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Studies investigating crash rates by roadway classification are few and far 
between and even more rare if extended to focus on heavy vehicles. This 
study explored and compared two advanced econometric methods—
random-parameter Tobit regression and latent class Tobit regression—
to determine contributing factors for heavy-vehicle crashes per million 
vehicle miles traveled while accounting for the unobserved heterogeneity  
present in crash data. The increasing crash rates in Idaho, crash pro-
portion by roadway classification, and available data made an ideal case 
study. Empirical results show that although the random-parameter 
Tobit regression model provides better insight into heavy-vehicle crash 
rates than the fixed-parameter approach, the latent class Tobit regres-
sion model is the preferred methodology for the given data set. Traffic  
volumes, roadway characteristics, and traffic control devices were among 
the variables found to be statistically significant. Results from this study 
provide an alternate framework to account for heterogeneity while iden-
tifying key factors by roadway classification that influence heavy-vehicle 
crash rates. The illustrated framework and analysis by roadway classifi-
cation can provide guidance to transportation agencies and policy makers 
and prompt future studies to include a latent class analysis, analysis by 
road classification, or both.

Heavy-vehicle crashes have a substantial economic impact on com-
merce and society. In the United States, heavy-vehicle crashes cost 
about $87 billion in 2011 and costs due to delay and other conse-
quences were roughly $28 billion (1, 2). These values will continue 
to increase as the economy continues to grow, as will the volume of 
heavy vehicles on the nation’s freight infrastructure. For example, 
from 2010 to 2013 a 2.3% increase in heavy vehicles was experienced 
(about 6,000,000 vehicles) (3). This number is expected to continue 
to grow and crashes associated with heavy vehicles will remain a 
concern for safety planners and safety-related agencies. Although 
heavy-vehicle crashes have decreased over the past two decades, 
the number of fatal crashes per 100 million vehicle miles traveled 
(MVMT) compared with passenger cars is higher (1.34 versus 1.08 
in 2014) (4, 5). In Idaho, the state experienced a 5.6% increase in 
heavy-vehicle crashes and a 4.4% increase in heavy-vehicle crashes 
per MVMT from 2010 to 2013 (6). Fifty percent of these crashes 
occurred on local roads, 28% of injury crashes happened on Inter-

states, and approximately 68% of fatalities happened on U.S. and 
state highways (6). These statistics illustrate the need for continued 
research in understanding the relationship between heavy-vehicle 
crash rates and roadway classification.

A number of studies have addressed crash frequency through the 
application of count- and spatial-based models (7–15). However, 
most of these studies have focused on data related to pedestrians, 
passenger cars, or all traffic mixes in a single modeling framework 
and do not address heavy vehicles explicitly. Although there have 
been several recent efforts to understand heavy-vehicle injury sever-
ity factors (16–18), heavy-vehicle crash rate analyses are sparse. This 
lack is especially true for heavy-vehicle crash rates by functional class 
of road. A possible reason for this deficiency in the literature may 
stem from the availability of sufficient data to capture the complex 
interactions of multiple crash rate factors under a single framework 
by functional class.

Recent studies have addressed the issue of insufficient data through 
the application of statistical and econometric methods that account 
for unobserved factors (unobserved heterogeneity), which are fac-
tors unknown to the analyst and which may vary across observations;  
a complete review of these methods may be found elsewhere (19). 
For instance, weather conditions continually change over time, as 
well as driver response to the changing weather conditions. These 
models allow the analyst to account for these variations and make 
more informed inferences regarding the effects of the contributing 
factors (19).

With this aspect in mind, the current study seeks to identify factors 
that affect heavy-vehicle crashes per MVMT by road classification 
through the application and performance-based comparison of two 
“heterogeneity” models, namely, random-parameter and latent class 
Tobit regression. The Tobit modeling framework is selected because 
of the nature of crash rate data. Similar to frequency models, a crash 
rate analysis is likely to have several observations in which no crash 
has occurred, and therefore a censoring method is recommended to 
account for the skewed nature of the response variable (crash rate). 
It has been shown that the Tobit regression framework can account 
for the skewed nature of crash rate data without omitting observa-
tions by censoring the analysis at a given value (20). These models  
have been successfully applied to related transportation safety data; 
for example, Anastasopoulos et al. used the fixed-parameter Tobit 
model to investigate crash rates on Interstates in Indiana and deter-
mine contributing factors (21). To extend the Tobit framework, 
Anastasopoulos et al. utilized the random-parameter Tobit model 
to determine factors that influence crash rates per 100 MVMT on 
highways (22). Bin Islam and Hernandez investigated fatalities per 
million truck miles traveled and fatalities per ton-mile of freight for 
heavy vehicles through the application of a random-parameter Tobit 
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regression model (23), and Chen et al. utilized a random-effects 
Tobit model to analyze crash rates with refined-scale data (24). 
From a latent class Tobit regression application, there are no known 
applications to transportation safety data; however, the method has 
been applied to social science studies [studies by Jedidi et al. (25) 
and Brown et al. (26)].

