severe injury
utcomes were 20.7% and 1.8%, respectively. One potential expla-
ation is Oregonian drivers might be accustomed to the prevalent
dverse and inclement weather conditions in the aforementioned
eriod. For more details regarding percentage distribution of ROR
rashes for each injury category (see Table 1).

It should be noted that some variables, such as the type of shoul-
er, shoulder width, lane width, and the number of lanes, were not
onsidered in the analysis. This is because the information regard-
ng those variables was unavailable or the crash dataset had a large
roportion of missing data for the variables not considered. Fur-
hermore, the 95% confidence level was used to gauge the statistical
ignificance of the selected variables (see Results and Discussion
ection). Consequently, statistically insignificant variables were not
onsidered.

. Methodological approach

With regard to methodological approaches, many applications
f statistical modeling methods have been applied in recent years
o a variety of injury severity analysis scenarios. Mannering and
hat (2014) provide a complete review of these applications. How-
ver, most of these studies have focused primarily on crash data

elated to a passenger car or all traffic mixes in a single modeling
ramework. With regard to large-truck-involved crashes, studies
n modeling injury severity analysis are sparse, and a variety of
tatistical modeling frameworks are used, depending on the defini-
ion of the variables of interest (e.g., how injury severity is defined)
62 (2.5%) 589 (24.2%) 1784 (73.3%) 2435
25 (3.5%) 251 (35.5%) 431 (61.0%) 707
0 (0.0%) 48 (43.6%) 62 (56.4%) 110
6 (1.0%) 64 (10.6%) 532 (88.4%) 602

(Cerwick et al., 2014; Chen and Chen, 2011; Duncan et al., 1998;
Islam and Hernandez, 2013a,b; Islam et al., 2014; Khorashadi et al.,
2005; Lemp et al., 2011; Pahukula et al., 2015). In this work, three
injury categories are used, as previously defined, to model injury
severity of ROR crashes: severe injury, minor injury, and no injury.

With this in mind, to investigate the relationship between the
injury severity of ROR crashes and the possible contributory factors,
an ordered probit modeling framework is considered. Traditionally,
ordered probit models have been used to model and account for the
ordinal nature of injury severity data. However, it has been shown
that the traditional (or fixed parameter) ordered probit model is
susceptible to underreporting of crash injury severity. Thus, the
fixed parameter ordered probit framework imposes restrictions on
the impacts of explanatory variables that are assumed to be the
same across individual injury observations, whereas in ordered ran-
dom parameter probit model explanatory variables are assumed to
be varied across the injury observations (Eluru et al., 2008; Eluru
and Yasmin, 2015; Russo et al., 2014; Savolainen et al., 2011).
These drawbacks in ordered probit model with fixed parameters
can lead to inconsistent (i.e., incorrect) estimates of the effects
of variables on injury severity (Abdel-Aty, 2003; Abdel-Aty and
Keller, 2005; Anarkooli and Hosseinlou, 2016; Haleem and Abdel-
Aty, 2010; Obeng, 2011). Therefore, two  approaches have been
proposed to overcome the restrictions in the traditional ordered
probit model (Eluru and Yasmin, 2015). These approaches are either
allowing thresholds to be random or the effect of explanatory vari-
ables treated as random (Eluru and Yasmin, 2015). Some previous
works have been conducted in context of traffic injury by follow-
ing the first approach proposed by Eluru and Yasmin (2015) (i.e.,
treating thresholds as random) to relax the aforementioned restric-
tions in traditional ordered probit models. For instance, Eluru et al.
(2008), Srinivasan (2002), and Yasmin and Eluru (2013) used mixed
generalized ordered logit (MGOL) to account for unobserved het-
erogeneity in the effect of explanatory variables on injury severity
levels in both the latent injury risk propensity function and the
threshold functions.

On the other hand, Eluru et al. (2008), Eluru and Yasmin (2015),
Hensher et al. (2015), Russo et al. (2014), and Savolainen et al.
(2011) argue that to overcome the aforementioned drawbacks of
the ordered probit model with fixed parameter, extending the
ordered probit model to an ordered random parameter probit
model that accounts for unobserved heterogeneity (also referring
to unobserved factors), can account for the above drawbacks. In
this paper, the impact of explanatory variables has been treated as
random to overcome the restrictions of traditional ordered probit

model.

