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This study proposes a capacitated centralized carrier collaboration 
multihub location problem (CAP-CCCMLP) for the small- to medium-
sized less-than-truckload industry, with a central entity (e.g., a third-
party logistics firm) seeking a set of hybrid collaborative consolidation 
transshipment hubs to help establish a collaborative hybrid hub-and-
spoke network that minimizes the total collaborative costs for the set 
of collaborating carriers in the system. A mathematical programming 
formulation is provided for the CAP-CCCMLP and shown to be NP-hard. 
The model was solved with two-phase tabu search heuristics. Compu-
tational runs were conducted to study the efficiency of the tabu search 
heuristic versus the CPLEX-based solution and the savings obtained 
through collaboration for different network sizes and maximum number 
of consolidation hubs. The tabu search heuristic was found to deliver 
significant computational savings over CPLEX and the optimality gap 
between the true optimal solution and the tabu search solution was found 
to be low for most cases. As the expected cost reduction at the shipment 
level needed to incentivize collaboration decreases, the likelihood that 
carriers will enter into collaboration increases. If the carriers expect 
significant cost reductions to enter into a collaborative strategy, the 
potential savings from the collaboration will decrease.

Developments in information technology, online marketplaces, 
globalization, and new practices such as just-in-time inventory have 
led to more geographically and temporally dispersed freight loads 
(1). Meeting the demands of the spatially spread loads combined 
with increased fuel costs has led to reduced profits for the small- 
to medium-sized less-than-truckload (LTL) operators. Moreover, a 
significant number of LTL trips do not utilize the full truck capacity.  
According to the American Trucking Associations, in February 2008 
nearly 28.6% of the total miles traveled by trucks operated by small 
trucking companies were classified as zero loads. A large fraction of 
these zero loads were attributed to the LTL industry, which moves 
loads through a network of warehouses, depots, and distribution 
centers with shipment sizes that vary from a few hundred pounds 

to roughly 50,000 lb. Collaboration has the potential to improve 
operational efficiency (e.g., through increased capacity utilization) 
and reduce supply chain costs, especially for the small- to medium-
sized LTL trucking industry. Several studies have been conducted  
on collaboration from the perspective of this industry (2–6). How-
ever, these earlier studies concentrated on identifying collaborative 
opportunities through routing and increased truck capacity utilization.

More recently, Hernández et al. introduced a centralized carrier 
collaboration multihub location problem (CCCMLP) for the small- 
to medium-sized LTL industry in which the CCCMLP represented 
a strategy in which a central entity (e.g., a third-party logistics firm) 
sought a set of hybrid collaborative consolidation transshipment hubs 
to help establish a collaborative hybrid hub-and-spoke network that 
minimized the total collaborative costs for the set of collaborating 
carriers in the system (7). As with previous work on carrier collabo-
ration, Hernández et al. also focused on the LTL industry, but the 
work differed from earlier work in that the authors also focused on 
transfer locations rather than simply identifying potential collaborative 
routes. These transfer locations (or hybrid hubs) were assumed to 
be uncapacitated.

In this study, the recent work of Hernández et al. is extended 
in two directions (7). In this study, the transshipment facilities are 
assumed to be capacitated. Also, every collaborative carrier will incur a 
fixed cost for a hub only if the hubs are used to transport the carrier’s  
goods in the collaborative freight network. Similar to the study  
by Hernández et al., the current study assumes a homogenous fleet 
that handles a single product type (7). The capacitated CCCMLP 
(CAP-CCCMLP) is addressed from the perspective of long-term 
strategic planning. Thus the demand, transshipment facility capacities, 
and carrier collaborative rates are known a priori. A unit holding cost 
is used to capture the hub-associated delays. The rate setting behavior 
of the carriers is assumed to follow that presented by Hernández and 
Peeta (3). The recent study by Hernández et al. solved the CCCMLP 
by using a Lagrangian relaxation–based approach (7). In addition to 
the complexity of the problem, a tabu search approach is introduced 
that exploits the characteristics of the CAP-CCCMLP by allowing for 
larger problem instances to be considered.