Therefore, the current study will use the random-parameter Tobit 
method to identify significant contributing factors to crash rates by 
roadway functional class while accounting for heterogeneity. How-
ever, variables not found to be random in the random-parameter 
method may, in fact, have varying effects on heavy-vehicle crash 
rates. Hence, the current study will be extended by investigating  
the results of the Tobit latent class approach by disaggregating the 
Tobit model into unobserved groups (or classes). An extensive 
crash database collected and maintained by the Idaho Department 
of Transportation is used. The findings of this study can provide 
insight that can aid safety planners and safety-related agencies in 
identifying appropriate countermeasures to help reduce and miti-
gate heavy-vehicle crashes. To the best of the authors’ knowledge, 
these are the first attempts at developing these types of models for 
heavy-vehicle crash rate analysis.

Source of Data

The current study used 7 years of police-recorded crash data obtained 
from the State of Idaho (2007 to 2013). Each year was filtered to 
represent heavy-vehicle crashes and then combined with traffic data 
from the Idaho Department of Transportation utilizing segment codes 
and milepost markers that were present in both data sets. The seg-
ment codes and milepost numbers of the location of the crash were 
used to determine the intermediate segments within the milepost 
intervals in the traffic data; these segments are used for the mod-
eling process. Using the complete data set consisting of exposure 
variables—roadway geometrics, traffic control devices, number of 

lanes, and so forth—and traffic volumes, several indicator variables 
were created to identify specific exposure conditions and traffic vol-
umes that affect crash rates by road classification in Idaho. The final 
data set for principal arterials, major collectors, and Interstates had 
1,560, 1,010, and 1,588 heavy-vehicle crashes, respectively. Table 1 
displays the response variable and indicators found to be significant 
throughout the modeling process.

Methodology

Dependent Variable

To model heavy-vehicle crash rates, a rate for each segment is 
calculated by using the traffic data provided by Idaho (27):
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where

	 Rs	=	number of crashes per MVMT on segment s,
	 y	=	year (2007 to 2013),
	 Nys	=	number of heavy-vehicle crashes in year y on segment s,
	AADTys	=	� average annual daily traffic for year y on segment s, 

and
	 Ls	=	 length of segment s (mi).

Given the data sets available for the current study, a specific 
methodology was employed to get corresponding traffic data for 
each crash, as described earlier. Since the current study used 7 years 
of crash data, the likelihood of having one crash on each segment 

TABLE 1    Descriptive Statistics for Significant Variables by Road Classification

Classification Variable Mean Standard Deviation Min. Max.

Principal Crashes per MVMT (response variable) 0.127 0.208 0.005 3.488
  arterials Speed limit (1 if 65 mph, 0 otherwise) 0.443 0.497 na na

Traffic control device (1 if no device, 0 otherwise) 0.702 0.458 na na
Road configuration (1 if 2-way and 2-way left-turn lane) 0.126 0.333 na na
Heavy-vehicle AADT (1 if less than or equal to 300, 0 otherwise) 0.158 0.365 na na
Passenger vehicle AADT (1 if greater than 10,500, 0 otherwise) 0.108 0.310 na na
Total AADT (1 if between 5,000 and 7,000, 0 otherwise) 0.167 0.373 na na

Major collectors Crashes per MVMT (response variable) 0.620 1.204 0.017 13.105
Speed limit (1 if less than or equal to 40 mph, 0 otherwise) 0.241 0.428 na na
Traffic control device (1 if stop sign, 0 otherwise) 0.159 0.366 na na
Horizontal geometrics (1 if straight, 0 otherwise) 0.789 0.408 na na
Road configuration (2-way and double-yellow painted divider, 0 otherwise) 0.129 0.335 na na
Passenger vehicle AADT (1 if greater than 2,500, 0 otherwise) 0.227 0.419 na na
Total AADT (1 if less than 500, 0 otherwise) 0.228 0.420 na na

Interstates Crashes per MVMT (response variable) 0.034 0.047 0.003 0.726
Speed limit (1 if 75 mph, 0 otherwise) 0.675 0.469 na na
Road configuration (1 if 2-way and raised or depressed divider) 0.929 0.258 na na
Heavy-vehicle AADT (1 if between 2,000 and 3,000, 0 otherwise) 0.256 0.437 na na
Horizontal geometrics (1 if curved, 0 otherwise) 0.230 0.421 na na
Surface defects (1 if no surface defects, 0 otherwise) 0.960 0.195 na na
Passenger vehicle AADT (1 if greater than 15,000, 0 otherwise) 0.116 0.321 na na
Total AADT (1 when less than 6,500, 0 otherwise) 0.164 0.370 na na