To illustrate the superiority of the ordered random parameter
probit model, this model will be compared with the fixed parameter
ordered probit model.
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.1. Ordered random parameter probit model

The ordered random parameter probit model is formulated by
pecifying an unobserved variable, z, as a linear function of a vector
f explanatory variables X and the associated vector of estimable
arameters  ̌ (e.g., person [driver], vehicle, crash, roadway, and
nvironment), along with an error term or a disturbance term �,
hich is assumed to be independently randomly distributed, with

 mean of 0 and a variance of 1 (Eluru et al., 2008; Hensher et al.,
015; Washington et al., 2011). The unobserved variable, z, can be
epresented as illustrated in Eq. (1):

 = ˇX + ε

Then, by using Eq. (1) for each observation, ordinal injury data
 can be defined as shown in Eq. (2)

y = 1 ifz ≤ �0

y = 2 if�0 < z ≤ �1

y = 3 if�1 < z ≤ �2

y = . . .

y = J ifz ≥ �J−1

here � equals estimable parameters or thresholds that define the
rdinal injury data y. In general, these thresholds are estimated

ointly with model estimable parameters ˇ, which corresponds
o integer ordering, and where J represents the highest integer
rdered response (in this work, that response is no injury).

Next, to estimate the probabilities of J, the specific ordered
esponse for each ROR crash observation, the error term (�) is
ssumed to be normally distributed, with mean and variance equal
o 0 and 1, respectively. The ordered selection probabilities are
llustrated in Eq. (3):

P(y = 1) = ˚(− ˇX)

P(y = 2) = ˚(�1 − ˇX) − ˚(− ˇX)

P(y = 3) = ˚(�2 − ˇX) − ˚(�1 − ˇX)

. . .

P(y = J) = 1 − ˚(�J−1 − ˇX)

(3)

here the highest (y = 3) represents no injury and the lowest (y = 1)
epresents severe injury.

As an attempt to account for unobserved heterogeneity and to
llow a variable to have various effects across the observations, an
rdered probit model with random parameters is applied. The sim-
lated maximum likelihood estimation procedure was  established
y Greene to use random parameters in the ordered probit models,
s illustrated in Eq. (4) (Greene, 2007).

i =  ̌ + ui (4)

here ui is a randomly distributed term (for example, a nor-
ally distributed term, with mean 0 and variance �2). Estimation

f the ordered random parameter probit model is accomplished
hrough the use of the Halton sequence approach (Anastasopoulos
nd Mannering, 2009; Bhat, 2003; Train, 1998). In this study, 200
alton draws were used, and several random parameter distribu-

ions were examined, such as the normal, lognormal, triangular,
nd uniform distributions (Anastasopoulos and Mannering, 2009).
owever, only the normal distribution produced statistically sig-

ificant results.

To investigate the impact of a particular variable on the injury
utcomes, the marginal effects are used. The marginal effects rep-
esent the change in the probability of a particular injury outcome
ue to one unit change in an explanatory variable while holding all
sis and Prevention 102 (2017) 93–100

other variables constant. Moreover, the marginal effects are com-
monly used along with an ordered probit model to help interpret
the interior injury outcomes or thresholds. The marginal effects
corresponding to the probability of each category can be estimated
as illustrated in Eq. (5) (Washington et al., 2011):

∂P(y = 1)
∂X

= −∅ (−ˇX)ˇ′

∂P(y = 2)
∂X

= [∅ (�0 − ˇX) − ∅ (�1 − ˇX)]ˇ′

∂P(y = 3)
∂X

= [∅ (�1 − ˇX) − ∅ (�2 − ˇX)]ˇ′

∂P(y = J)
∂X

= −∅ (�J−1 − ˇX)ˇ′

(5)

4. Results and discussion

Using simulation-based maximum likelihood and maximum
likelihood methods with 200 Halton draws, an ordered probit
model with random parameters was estimated. The purpose for
using 200 Halton draws was  to get a precise and accurate estimate
of the random parameters (Bhat, 2003). With regard to the dis-
tribution of the random parameters in this analysis, the uniform,
triangular, lognormal, and normal distributions were tested, and
the normal distribution was  the only distribution that resulted in
statistically significant estimates for the random parameters. The
econometric software NLOGIT 5.0 was  used to analyze the data and
fit the ordered probit model with fixed parameters and random
parameters. The estimated results for the ordered probit model
with fixed and random parameters along with the marginal effects
are shown in Tables 2 and 3 respectively.