Literature review

In recognition of the potential of collaboration in reducing system-
wide transportation costs, a number of optimization and game-
theoretical-based frameworks were developed in the past 10 years 
to model collaborative decision making among various freight 
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transportation agents. Fischer et al. developed a distributed artifi-
cial intelligence–based framework to enable dynamic replanning 
and collaboration among various freight agents (8). Figliozzi and 
Figliozzi et al. developed and evaluated several dynamic auction-
based mechanisms for truckload acquisitions in an electronic mar-
ketplace (9, 10). Song and Regan demonstrated through simulations 
of a transportation marketplace that a combinatorial auction strategy 
can benefit both shippers and carriers in the truckload industry (11). 
Krajewska and Kopfer applied principles of combinatorial auctions 
and cooperative game theory to aid cooperation among freight 
forwarders (12). Ergun et al. developed an optimization model and 
heuristic solution algorithms that can be used by shippers to identify 
load sequences that lead to continuous truckload tours resulting in 
reduced deadheading or zero load trips (13, 14). Agarwal and Ergun 
developed mathematical models based on principles of cooperative 
game theory to incentivize alliance formation among carriers in 
the liner shipping industry (15–17). Houghtalen et al. extended the  
foregoing work to determine capacity exchange prices by using inverse 
optimization and cooperative game theory to promote collaboration 
among air cargo carriers (18). Lei et al. studied the benefit of collab-
orative vessel scheduling from a shipping company perspective and 
showed that collaboration can lead to reduced costs if all participat-
ing carriers are fully committed to sharing demand and resources 
(19). Audy et al. investigated several cost allocation mechanisms to 
promote collaboration and reduce transportation costs in the wood 
industry (20). Kuo et al. evaluated three collaborative decision-
making strategies for effective utilization of capacity in rail-based 
intermodal freight corridors and showed that collaboration can lead 
to significant benefits (21).

From the perspective of LTL carrier collaboration, Bailey et al. 
recently developed two models for minimizing backhauls through 
freight collaboration for small- to medium-sized LTL carriers (2). 
In this work, freight agents attempt to minimize deadheading by 
making extra pickups and deliveries and sharing the revenue with 
their collaborators during their backhaul. Hernández and Peeta and 
Hernández et al. explored the benefits of different levels of collabo-
ration and rate-setting strategies for a single carrier and a centralized 
planning perspective for multiple carriers (3, 4, 6). Liu et al. (5), Dai 
and Chen (22), Voruganti et al. (23), and Xu et al. (24) developed 
various cost allocation mechanisms for LTL carriers in a collab-
orative setting. To the best of the authors’ knowledge, the work by 
Hernández et al. (7) was the first that focused on locating collabora-
tive hubs to aid consolidation of loads for small- to medium-sized 
LTL carriers. The current work differs from the work by Hernández 
et al. in the following manner: (a) transshipment hubs are capacitated 
and (b) the carrier will bear the fixed cost of using the hub only if the 
hubs are used to transport the carrier’s shipment (7).

Since the mathematical model of the current work is a hub location 
problem, a brief review of hub location models is provided next. 
O’Kelly (25, 26) provided the first integer quadratic formulation for 
the hub-and-spoke network design problem, which was subsequently 
linearized by Campbell (27, 28). Ernst and Krishnamoorthy developed 
an efficient reformulation that minimized the number of variables 
used (29, 30). Different variants of those models have been studied, 
such as those that account for hub capacities (31, 32), hub as well 
as edge capacities (33), uncapacitated hubs (34, 35), and hub con-
gestion (36–38). The techniques used to solve the hub-and-spoke 
location problems include Lagrangian relaxation (39, 40), branch 
and bound (31), Benders decomposition (38), and metaheuristics 
like genetic algorithms and tabu search (35, 41). Alumur and Kara 
(42), Campbell and O’Kelly (43), and Farahani et al. (44) provide a 

comprehensive review of the hub location problem and its variants. 
The current work is unique for hub location literature since it studies 
a capacitated hub location problem from a collaborative perspective 
in which carriers have the option of not using the hubs to transport 
their goods. An efficient tabu-search-based solution procedure is 
used to determine the location of the hubs.

MatheMaticaL ModeL of caP-cccMLP

Problem description

The goal of the CAP-CCCMLP is to determine a set of consolida-
tion transshipment hubs in a collaborative freight network comprising 
geographically dispersed carriers and managed by a central entity like 
a third-party logistics firm. The objective of the CAP-CCCMLP is to 
minimize the total collaborative system costs. The freight transport 
networks of the carriers may or may not overlap. The transshipment 
hubs will help in reducing the overall transportation costs through con-
solidation. Every carrier whose shipments use a specific transshipment 
hub will have to bear a fixed cost. The carrier will have the option of 
transporting the goods directly to the destination if the collaborative 
routing strategy does not deliver significant benefits.