Note: na = not applicable; AADT = average annual daily traffic.
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was higher as compared with using a 3- to 5-year period. As such, 
many segments for each road classification were identified and 
analyzed, each of which had at least one crash. Referring to Table 1, 
the minimum values of the response variables are approximately 
zero; if fewer years of crash data were studied, these values could 
have very likely been zero. Figure 1 illustrates the crash rate distri-
bution for each road classification in which the skewed distributions 
needed to be addressed during analysis.

Random-Parameter Tobit Model

The distribution of crash rates illustrates the need to utilize a method 
that can account for the large lower-bound cluster of observations 
while maintaining the linear assumptions required for regression 
of a continuous dependent variable (heavy-vehicle crash rates by 
roadway classification). With regard to other principal arterials, the 
data were too centered at zero and, even with censoring, produced 
erroneous estimates during analysis; therefore, this classification was 
omitted from the study. Taking this into consideration, the current 
study sought to develop a statistical model that could be used to deter-
mine the contributing factors on heavy-vehicle crash rates by road-
way classification. This study applied the Tobit regression modeling 
framework (28). However, key variables not available within many 
crash data sets and variation across the available variables often 

result in unobserved heterogeneity and, if neglected, will lead to 
biased estimates and inaccurate inferences [further discussion may 
be found elsewhere (19)]. To account for such problems the cur-
rent study applied the random-parameter approach to the traditional 
Tobit regression framework (22, 23, 29–31). As mentioned earlier, 
Anastasopoulos et al. (22), Bin Islam and Hernandez (23), and Chen 
et al. (24) all applied the random-parameter Tobit regression model 
successfully to transportation safety data. Therefore, for this work, 
the standard Tobit model is expressed as follows:
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where

	Ys	=	number of crashes per MVMT,
	 L	=	value at which model is left-censored,
	Xs	=	� vector of explanatory variables (AADT, roadway geometrics, 

and so forth),
	a	=	vector of estimated parameters, and
	 εs	=	� normally and independently distributed error term with mean 

of zero and constant variance, σ2.
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FIGURE 1    Heavy-vehicle crash rate distribution by roadway classification: (a) principal arterials, (b) major collectors, (c) Interstates, 
and (d ) other principal arterials.
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To determine the likelihood for the Tobit model over zero observa-
tions (e.g., the value at which the Tobit model is left-censored) and 
positive observations (Equation 1), the following function applies 
(21, 26):
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is the standard normal density function.
In an attempt to capture the unobserved heterogeneity, the random-

parameter approach is now applied to the Tobit framework and 
estimated parameters can be written as follows (32):

(4)s sβ = β + φ

where the equivalent log likelihood function is (26)
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where g(φs) is the probability density function of φs and P(Y s*|φs) is 
the probability of the Tobit model (i.e., probability that the value is 
uncensored). As stated in previous studies (22, 23), the maximum 
likelihood estimations encounter computing issues because of their 
complexity. To address this issue, a common approach developed 
by Halton is used to simulate the maximum likelihood by utilizing 
Halton draws to solve the complex integral seen in Equation 5, which 
has been shown to be preferable over merely random draws (33–35).

Latent Class Tobit Model

Although the random-parameter method accounts for unobserved 
heterogeneity, there is a possible disadvantage because of the assump-
tion that the parameters vary in a predefined distribution and that 
parameters vary only across singular observations [further discus-
sion may be found elsewhere (19)]. Taking that into consideration, 
the latent class approach attempts to capture unobserved hetero
geneity by allowing estimable parameters to vary with an under
lying discrete distribution across unobserved groups of observations 
(or classes). The heterogeneity is accounted for by defining a finite 
number of points and measuring the mass probability of the inter-
vals between points. Applying this operation to the Tobit regression 
structure results in
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where ac is a vector of estimated parameters belonging to Class C 
and Y s*|(class = C) is the number of crashes per MVMT of segment s  
in Class C. The corresponding log likelihood function is now as 
follows (26):
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where Psc(δc, ωs) is the prior to model estimation logit probability of 
being in Class C and represented by the multinomial logit form (26):
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Last, after the parameters have been estimated, a second estima-
tion is conducted to determine the posterior probabilities of crash 
rate Ys belonging to Class C (36). The posterior probability that 
a heavy-vehicle crash belongs to Class C is determined after the 
estimation. That is, the posterior probability utilizes the estimated 
parameters to determine a class probability based on the observed 
crash data (26, 37):
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As mentioned previously, the application of the latent class 
modeling structure to the Tobit regression modeling framework in 
a safety context is a first.