The estimated results presented in Table 2 illustrate that only
five variables were found to be random and statistically signifi-
cant (the standard deviation was statistically significant or different
from zero), whereas the rest of other variables, along with the con-
stant term, were found to be fixed variables and did not vary across
the observations. The random variables were crashes that occurred
between January and April, raised median type, loss of control of
a vehicle, the indicator variable of speed not involved, and the
indicator variable of two vehicles or more involved in the crashes.
All the random variables were normally distributed. The criterion
that distinguishes between the fixed- and random- parameters in a
model is the statistical significance of the standard deviation corre-
sponding to each variable. In other words, if the standard deviation
corresponding to a particular variable is significant, and different
from zero, that variable will be a random variable, and vice versa
(Agbelie, 2014).

To test the null hypothesis that there is no statistical differ-
ence between the ordered probit model with fixed parameters and
ordered probit model with random parameters in representing the
provided data, a likelihood ratio test was performed. According
to Washington et al. (2011), the likelihood ratio test is written as
illustrated in Eq. (6):

�2 = −2
[
LLˇFixed − LLˇRandom

]

�2 = −2 [−1504.41 − (−1498.32)] = 12.18

Together, the Chi-square statistic value of 12.18 and correspond-
ing degrees of freedom, 5 (number of random parameters), give
more than 96.0% confidence level that the ordered probit model

with random parameters is superior to the ordered probit model
with fixed parameters. These results indicate that the null hypothe-
sis should be rejected. Moreover, Table 2 shows that log-likelihood
at convergence for the ordered probit model with random param-
eters is significantly better than the ordered probit model with
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Table  2
Estimated Results for the Ordered Probit Model with Fixed and Random Parameters.

Variable Fixed Parameter Model Random Parameter Model

Coefficient t-stat Coefficient t-stat

Constant 1.772 5.90 1.863 6.35
Month of the year (1 if crash occurred between January and April, 0 otherwise) (standard deviation) 0.122 1.90 0.161 (0.268) 2.35 (4.72)
Median type (1 for raised median, 0 otherwise) (standard deviation) 0.262 3.23 0.361 (0.448) 3.99 (5.44)
Roadway surface condition (1 for dry, 0 otherwise) −0.214 −3.56 −0.239 −3.79
Driver license status (1 for a license from other states or countries, 0 otherwise) 0.162 2.83 0.178 2.95
Vehicle maneuver just before impending crash (1 if going straight, 0 otherwise) −0.755 −7.71 −0.873 −8.24
Participant level action (1 for lost control of a vehicle, 0 otherwise) (standard deviation) −0.242 −3.97 −0.239 (0.141) −3.91 (3.22)
Participant level safety equipment use (1 if seatbelt was  fastened, 0 otherwise) 0.223 3.18 0.276 3.83
Crash type (1 for overturn, 0 otherwise) −0.310 −4.45 −0.322 −4.25
Alcohol not a factor (1 for no alcohol involved, 0 otherwise) 0.592 2.75 0.682 3.35
Speed not a factor (1 for non-speed involved, 0 otherwise) (standard deviation) 0.342 2.03 0.335 (0.133) 1.94 (4.58)
Roadway characteristics (1 for horizontal curve, 0 otherwise) −0.207 −3.47 −0.232 −3.74
Participant level action (1 for fatigue, 0 otherwise) −0.270 −2.16 −0.254 −1.76
Number of vehicles involved in the crash (1 if two  or more vehicles, 0 otherwise) (standard deviation) 0.436 5.45 1.078 (1.142) 8.23 (10.17)
Threshold (�) 1.477 25.77 1.582 24.71
Number of observations 2486 2486
Log-likelihood at zero, LL(0) −1669.78 −1669.78
Log-likelihood at convergence, LL(�) −1504.41 −1498.32
McFadden pseudo-�2 0.099 0.103

Table 3
Marginal Effects for the Ordered Probit Model with Random Parameters.