The CAP-CCCMLP differs from the CCCMLP in the following 
manner: (a) transshipment hubs are capacitated and (b) the carrier 
will bear the fixed cost of using the hub only if the hub is used to 
transport the carrier’s shipment (7). Similar to the CCCMLP, the 
CAP-CCCMLP assumes that homogenous products are shipped and 
all parameters such as demand and holding times are deterministic.

Notation

The mathematical formulation of CAP-CCCMLP is described in this 
section. Q, I, J, and N denote, respectively, the set of carriers, the 
set of origin nodes where the shipment enters the collaborative net-
work, the set of destination nodes where the shipment leaves the col-
laborative network, and the set of nodes. The origin and destination 
nodes can represent a supplier, distribution center or warehouse, 
or retailer. A shipment from collaborative carrier q ∈ Q either enters 
the collaborative network through an origin node i ∈ I ⊆ N and trav-
els via collaborative transshipment hubs l, m ∈ N and exits through a 
destination facility j ∈ J ⊆ N or is routed directly from origin facility 
i ∈ I ⊆ N to destination node j ∈ J ⊆ N without consolidation.

The demand to be transported from origin node i ∈ I ⊆ N to des-
tination node j ∈ J ⊆ N by carrier q ∈ Q is denoted dijq; ςijlm is the 
collaborative transportation costs associated with a unit of demand for 
carrier q ∈ Q to travel between origin node i ∈ I to destination node 
j ∈ J via hybrid collaborative transshipment facilities at node l ∈ N 
and m ∈ N. A revenue-oriented cost structure is followed (3):

ijlm il lm mj (1)ς = ς + δς + ς

In Equation 1, ςil, ςlm, and ςmj represent the cost of transporting a  
unit of demand from origin node i ∈ I to collaborative transshipment 
facility l ∈ N, from collaborative transshipment facility l ∈ N to 
collaborative transshipment facility m ∈ N, and from collaborative 
transshipment facility m ∈ N to destination node j ∈ J, respectively. 
In Equation 1, δ represents the collaborative discount parameter 
(between 0 and 1) between consolidation collaborative transshipment 
facilities l, m ∈ N and is composed of transfer rates per shipment and 
line-haul costs (3).
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The fixed cost to carrier q ∈ Q for using the collaborative consolida-
tion hub at location l ∈ N is denoted φlq, and Ul denotes the available 
capacity at the consolidation hub at location l ∈ N. The maximum 
number of collaborative consolidation facilities to be established is p. 
The cost of moving a unit demand from origin node i ∈ I to destination 
node j ∈ J directly for carrier q ∈ Q is denoted wijq. In the problem 
variant studied here, a shipment enters a collaborative network only 
if there is a significant savings obtained through consolidation. The 
parameter r captures the cost reduction expected at a shipment level 
for the carrier to consider consolidation worthwhile.

There are four decision variables. The decision variable Yijlmq 
takes the value 1 if a shipment originating from origin i ∈ I headed 
to destination j ∈ J by collaborative carrier q ∈ Q travels via consol-
idation hubs at nodes l ∈ N and m ∈ N, and 0 otherwise. This binary 
variable captures whether a shipment is routed through a consolida-
tion hub. The problem formulation uses one more binary decision 
variable, which captures whether a shipment is routed directly to 
the destination. The decision variable Vijq takes the value 1 if a ship-
ment from origin i ∈ I headed to destination j ∈ J by carrier q ∈ Q 
is shipped directly, and 0 otherwise. The next decision variable 
captures whether a facility is used by a carrier for consolidation. 
The decision variable Zlq takes the value 1 if a carrier q ∈ Q uses 
the facility at node l ∈ N to consolidate and route the shipment, and  
0 otherwise. The decision variable Xl takes the value 1 if the facility 
at node l ∈ N is used by any carrier to consolidate, and 0 otherwise.

Problem formulation

The integer formulation of the CAP-CCCMLP seeks to minimize the 
total collaborative system costs. The decision variables are Yijlmq, Vijq, 
Zlq, and Xl. The formulation is as follows:
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The objective function, Equation 2, comprising three terms, seeks 
to minimize the total collaborative transportation costs in the system. 
The first term represents the total collaborative carrier transportation 
costs, the second represents the total costs associated with carriers 
shipping directly, and the third represents the total collaborative 
consolidation facility location costs.