Model Estimation Results

Random-Parameter Tobit Model

As shown in Tables 2 and 3, no parameters were found to be random 
for principal arterials and Interstates. However, two parameters were 
found to be random for major collectors and are shown in Table 4.  
To statistically assess the more significant log likelihood for major 
collectors—fixed- or random-parameter—the ensuing log likelihood 
ratio test was conducted.

[ ]( ) ( )χ = − β − β2 logL logL (10)2
FP RP

where

	logL(βFP)	=	� log likelihood at convergence for fixed-parameter 
model,

	logL(βRP)	=	� log likelihood at convergence for random-parameter 
model, and

	 χ2	=	� chi-square statistic with degrees of freedom equal to 
number of random parameters.

One more goodness-of-fit measure was applied, the Maddala 
pseudo-R2 value (38):
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TABLE 2    Best-Fit Fixed-Parameter Tobit Regression Estimates for Principal Arterials

Variable Coefficienta t-Stat.b Partial Effect

Constant 0.12 4.48

Speed limit (1 if 65 mph, 0 otherwise) −0.11 −3.95 −4.09

Traffic control device (1 if no device, 0 otherwise) −0.12 −4.33 −4.66

Road configuration (1 if 2-way and 2-way left-turn lane) 0.10 2.81 4.06

Heavy-vehicle AADT (1 if less than or equal to 300, 0 otherwise) 0.10 2.88 3.76

Passenger vehicle AADT (1 if greater than 10,500, 0 otherwise) −0.22 −4.70 −8.44

Total AADT (1 if between 5,000 and 7,000, 0 otherwise) −0.06 −1.71 −2.26

Note: Number of observations = 862; log likelihood at zero = −396.68; log likelihood at convergence = −355.12;  
χ2 = 83.11; Maddala pseudo-R2 = .092.
aSigma, σ = 0.31.
bSigma, σ = 26.85.

TABLE 3    Best-Fit Fixed-Parameter Tobit Regression Estimates for Interstates

Variable Coefficienta t-Stat.b Partial Effect

Constant 0.09 4.54

Speed limit (1 if 75 mph, 0 otherwise) −0.02 −2.20 −0.80

Road configuration (1 if 2-way and raised or depressed divider) −0.03 −2.20 −1.37

Heavy-vehicle AADT (1 if between 2,000 and 3,000, 0 otherwise) 0.02 2.06 0.78

Horizontal geometrics (1 if curved, 0 otherwise) 0.02 2.36 0.95

Surface defects (1 if no surface defects, 0 otherwise) −0.05 −2.81 −2.30

Passenger vehicle AADT (1 if greater than 15,000, 0 otherwise) −0.03 −2.28 −1.30

Total AADT (1 when less than 6,500, 0 otherwise) 0.03 3.88 1.64

Note: Number of observations = 379; log likelihood at zero = 211.91; log likelihood at convergence = 242.54;  
χ2 = 61.25; Maddala pseudo-R2 = .149.
aSigma, σ = 0.06.
bSigma, σ = 20.74.

TABLE 4    Best-Fit Random-Parameter Tobit Regression Estimates for Major Collectors

Fixed-Parameter Tobit Random-Parameter Tobit

Variable Coefficient t-Stat. Partial Effect Coefficient t-Stat. Partial Effect

Constant −1.31 −5.94 −1.21 −5.40
Speed limit (1 if less than or equal to 40 mph, 0 otherwise) 0.52 2.87 0.20 0.42 2.30 12.02
Standard deviation of parameter, normally distributed na na na 0.73 6.67 na

Traffic control device (1 if stop sign, 0 otherwise) 0.45 2.22 0.18 0.40 2.01 11.59
Horizontal geometrics (1 if straight, 0 otherwise) 0.91 4.38 0.36 0.73 3.67 20.96
Road configuration (1 if 2-way and double-yellow painted divider, 

0 otherwise)
0.70 3.10 0.27 0.36 1.53 10.41 

Standard deviation of parameter, normally distributed na na na 0.99 5.45 na

Sigma, σ 1.82 25.91 1.59 56.33

Passenger vehicle AADT (1 if greater than 2,500, 0 otherwise) −0.60 −2.90 −0.24 −0.50 −2.22 −14.31

Total AADT (1 if less than 500, 0 otherwise) 1.03 5.61 0.41 0.97 4.88 27.90

Note: Number of observations = 768 for fixed-parameter Tobit and random-parameter Tobit; log likelihood at zero = −1,003.14 for fixed-parameter Tobit and  
random-parameter Tobit; log likelihood at convergence = −967.07 for fixed-parameter Tobit and −926.07 for random-parameter Tobit; χ2 = 72.13 for fixed-parameter 
Tobit and 80.81 for random-parameter Tobit; Maddala pseudo-R2 = .090 for fixed-parameter Tobit and .181 for random-parameter Tobit.
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where

	logL(β)	=	 log likelihood at convergence for best-fit model,
	logL(0)	=	 log likelihood at zero, and
	 N	=	number of observations.