Variable Marginal Effects of the ordered probit model with random parameters

Severe injury Minor injury No injury

Month of the year (1 if crash occurred between January and April, 0 otherwise) −0.0029 −0.0395 0.0424
Median type (1 for raised median, 0 otherwise) −0.0054 −0.0825 0.0879
Roadway surface condition (1 for dry, 0 otherwise) 0.0045 0.0596 −0.0642
Driver license status (1 for a license from other states or countries, 0 otherwise) −0.0034 −0.0443 0.0477
Vehicle maneuver just before impending crash (1 if going straight, 0 otherwise) 0.0098 0.1692 −0.1789
Participant level action (1 for lost control of a vehicle, 0 otherwise) 0.0051 0.0615 −0.0666
Participant level safety equipment use (1 if seatbelt was  fastened, 0 otherwise) −0.0066 −0.0736 0.0803
Crash type (1 for overturn, 0 otherwise) 0.0083 0.0871 −0.0954
Alcohol not a factor (1 for no alcohol involved, 0 otherwise) −0.0303 −0.2012 0.2315
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Speed not a factor (1 for non-speed involved, 0 otherwise) 

Roadway characteristics (1 for horizontal curve, 0 otherwise) 

Participant level action (1 for fatigue, 0 otherwise) 

Number of vehicles involved in the crash (1 if two or more vehicles, 0 otherwise)

xed parameters. Furthermore, the goodness of fit, which is pro-
ided at the bottom of Table 2, proves that the random parameter
s statistically superior.

The marginal effects, which are illustrated in Table 3, provide
dditional insights with regard to what occurs with interior injury
everity categories, their corresponding probabilities, and the mag-
itude of change. Table 3 presents further details on the probability
nd the sign corresponding to each interior category. With regard
o the interpretation of the marginal effects for ROR crashes, such
s the indicator variable representing roadway surface condition (1
or dry, 0 otherwise), the probability of no injury outcome on aver-
ge is −0.0642, which means that the probability of sustaining no
njury outcome where ROR crashes occur on dry roadway surfaces
ecreases by 0.0642, on opposed to the probabilities of severe- and
inor-injury outcomes that have a positive marginal effect values

s illustrated in Table 3.
With regard to the results found in Table 2, environment, road-

ay, human (person), vehicle, and crash-related factors highlight
ey findings from the estimated ordered random parameter probit
odel. All estimated parameters included in the model were found

o be statistically significant, with plausible signs. Five parameters
ere found to be random, with statistically significant standard
eviations for the assumed distribution, which is the normal dis-
ribution. These variables were crashes that occurred between
anuary and April, raised median type, loss of control of a vehi-
le, the indicator variable of speed not involved, and the indicator
ariable of two vehicles or more involved in the crashes.
−0.0097 −0.0935 0.1032
0.0052 0.0607 −0.0658
0.0066 0.0692 −0.0758
−0.0135 −0.2104 0.2239

4.1. Environmental and roadway-related factors

As shown in Table 2, the indicator variable of crashes that
occurred between January and April was found to be statistically
significant and random, with a mean of 0.161 and a standard devi-
ation of 0.268. This finding indicates that 27.4% of ROR crashes
involving a large truck are less than zero when these crashes
occurred between January and April, whereas 72.6% of these
crashes are greater than zero. That is, 27.4% of ROR crashes that
involved large trucks are less likely to result in no injury outcome,
whereas 72.6% of these crashes increase the probability of no injury
outcome. As seen from the marginal effects on Table 3, the proba-
bility of no injury outcome on average is 0.0424, which is greater
than the probabilities of severe- and minor-injury outcomes. This
finding may  be due to the inclement weather, which is more likely
to occur between the months of January and April in Oregon, caus-
ing more cautious driving. The finding is consistent with previous
research performed by Maze et al. (2005) and McLaughlin et al.
(2009), where it was  demonstrated that environmental conditions
increase the probability of ROR crashes involving large trucks.

The indicator variable representing speed not involved was  also
found to be random, with a mean of 0.335 and standard devia-

tion of 0.133. These values suggest that 0.6% of ROR crashes where
speed was  not involved are less than zero, whereas 99.4% of these
crashes are greater than zero. In other words, 0.6% of ROR  crashes
involving large trucks where speed was not involved are less likely
to result in no injury outcome, whereas 99.4% of these crashes are
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ore likely to end up with no injury outcome. Turning to Table 3,
he probability of no injury outcome on average is 0.1032, while the
robabilities of severe- and minor-injury outcomes are less than
he probability of no injury.