Constraint 3 restricts the number of candidate collaborative 
consolidation hubs to be less than or equal to a prespecified num-
ber. Constraint 4 ensures that a shipment corresponding to every 
origin–destination pair and every carrier is either assigned to one 
consolidation hub pair or transported directly without participating 
in the collaboration. Since l may equal m under this constraint, the 
possibility that the shipment between origin–destination pair (i, j) 
may only go through a single hub is not precluded. Constraint Sets 5  
and 6 ensure that shipments are not assigned to a hub that is not 
located or opened. Constraint 7 states that a specific carrier will 
participate in the collaboration only if the collaborative routing 
costs through the hubs are lower than the direct shipment costs by a 
reasonably significant margin. Constraint 8 ensures that the volume 
of goods routed through a collaborative consolidation hub is less 
than the total capacity of the hub. Constraint 9 ensures that a carrier 
is associated with a consolidation hub only if a carrier uses that hub 
to transport shipments. Constraint 10 ensures that a hub is opened if 
any carrier in the system seeks to open the hub. Constraint Sets 11 
through 14 represent the 0-1 integrality conditions for the decision 
variables.

Properties

From a hub location perspective the CAP-CCCMLP is a single-
allocation formulation since every load dijq is either assigned to a 
single hub or routed directly. Single-allocation problems are tougher 
to solve than multiple-allocation problems (42). The mathematical 
programming structure of the CAP-CCCMLP is closest to a P-hub 
median location problem (45). Constraints 3, 4, 5, 6, 8, 11, and 13 
without the variable Vijq (the decision on whether to ship directly) 
are reduced to a capacitated P-hub median problem. P-hub median 
problems are NP-hard because the network and number of hubs 
increase (i.e., for p > 2) (45, 46). Hence, a solution methodology 
based on tabu search is proposed to solve this problem (47, 48).

SoLutioN Method

In this study a two-phase solution heuristic using the principles of 
the tabu search framework is adopted to solve the CAP-CCCMLP. 
An initial feasible solution is constructed in Phase 1 and improved 
in Phase 2. The two-phase approach has been found to be efficient in 
solving complex combinatorial freight optimization problems (49). 
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First an overview of the tabu search procedure is provided followed 
by the description of the two-phase heuristic.

tabu Search

Tabu search (47, 48) is a metaheuristic that is intended to overlay a 
core search heuristic and seeks to help heuristics break out of local 
optima and explore other regions of the solution space. The basic 
tabu search employs tabu restrictions that inhibit certain moves and 
aspiration criteria that allow very good solutions to overcome any 
tabu status. The tabu restrictions are generally implemented with a 
short-term memory function to make them time dependent. Designing 
tabu search heuristics involves defining what types of moves to restrict 
and the nature of the aspiration criteria and short-term memory to 
utilize. In addition to these features, most tabu search designs include 
other strategies such as a long-term memory function to diversify 
the search into other areas of the solution space. A generic overview 
of the tabu search is as follows:

Step 1. Initialize the parameters associated with the tabu search. 
The common parameters are tabu list size, memory size, incumbent 
solution, and the maximum number of iterations.

Step 2. Generate a candidate list of moves or potential new solution 
from the current solution. The details of the moves are provided in 
the next subsection.

Step 3. Check whether each potential new solution is tabu. If the 
potential new solution is tabu, go to Step 4, else go to Step 5.

Step 4. Check whether the tabu solution satisfies the aspiration 
criteria. If yes, proceed to Step 5 or else go back to Step 2 and generate 
a new candidate list. The aspiration criteria in a tabu search are used 
as insurance against restricting moves that would have led to finding 
high-quality solutions. In other words, the aspiration criteria determine 
when a solution neighbor can be moved, even if tabu. In this study, the 
typical criteria are used, which state that if a move produces a solu-
tion better than the best-known solution (and the resulting solution 
is feasible), the tabu status is disregarded and the move is executed.

Step 5. Evaluate the candidate solution and check whether it is 
better than the incumbent solution. If yes, set the incumbent solution 
to be equal to the current solution and insert the candidate solution 
into the tabu list. If not, proceed to the next step.

Step 6. Move to the candidate solution and check whether stopping 
criterion is met. If the stopping criterion is met go to Step 7. If not, 
go to Step 2.