With regard to the principal arterial model, a chi-square statistic 
of 83.11 and 6 degrees of freedom indicated with 99.99% confidence 
that the fixed-parameter model is preferred over the model with sim-
ply the constant. For Interstates, a chi-square statistic of 61.25 and 
6 degrees of freedom showed with 99.99% confidence that the 
fixed-parameter model is of more significance than the model with 
no estimated parameters. In the case of major collectors, where vari-
ables were found to be random, a chi-square statistic of 80.81 and 
2 degrees of freedom demonstrated with 99.99% confidence that the 
random-parameter model is statistically preferred.

Latent Class Tobit Model

Latent class regression models for each road classification are shown 
in Tables 5 to 7. In line with previous studies, the number of latent 

classes for each model was selected by using the Bayesian informa
tion criterion (BIC); the number of latent classes that produced the 
smallest BIC was used (39, 40). However, Louviere et al. suggest 
that the smallest Akaike information criterion (AIC) be used to deter-
mine the best-fit number of classes, and this was the case for the 
major collector model (41). Yang found similar results with regard 
to the number of latent classes based on AIC (42).

The class split for each classification is highly significant and 
the best-fit number of classes is different for each model. Princi-
pal arterials have a best-fit model with three latent classes, major 
collectors with four latent classes, and Interstates with two latent 
classes.

Discussion of Results

Tobit Model

High passenger vehicle AADT (PAADT) decreases crash rates for 
each road classification and has a significant impact on crash rates 
based on partial effects. “Partial effects” refers to a one-unit increase 

TABLE 5    Best-Fit Latent Class Tobit Regression Estimates for Principal Arterials

Latent Class 1 Latent Class 2 Latent Class 3
Partial 
EffectVariable Coefficient t-Stat. Coefficient t-Stat. Coefficient t-Stat.

Constant 1.51 2.59 0.26 7.90 0.04 11.83

Speed limit (1 if 65 mph, 0 otherwise) 0.05 0.06 −0.12 −3.25 0.00 −1.07 −0.45

Traffic control device (1 if no device, 0 otherwise) −1.06 −2.06 −0.11 −3.15 −0.01 −1.93 −0.78

Road configuration (1 if 2-way and 2-way left-turn lane) −0.94 −0.74 0.09 2.31 0.00 −0.12 0.04

Heavy-vehicle AADT (1 if less than or equal to 300, 0 otherwise) 0.93 1.86 0.05 1.34 0.00 0.69 0.49

Sigma, σ 0.61 2.31 0.15 10.52 0.02 15.46

Class probability (t-statistic) 0.022 (2.77) 0.262 (9.06) 0.716 (25.24)

Passenger vehicle AADT (1 if greater than 10,500, 0 otherwise) −0.53 −0.10 −0.12 −1.58 −0.01 −1.56 −0.71

Total AADT (1 if between 5,000 and 7,000, 0 otherwise) 1.15 0.65 0.00 −0.05 0.00 −0.09 0.34

Note: Number of observations = 862; log likelihood at zero = 166.81; log likelihood at convergence = 195.60; Akaike information criterion = −339.20;  
Bayesian information criterion = −215.50.

TABLE 6    Best-Fit Latent Class Tobit Regression Estimates for Major Collectors

Latent Class 1 Latent Class 2 Latent Class 3 Latent Class 4
Partial 
EffectVariable Coefficient t-Stat. Coefficient t-Stat. Coefficient t-Stat. Coefficient t-Stat.