The raised median is a traffic-calming device that is imple-
ented to reduce vehicles’ speed. However, in some cases, it

orrelates with high crash severity, particularly for errant vehi-
les. In this study, the indicator variable representing raised median
as found to be a random parameter with a mean of 0.361 and

tandard deviation of 0.448. These values indicate that 21.0% of
OR crashes are less than zero when these crashes occurred on a
oadway with raised median, whereas 79.0% of ROR crashes under
he same conditions are greater than zero. Conversely, 21.0% of
OR crashes involving large trucks that took place on roadways
ith raised medians are less likely to result in no injury outcome,
hereas 79.0% of these crashes increase the probability of no injury

utcome. Table 3 shows that the probability of no injury outcome is
.0879, which is high compared to the probabilities of severe- and
inor-injury outcomes. Previous research also found that the pres-

nce of a raised median was more likely to decrease crash severity.
or instance, Schultz et al. (2011) stated that installing such medi-
ns on Utah roadways reduced severe crashes by 36%. Likewise,
lluri et al. (2014) found that converting two-way left-turn lanes

o raised medians on Florida’s roadways was associated with a 30%
eduction in crash rates. However, the randomness of this variable
uggests that, for some observations, raised medians may  lead to
n increased probability of severe injuries.

Horizontal curves are one of the most significant contributory
actors to ROR crashes. The possibility of departing the roadway
t a curved section is higher than for a straight roadway section.
s seen from Table 2, the indicator for the horizontal curve was

ound to be a fixed parameter, indicating that ROR crashes occur-
ing at horizontal curves were more likely to lead to injuries that
ere more serious. Table 3 illustrates that no injury outcome will

e decreased by −0.0658 when ROR crashes involving large trucks
ccurs on horizontal curves. Torbic et al. (2004) state that crashes
n curved roadway sections are three times more frequent than
hose occurring on straight roadway sections. They also found that
pproximately 76% of fatal crashes on curved roadway sections
ere single ROR crashes. Islam and Hernandez (2013b) found sim-

lar results for large-truck crashes.

.2. Human-related factors

Turning to human-related factors, the indicator variable repre-
enting driver license status (1 for a license from other states or
ountries, 0 otherwise) was found to be statistically significant and

 fixed parameter. The marginal effects in Table 3 indicate that for
arge truck drivers from other states, the probability of experiencing
o injury outcome is 0.0477, which is higher than the probabilities
f severe and minor injury outcomes. The possible reasons may  be
ue to driver familiarity with Oregon highways, and this parameter
stimate may  also be capturing the driving complexities related to
he diverse geographical nature of the state of Oregon.

The use of safety equipment (1 if a seatbelt was fastened, 0 other-
ise) was also found to be significant. This fixed parameter suggests

hat the probability of no injury outcome on average is 0.0803
igher (see Table 3), while the probabilities of severe injury and
inor injury are lower. Islam and Hernandez (2013b) also found

he use of seatbelts to be a fixed parameter and that it increased
he probability of experiencing no injury.
The parameter estimate representing being fatigued before the
rash or not was found to be statistically significant and a fixed
arameter. As illustrated in Table 3, the probability of no injury
utcome on average is reduced by −0.0758 when ROR crashes

nvolving large trucks occurred due to fatigued drivers. This find-
sis and Prevention 102 (2017) 93–100

ing is consistent with (Peng and Boyle, 2012). In their study, they
concluded that drowsiness and fatigue were associated with severe
and fatal ROR crashes.

The indicator variable for no alcohol involved (i.e., alcohol not a
factor) before the crash was found to be significant for ROR crashes
and a fixed parameter. Turning to Table 3, the probability of no
injury outcome on average is 0.2315, which is higher than the
probabilities of severe- and minor-injury outcomes.

The lost control of vehicle indicator variable was  found to be sta-
tistically significant and a random parameter with a mean of −0.239
and standard deviation of 0.141. These values suggest that 4.5% of
ROR crashes involving large trucks where the driver loss control
of the vehicle are greater than zero, while 95.5% of these crashes
are less than zero. In other words, 4.5% of ROR crashes involving
large trucks that occurred due to loss of control of a vehicle are
more likely to result in no injury outcome, whereas 95.5% of these
crashes are less likely to end up with no injury outcome. Turning
to Table 3, this suggests that for most ROR crash occurrences—and
taking into account the randomness of this parameter—the proba-
bility of no injury outcome on average is reduced by −0.0666. This
variable may  be capturing driver complexities related to vehicle
performance issues, such as a flat tire, or capturing unobserved
factors related to driver inattentiveness to roadway environment,
hence the randomness of this variable.