Step 7. Terminate the report; the incumbent solution is the optimal 
solution.

Moves and tabu restrictions

In the search heuristics used with tabu search, each iteration of the 
search focuses on a neighborhood of the current solution (set S of 
open facilities with all the shipment routing plans). The neighborhood 
is defined as that set of solutions that can be reached by a single move. 
Moves can be of several different types. In the heuristic developed in 
this research, two types of moves are permitted: ADD/DROP hubs 
and swap shipment insertion order. In the ADD procedure, a non-tabu 
node from {N − S} is selected that when added to S results in the best 
possible value of the objective function. In the DROP procedure, a  
node is selected from S that when dropped from S results in the best 
possible value of the objective function. This node is moved into 

{N − S} (dropping it from {S}). The second type of move is to 
exchange the order in which shipments are inserted while the capacity 
constraints are respected. Thus, there are three types of neighbor-
hoods: constructive neighborhoods resulting from adding a node to 
the set of open facilities, destructive neighborhoods resulting from 
dropping a node from the set of facilities, and swap neighborhoods 
resulting from exchanging the insertion order for different shipment 
demands.

As these moves are performed, tabu restrictions are employed to 
prevent moving back to previously investigated solutions. In general, 
these restrictions can be associated with any or all permissible moves; 
however, in the heuristic developed here, they are linked to the solu-
tion structure. That is, once the solution is selected, this solution is 
classified as tabu. By utilizing short-term memory, the tabu status 
is still not permanent. Rather, there is a tabu time (or tabu tenure), 
which is the time, measured in terms of iterations, that must elapse 
for a solution to be removed from the tabu list. If Add_Time(v) is 
the memory function holding the iteration at which solution v was 
last selected, and Current_Time denotes the current iteration, the 
selected solution is tabu if Add_Time(v) ≥ Current_Time-Tabu_Time. 
The parameter Tabu_Time represents the number of iterations for 
which a solution structure retains its tabu status.

two-Phase Solution heuristic

The two-phase heuristic comprises a construction phase to obtain 
a feasible solution and an improvement phase to improve the cur-
rent feasible solution. The improvement phase uses the tabu search 
framework explained earlier.

Phase 1. Construction Phase

Step 1. Get one feasible solution of two hubs by enumerating all 
different two-node combinations and inserting all shipment demand 
in a certain order while capacity constraints are satisfied. Set number 
of hubs = 2.

Step 2. Fix the located hub nodes and select one hub node from 
the rest of the nodes with the lowest induced cost.

Step 3. If the number of hubs < P, go to Step 2, else go to Phase 2.

Phase 2. Improvement Phase

In the improvement phase, the tabu search algorithm is used to 
improve the current feasible solution. As explained earlier, two types 
of move operations are considered here. The first type is the exchange 
hubs operation (i.e., ADD and DROP). An exchange operation swaps 
nodes between the located hub node set and the rest node set. A move 
is considered feasible if the operation does not violate any constraint. 
In this study, the steepest descent search was applied, and at every iter-
ation the feasible move that gives the best improvement of the objec-
tive is selected. The other type of move operation is the exchange of 
insertion order for each pair of shipment demand while the constraint 
of capacities is respected.

To avoid the search from revisiting the same solution, the tabu 
list mechanism was introduced. A tabu list (tabu time) records the  
n previous moves performed. A potential move is considered tabu if 
it is on the tabu list. The tabu status is disregarded and the move is 
executed when an exchange move produces a solution better than 
the best-known solution (and the resulting solution is feasible).
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Study exPeriMeNtS

The experimental setup has two main goals: (a) to compare the per-
formance of tabu search heuristics versus the CPLEX-based solu-
tion method in terms of computational times and (b) to compare the 
benefit of collaborative strategies for various simulated scenarios. 
In the computational runs conducted, it was assumed that there  
are three collaborating carriers. Two network sizes are considered: 
10 nodes and 20 nodes. The maximum number of hubs generated was 
restricted to two, three, four, and five. The networks were randomly 
generated by using MATLAB, as done by Hernández and Peeta (6).  
A single data set was created by averaging 10 randomly generated data 
sets consistent with the ranges observed for the small- to medium-
sized LTL industry (6). In addition to the network size and the number 
of hubs, the collaborative rates, noncollaborative costs, fixed cost to 
the carrier for using the hubs, and the demand are randomly generated. 
Facility capacities were also randomly generated following industry 
ranges for each of the network sizes. The diesel fuel price is assumed 
to be US$3.79 per gallon.