Constant 2.11 0.71 0.08 3.83 0.07 0.93 0.43 1.69

Speed limit (1 if less than or equal to 40 mph,  
0 otherwise)

2.66 1.40 0.02 1.16 0.05 0.88 0.43 2.67 9.94 

Traffic control device (1 if stop sign, 0 otherwise) 1.94 1.05 0.01 0.39 0.06 1.19 0.55 3.08 1.18

Horizontal geometrics (1 if straight, 0 otherwise) −1.28 −0.61 0.02 1.00 0.13 2.17 0.02 0.07 −5.24

Road configuration (2-way and double-yellow 
painted divider, 0 otherwise)

2.46 1.07 0.02 0.81 0.13 1.85 −0.09 −0.44 6.56 

Passenger vehicle AADT (1 if greater than 2,500, 
0 otherwise)

−3.71 −1.04 −0.03 −1.39 −0.06 −0.90 0.35 1.87 −5.91 

Sigma, σ 3.10 3.83 0.07 9.64 0.16 5.44 0.44 5.38

Class probability (t-statistic) 0.076 (3.93) 0.577 (13.22) 0.227 (4.97) 0.120 (4.98)

Total AADT (1 if less than 500, 0 otherwise) 2.28 1.17 0.01 0.33 0.29 5.52 0.74 4.26 7.00

Note: Number of observations = 768; log likelihood at zero = −437.00; log likelihood at convergence = −414.63; Akaike information criterion = 899.30;  
Bayesian information criterion = 1,061.80.
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in an exposure variable while all others are held constant and the 
outcome it has on heavy-vehicle crash rates. Partial effects show 
that PAADT greater than 10,500 on principal arterials decreases the 
number of heavy-vehicle crashes per MVMT by 0.084. Similarly, 
PAADT greater than 2,500 on major collectors reduces the number 
of heavy-vehicle crashes per MVMT by 0.143 and PAADT greater 
than 15,000 on Interstates reduces heavy-vehicle crashes by 0.013 
per MVMT. Conversely, low total AADT (passenger vehicles and 
heavy vehicles) increases crash rates. For instance, partial effects 
indicate that AADT less than 500 on major collectors increases the 
number of heavy-vehicle crashes by 0.279 per MVMT. Likewise, 
AADT less than 6,500 on Interstates results in an increase of 0.016 
crashes per MVMT. These findings are in line with previous work 
(21, 22, 30, 43) in which lower AADT increases crash rates while 
higher AADT decreases crash rates. The same literature finds that 
the presence of heavy-vehicle traffic decreases crash rates, yet 
the current study found that the presence of heavy-vehicle traffic 
increased crash rates for principal arterials and Interstates. A possible 
explanation could be that such a finding is exclusive to the state 
of Idaho.

Two parameters were found to be random on major collectors 
on the basis of the statistical significance of the mean and standard 
deviation. The estimated parameter for a speed limit less than or 
equal to 40 mph was found to be random and normally distributed 
with a mean of 0.42 and standard deviation of 0.73. This finding 
suggests that for 28.2% of heavy vehicles the estimated parameter 
mean is less than zero and for 71.8% it is greater than zero. In other 
words, lower speed limits on major collectors decrease crash rates 
for 28.2% of heavy vehicles and increase crash rates for 71.8%. 
Chen et al., however, found that lower speed limits increase crash 
rates for all observations when the random-effects Tobit model 
is used; this finding possibly indicates that the random-effects 
approach does not account for all the heterogeneity in their data set 
(24). In contrast, high speed limits decrease crash rates on principal 
arterials and Interstates. Speed limits of 65 mph decrease crash 
rates on principal arterials and partial effects show a reduction of 
0.041 crash per MVMT. Interstates with a speed limit equal to 
75 mph see a decrease in crash rates, and partial effects indicate  
a decrease of 0.008 heavy-vehicle crash per MVMT. Although 
higher speed limits are prone to cause more severe crashes, they have 
been shown to reduce crash rates [see work by Dutta and Noyce 

(44) for a thorough literature review regarding implications of high 
speed limits].

As for road configuration, two-way major collectors with a double 
yellow-painted divider were found to have a normally distributed ran-
dom parameter. With a mean of 0.36 and standard deviation of 0.99, 
this configuration decreases crash rates for 35.8% of heavy vehicles 
and increases crashes rates for 64.2%. Two-way Interstates with 
raised or depressed dividers experience a reduction in crash rates 
and have a partial effect of −0.014. Road configuration, however, on 
principal arterials increases crash rates; partial effects suggest that 
two-way principal arterials with a two-way left-turn lane result in an 
increase of 0.041 heavy-vehicle crashes per MVMT.

With regard to horizontal geometrics, straight and curved con
ditions increase crash rates for major collectors and Interstates. 
Major collectors experience an increase in crash rates because of 
straight horizontal geometrics, and partial effects show an increase 
of 0.210 heavy-vehicle crash per MVMT. Horizontal curves increase 
crash rates on Interstates, though there is just a 0.010 increase. Curved 
geometrics were found to increase crash risk by Yu et al. (29), 
whereas the degree of curvature was found to increase crash rates 
by Chen et al. (24).