4.3. Vehicle and crash-related factors

With respect to the influence of vehicle and crash-related factors
on the probability of ROR crash occurrence, the following variables
were found to statistically significant. The indicator variable of two
or more vehicles involved in the ROR crashes was found to be a
random parameter with a mean of 1.078 and a standard deviation
of 1.142. These values give parameters of less than zero for 17.3%
of ROR crashes involving multiple vehicles and greater than zero
for 82.7%. Specifically, 17.3% of ROR crashes involving two or more
vehicles are less likely to result in no injury outcome, whereas 82.7%
of these crashes increase the probability of no injury outcome. As
can be seen from Table 3, the probability of sustaining no injury
in ROR crashes involving two  or more vehicles will be increased
by 0.2239, which is higher than the probabilities of severe- and
minor-injury outcomes. This finding may  be capturing the effect
of vehicle body type in reducing the impact of injury sustained by
large-truck drivers (Eluru et al., 2010). Again, given the randomness
of this parameter estimate, for a small portion of the ROR crash
occurrences, the opposite is true.

With regard to the crash type indicator (1 for overturning, 0
otherwise), it was  found to be significant and a fixed parameter.
Table 3 shows that the probability of no injury outcome on average
is −0.0954, which is lower than the probabilities for severe- and
minor-injury outcomes.

The indicator variable of driving straight as an evasive maneu-
ver just before an impending crash was  found to be statistically
significant and fixed across observations. The marginal effects of
driving straight as an evasive maneuver just before an impending
crash indicate that the probability of no injury outcome on average
is reduced by −0.1789 (see Table 3). This finding can be substan-
tiated by the drivers’ expectancy that they will not experience a
crash on a straight roadway and it may  related to driver behavior
(e.g., driver inattentiveness, vehicle performance issues).
5. Conclusions and future research

The current study explores possible contributory factors to ROR
crashes that involved large trucks in Oregon, utilizing an ordered
random parameter probit modeling framework. The ordered ran-
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om parameter probit model is an important approach because it
rovides a mechanism to account and correct for unobserved het-
rogeneity that can arise from factors related to the driver, vehicle,
oad environment, weather, variations in police reporting, tempo-
al, and other unobserved factors not captured. The data used in
his study comprised crash reports taken from the state of Oregon
or the years of 2007–2013, to the best of our knowledge a first

ith respect to explicitly modeling large-truck-injury severity of
OR crashes.

The results of the analyses performed provided some interesting
ndings. First, five parameter estimates were found to be random
nd varied across the ROR crash observations. These were factors
elated to crashes that occurred between January and April, raised

edian type, loss of control of a vehicle, the indicator variable of
peed not involved, and the indicator variable of two vehicles or
ore involved in the crashes. However, driver license status, seat-

elt use, crash type, alcohol not a factor, the presence of a horizontal
urve, and driver fatigue were found to be fixed parameters for the
OR crashes. Looking more closely at the results of some of the
ignificant variables, large-truck drivers who are not licensed in
regon have a higher probability of experiencing no injury ROR
rash outcomes. Another possible explanation for this outcome
ould be due to driver turnover suffered by the trucking industry
nd its impact on driver network familiarity. Second, it was discov-
red that median type (i.e., raised median) increases the probability
f no injury outcome in ROR crashes. Third, human-related factors
uch as fatigued drivers have a higher probability of severe and
inor injury. These findings are important from a trucking per-

pective because these contributory factors can be targeted through
rm intervention and continued training.

Although the research performed is exploratory in nature, the
rdered random parameter probit modeling framework presented

n this work offers a flexible and practical methodology to analyze
OR crashes involving large trucks and to account for unobserved
eterogeneity. Furthermore, this study provides information that
an aid safety planners and the trucking industry in identifying
ppropriate countermeasures to help mitigate the number and
everity of large-truck ROR crashes. Using the same approach and
omparing it with recent statistical models, with an expanded
ample of ROR large-truck crashes could provide important new
nsights into large-truck driving behavior. For example, datasets

ith driver skill and other cognitive processing information, car-
ollowing dynamics, and human response can greatly improve
arameter estimates as well as help improve truck-driver training

or collision avoidance.
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