As for the tabu search parameters, the tabu list length was set to 
2,000; the number of iterations for each stage step was set to 500 and 
10 min for each constraint controlling the tabu search. The two-
phase tabu search–based heuristic is coded in C++ and run on a Dell 

computer with an Intel Core i5-2430M at 2.40-GHz processor and 
6 GB of RAM.

aNaLySiS of reSuLtS

The goal of the first set of experiments is to obtain insights on the 
impact of expected cost reductions at the shipment level on selection 
of collaborative consolidation hub locations, number of collaborative 
routes, number of direct shipments, and the total overall savings. 
The collaboration potential is investigated by studying the impact of 
expected cost profit margins at the shipment level reflected by the 
parameter r, which is assumed to take values of 18%, 36%, 48%, 
60%, 72%, 84%, and 96%. As the cost reduction parameter increases 
the collaborative potential is expected to decrease. The cost reduction 
parameters were chosen arbitrarily in increments of 12% to 18% to 
try to capture changes in the total savings.

Tables 1 and 2 illustrate the comparison of the number of hubs 
and total savings with respect to changes in r for a 10-node and a 
20-node network, respectively. The total percent savings reflects the 
cost savings from the collaborative routes compared with the non-
collaborative direct routes. As the expected cost reduction from col-
laboration increased, the number of direct route shipments increased. 

TABLE 1  Comparison of Number of Hubs and Total Savings with Changes in Cost Reduction Parameter: 10-Node Network with  
Three Collaborative Carriers

r-Value 
(profit margin)

Selected Hubs
Number of Direct 
Routes

Number of 
Collaborative 
Routes

Route 
Collaborated (%) Total Savings (%)

Difference 
(%)aCPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu

Two Hubs

0.18 3, 7 3, 7 80 105 190 165 70.4 61.1 33.62 25.39 24.5

0.36 7, 8 3, 7 104 114 166 156 61.5 57.8 32.66 28.99 11.2

0.48 8, 10 8, 10 153 156 117 114 43.3 42.2 27.28 26.04 4.5

0.6 8, 10 8, 10 192 192 78 78 28.9 28.9 18.24 18.24 0.0

0.72 6, 10 6, 10 240 240 30 30 11.1 11.1 5.4 5.4 0.0

0.84 No hubs No hubs 270 270 0 0 0 0 0 0 0.0

0.96 No hubs No hubs 270 270 0 0 0 0 0 0 0.0

Three Hubs

0.18 3, 8, 10 3, 4, 7 57 49 213 221 78.9 81.9 43.79 37.49 14.4

0.36 3, 8, 10 3, 7, 8 61 73 209 197 77.4 73 43.67 37.95 13.1

0.48 3, 8, 10 3, 8, 10 111 119 159 151 58.9 55.9 36.18 33.99 6.1

0.6 3, 8, 10 3, 8, 10 158 158 112 112 41.5 41.5 26.18 26.18 0.0

0.72 3, 5, 8 3, 5, 8 217 217 53 53 19.6 19.6 9.93 9.93 0.0

0.84 3, 8, 10 3, 8, 10 252 252 18 18 6.7 6.7 0.91 0.91 0.0

0.96 No hubs No hubs 270 270 0 0 0 0 0 0 0.0

Four Hubs

0.18 3, 4, 8, 10 4, 7, 8, 10 16 25 254 245 94.1 90.7 50.14 43.64 13.0

0.36 3, 4, 8, 10 4, 7, 8, 10 37 46 233 224 86.3 83 49.11 43.59 11.2

0.48 3, 4, 8, 10 3, 4, 8, 10 75 80 195 190 72.2 70.4 42.54 40.73 4.3

0.6 3, 5, 8, 10 3, 5, 8, 10 127 127 143 143 53 53 33.13 33.13 0.0

0.72 3, 5, 8, 10 3, 5, 8, 10 196 196 74 74 27.4 27.4 15.33 15.33 0.0

0.84 3, 6, 8, 10 3, 6, 8, 10 234 234 36 36 13.3 13.3 4.16 4.16 0.0

0.96 No hubs No hubs 270 270 0 0 0 0 0 0 0.0

(continued)



TABLE 2  Comparison of Number of Hubs and Total Savings with Changes in Cost Reduction Parameter: 20-Node Network with  
Three Collaborative Carriers

r-Value  
(profit margin)