Other notable factors contributing to the crash rate are traffic 
control devices and surface defects. No traffic control devices on 
principal arterials decrease crash rates, and partial effects indicate 
a reduction of 0.047 heavy-vehicle crashes per MVMT. In contrast, 
stop signs on major collectors increase heavy-vehicle crashes by 
0.116 crash per MVMT. Interstates with no surface defects decrease 
crash rates. This variable has the largest effect on Interstate crash 
rates, since partial effects suggest a decrease of 0.023.

Latent Class Tobit Model

The presence of latent classes suggests that various explanatory 
variables are heterogeneous. For example, a two-way road with a 
two-way left-turn lane on a principal arterial is positively signifi-
cant in latent Class 2, but it is negative and not significant in latent 
Classes 1 and 3. These results indicate the presence of heterogeneity 
and negative and positive impacts on crash rates with such road con-
figurations (45). Similar findings are presented in each latent class 
specification and exist for each variable.

TABLE 7    Best-Fit Latent Class Tobit Regression Estimates for Interstates

Latent Class 1 Latent Class 2

Variable Coefficient t-Stat. Coefficient t-Stat. Partial Effect

Constant 0.72 5.05 −0.01 −0.20

Speed limit (1 if 75 mph, 0 otherwise) 0.00 0.02 −0.01 −1.49 −0.37

Road configuration (1 if 2-way and raised or depressed divider) −0.01 −0.24 0.01 0.48 0.23

Heavy-vehicle AADT (1 if between 2,000 and 3,000, 0 otherwise) 0.00 −0.12 0.02 2.32 0.65

Horizontal geometrics (1 if curved, 0 otherwise) −0.01 −0.55 0.02 1.63 0.24

Surface defects (1 if no surface defects, 0 otherwise) −0.70 −4.81 0.01 0.36 −10.78

Sigma, σ 0.03 4.21 0.04 11.84

Passenger vehicle AADT (1 if greater than 15,000, 0 otherwise) −0.01 −0.29 −0.02 −0.61 −0.77

Class probability (t-statistic) 0.361 (2.30) 0.639 (4.06)

Total AADT (1 when less than 6,500, 0 otherwise) 0.00 −0.10 0.03 2.23 0.69

Note: Number of observations = 379; log likelihood at zero = 363.56; log likelihood at convergence = 385.48; Akaike information criterion = −733.00; 
Bayesian information criterion = −658.10.
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With regard to class probability, the prior probabilities for principal 
arterials indicate that the probability that a crash belongs to latent 
Class 3 is the highest at 0.716. This finding is seen in the posterior 
probabilities, since 80.7% of the heavy-vehicle crashes belong to 
latent Class 3, whereas 17.9% and 1.4% belong to latent Classes 1 
and 2, respectively. For major collectors, there is a 0.577 prior prob-
ability that crashes belong to latent Class 2. Posterior probabilities 
suggest that this is so, since 72.4% belong to latent Class 2, with 4.6%, 
12.4%, and 10.7% of crashes belonging to latent Classes 1, 3 and 4,  
respectively. Prior class probabilities for Interstates indicate a 0.361 
probability that a heavy-vehicle crash belongs to latent Class 1 and 
a 0.639 probability that it belongs to latent Class 2. Posterior prob-
abilities agree: 10.8% of heavy-vehicle crashes belong to latent 
Class 1 and 89.2% belong to latent Class 2.

For principal arterials, the partial effects of the Tobit model 
are significantly greater than those of the latent class model. The 
partial effect for PAADT greater than 10,500 using the Tobit model 
was −0.084, but according to the latent class model, this PAADT 
decreases the number of heavy-vehicle crashes by 0.007 per MVMT. 
Overall, the partial effects for the latent class model were much less 
than those for the Tobit model.

For major collectors, latent class partial effects were substantially 
less when compared with the Tobit model. For example, PAADT 
greater than 2,500 has a partial effect of −0.143 for the Tobit model, 
yet the same variable based on the latent class model results in a 
reduction of 0.059 heavy-vehicle crashes per MVMT.

Interstates, however, experienced a decrease in partial effects for 
some variables and an increase in others, even a change in signs 
for one variable. For instance, two-way Interstates with a raised or 
depressed divider has a partial effect of −0.014 for the Tobit model, 
and the latent class model has the opposite effect and results in an 
increase of 0.002 heavy-vehicle crashes per MVMT. The partial 
effect of the Tobit model for PAADT greater than 15,000 is −0.013 
but increases to −0.008 for the latent class model. Interstates with 
no surface defects decrease the number of heavy-vehicle crashes 
per MVMT by 0.023 according to the Tobit model and increase the 
reduction to 0.108 according to the latent class estimations.