Selected Hubs
Number of Direct 
Routes

Number of 
Collaborative 
Routes

Route 
Collaborated (%) Total Savings (%)

Difference 
(%)aCPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu

Two Hubs

0.18 7, 17 17, 19 247 285 893 855 78.3 75 37.01 35.85 10.4

0.36 7, 18 7, 18 490 508 650 632 57 55.4 33.04 32.54 3.1

0.48 7, 11 7, 11 791 791 349 349 30.6 30.6 20.5 20.5 1.5

0.6 3, 19 3, 19 979 981 161 159 14.1 13.9 11.26 11.16 0.0

0.72 3, 10 3, 10 1,080 1,080 60 60 5.3 5.3 4.78 4.78 0.9

0.84 12, 17 12, 17 1,134 1,134 6 6 0.5 0.5 0.55 0.55 0.0

0.96 No hubs No hubs 1,140 1,140 0 0 0 0 0 0 0.0

Three Hubs

0.18 3, 7, 18 7, 9, 15 145 175 995 965 87.3 84.6 44.36 42.62 3.9

0.36 3, 7, 18 3, 7, 18 400 403 740 737 64.9 64.6 39.05 38.95 0.3

0.48 7, 11, 13 7, 11, 13 666 666 474 474 41.6 41.6 28.17 28.17 0.0

0.6 3, 18, 19 3, 18, 19 893 895 247 245 21.7 21.5 17.11 17.02 0.5

0.72 3, 7, 10 3, 7, 10 1,049 1,049 91 91 8 8 7.47 7.47 0.0

0.84 12, 17, 19 12, 17, 19 1,122 1,122 18 18 1.6 1.6 1.72 1.72 0.0

0.96 No hubs No hubs 1,140 1,140 0 0 0 0 0 0 0.0

Four Hubs

0.18 3, 7, 16, 18 3, 11, 17, 18 117 114 1,023 1,026 89.7 90 48.34 48.04 0.6

0.36 3, 7, 16, 18 7, 11, 13, 20 318 322 822 818 72.1 71.8 44.12 43.61 1.2

0.48 3, 7, 16, 18 3, 7, 16, 18 564 564 576 576 50.5 50.5 34.54 34.54 0.0

0.6 12, 17, 18, 19 12, 17, 18, 19 813 815 327 325 28.7 28.5 22.96 22.88 0.3

0.72 3, 11, 15, 17 3, 11, 15, 17 1,010 1,010 130 130 11.4 11.4 10.63 10.63 0.0

0.84 5, 12, 16, 19 5, 12, 16, 19 1,104 1,104 36 36 3.2 3.2 3.41 3.41 0.0

0.96 No hubs No hubs 1,140 1,140 0 0 0 0 0 0 0.0

Five Hubs

0.18 3, 5, 7, 16, 18 3, 5, 7, 17, 18 88 89 1,052 1,051 92.3 92.2 51.7 51.55 0.3

0.36 3, 5, 7, 16, 18 3, 5, 7, 16, 18 267 268 873 872 76.6 76.5 47.96 47.87 0.2

0.48 7, 12, 15, 16, 20 7, 12, 15, 16, 20 472 472 668 668 58.6 58.6 40.12 40.12 0.0

0.6 10, 12, 17, 18, 19 10, 12, 17, 18, 19 736 738 404 402 35.4 35.3 28.52 28.44 0.3

0.72 3, 11, 15, 17, 19 3, 11, 15, 17, 19 973 973 167 167 14.6 14.6 13.99 13.99 0.0

0.84 5, 9, 12, 16, 19 5, 9, 12, 16, 19 1,080 1,080 60 60 5.3 5.3 5.64 5.64 0.0

0.96 No hubs No hubs 1,140 1,140 0 0 0 0 0 0 0.0

aAverage for two, three, four, and five hubs are 2.0, 0.7, 0.3, and 0.1, respectively.

TABLE 1 (continued)  Comparison of Number of Hubs and Total Savings with Changes in Cost Reduction Parameter: 10-Node Network  
with Three Collaborative Carriers

r-Value 
(profit margin)

Selected Hubs
Number of Direct 
Routes

Number of 
Collaborative 
Routes

Route 
Collaborated (%) Total Savings (%)

Difference 
(%)aCPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu CPLEX Tabu

Five Hubs

0.18 3, 4, 7, 8, 10 2, 3, 4, 8, 10 8 15 262 255 97 94.4 52.57 48.94 6.9

0.36 3, 4, 7, 8, 10 2, 3, 4, 8, 10 23 33 247 237 91.5 87.8 51.68 48.14 6.8

0.48 3, 4, 7, 8, 10 3, 5, 8, 9, 10 51 46 219 224 81.1 83 46.85 45.49 2.9

0.6 3, 4, 5, 8, 10 3, 4, 5, 8, 10 92 92 178 178 65.9 65.9 39.97 39.97 0.0

0.72 3, 4, 5, 8, 10 3, 4, 5, 8, 10 165 165 105 105 38.9 38.9 20.89 20.89 0.0

0.84 3, 6, 7, 8, 10 3, 6, 7, 8, 10 210 210 60 60 22.2 22.2 8.47 8.47 0.0

0.96 No hubs No hubs 270 270 0 0 0 0 0 0 0.0

aAverage for two, three, four, and five hubs are 5.8, 4.8, 4.1, and 2.4, respectively.
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For high values of expected cost reductions, no collaborative hubs 
were established and all the loads used direct routes.

Tables 1 and 2 do not include computational times; the reason is 
that on average the proposed tabu search heuristics presented here 
solved the majority of scenarios within 15 min. The CAP-CCCMLP 
model was also solved by using CPLEX. However, the exact method 
(the branch-and-cut algorithm) was not able to solve to optimality in 
a reasonable amount of time. For example, for scenarios with a cost 
reduction parameter of 0.18, the optimal solution time by CPLEX 
exceeded 3 days. This solution time could also be a direct result of 
the random generation of the available facility capacities for the 
problem instance.

The heuristics perform well on average with gaps of 5.8%, 4.8%, 
4.1%, and 2.4% and 2.0%, 0.7%, 0.3%, and 0.1% from the optimal 
solution for 10-node and 20-node networks, respectively, as indi-
cated in Tables 1 and 2. The performance of the heuristics was better 

for the 20-node network (Table 2). In many instances, the heuristics 
were able to find the optimal solution. However, in the worst case, 
the solution was nearly 24.5% from optimal. A closer investigation 
of the solutions with higher optimality gaps showed that the cost 
difference was primarily due to the way shipments were assigned to 
the hubs. Thus, including steps in the improvement procedures that 
can diversify the way or order to insert shipment pairs in the hubs 
may produce more significant improvements.

Figure 1 illustrates the percentage total savings through collabora-
tion for varying numbers of collaborative hubs (P) for varying expected 
cost reduction parameters. As the expected cost reduction parameter  
increases, the total savings start to level off for different numbers of 
hubs. This finding implies that if the expected cost reduction needed 
to incentivize collaboration is high, there may not be a need to locate 
a higher number of collaborative hubs. The increases in savings in a 
larger, 20-node network appear to be marginal. When the expected 

FIGURE 1  Comparison of percentage total savings for varying number of collaborative hubs (P): 
(a) 10-node network and (b) 20-node network.
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cost reduction to incentivize collaboration is lower, locating a higher 
number of collaborative consolidation hubs will lead to significantly 
more savings.

coNcLuSioN aNd future work

This research proposed a mathematical programming formulation 
and a tabu search–based solution algorithm for the CAP-CCCMLP. 
A centralized entity (third-party logistics company) seeks to estab-
lish a set of hybrid consolidation transshipment hubs with capacities 
in a collaborative freight network. The LTL operators participating 
in the collaboration have the option of routing their goods directly 
or through the collaborative transshipment hubs depending on their 
expected cost reductions at the shipment level. The goal of the 
mathematical programming formulation was to minimize the total 
collaborative transportation and facility location costs. The model 
was shown to be NP-hard and solved with two-phase tabu search 
heuristics.

The tabu search heuristic was found to deliver significant computa-
tional savings. The gap between the true optimal solution and the tabu 
search solution was found to be low for most cases. As the expected 
cost reduction at the shipment level needed to incentivize collabora-
tion decreases, the likelihood that carriers will enter into collaboration 
increases. If the carriers expect significant cost reductions to enter into 
a collaborative strategy, the potential savings from the collaboration 
will decrease.

This study will be extended in multiple directions. Future study 
will involve the impact of demand uncertainty and dynamic travel 
times and costs on the resiliency of the collaboration.
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