Model Comparison

To determine the best-fit model for the Idaho crash data, three 
metrics were evaluated: overall model fit, partial effect inferences, 
and the rate of prediction of actual crash rate values. To illustrate, 
the latent class approach for each road classification had a better 
overall model fit. Log likelihoods are typically negative; however, 
it is possible to see positive values for regression of a continuous 
dependent variable. In such a case, the greater the value is (if posi-
tive), the better the fit of the model is. In terms of partial effects, 
the latent class framework identified different high-impact variables 
and partial effects were much less, as were the partial effects for the 
random-parameter model. The fit of the actual crash rates versus 
the predicted crash rates for both regression estimates is as follows:

Classification	 Tobit R2	 Latent Class R2

Principal arterials	 .09	 .76
Major collectors	 .29	 .88
Interstates	 .22	 .72

The corresponding plots are presented in Figure 2. The plots visu-
ally illustrate that the Tobit model substantially underpredicted the 

crash rates for each road classification and that the latent class model 
outperformed the Tobit model significantly.

Summary and Insights

This study utilized two specific econometric frameworks, namely, 
random-parameter Tobit regression and latent class Tobit regression, 
to determine factors that contribute to the number of heavy-vehicle 
crashes per MVMT by roadway classification while identifying a 
preferred method to account for unobserved heterogeneity. Police-
reported crash data are often missing key variables (e.g., the variables 
are not on data collection forms) and vary across existing variables; 
therefore, utilizing the random-parameter Tobit method allows the 
analyst to account for heterogeneity by defining a distribution. The 
latent class approach also accounts for heterogeneity, but no distri-
bution is defined and the parameters are permitted to vary across a 
specified number of classes. Using goodness-of-fit measures and 
the rate of prediction, the estimates of the two approaches were 
examined.

The Idaho case study provides new insights into crash rates by 
roadway classification. Different road configurations, horizontal 
geometrics, and traffic control devices were found to be significant 
for each road classification. A specific road configuration was found 
to decrease crash rates for major collectors and Interstates but to 
increase crash rates on principal arterials. Curved horizontal geo-
metrics increase crash rates on Interstates and straight horizontal 
geometrics increase crash rates on major collectors. Stop signs on 
major collectors increase crash rates, yet no traffic control devices on 
principal arterials decrease crash rates. High speed limits decrease 
crash crates on principal arterials and Interstates, and lower speed 
limits increase crash rates for the majority of heavy vehicles on 
major collectors. The most common insight from this study is that 
high traffic volumes decrease crash rates and low volumes increase 
crash rates. With that in mind, unlike previous work, this study found 
that the presence of heavy vehicles has the potential to increase 
crash rates.

To assess the accuracy of the two frameworks, the actual crash 
rates and predicted crash rates were plotted and the Pearson product 
moment correlation coefficient was provided for each. The latent 
class approach outperformed the traditional Tobit method for each 
road classification and, as a result, should be considered in future 
crash rate analyses. In addition, the sample size may indicate what 
information criterion (AIC or BIC) to use when the correct number 
of latent classes is selected. However, results indicating a better fit 
for the latent class approach are entirely data-specific. Although the 
current study has found that the latent class model better describes 
the Idaho crash data, there is the potential that the latent class model 
may not be better suited in crash data sets of other states. This finding 
strongly suggests that further work be conducted in the comparison 
of these two heterogeneity methods. Unfortunately, this is an inher-
ent limitation of the latent class modeling framework. Although the 
model, in this case, captures more heterogeneity and provides a better 
fit for the data, this result is not always the case.

In summary, this study exhibited two distinct methodologies to 
model crash rates while accounting for heterogeneity. Factors that 
contribute to crash rates differ depending on road classification and 
in future work they should be analyzed separately. Such findings 
can assist with safety measures in Idaho by providing transportation 
agencies, engineers, planners, and policy makers with contributing 
crash rate factors coupled with more precision. For example, road 
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FIGURE 2    Actual crash rates versus predicted crash rates: (a) latent class model, principal arterials; (b) Tobit model, principal arterials; 
(c) latent class model, major collectors; (d ) Tobit model, major collectors; (e) latent class model, interstates; and (f ) Tobit model, 
interstates.
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configuration was found to affect crash rates by road classification, 
and restriping to reconfigure configurations can be an economically 
viable solution to reduce heavy-vehicle crash rates in Idaho. In 
addition, stop signs were found to increase crash rates on major 
collectors and a possible explanation could be ineffective stop sign 
location; hence, relocating stop signs is yet another economically 
viable solution to reduce heavy-vehicle crash rates in Idaho. The 
presented framework—censored latent class regression—should 
strongly be considered when future crash rate analyses are conducted, 
as well as analysis by roadway classification in other geographic 
regions.
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