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Abstract: This research investigates the factors that lead to three manners of collision (namely, rear-end, angle, and sideswipe) that occurred
in the same direction of multilane interstate highways. Mixed logit (MXL) models were developed to estimate the probability of rear-end,
angle, and sideswipe collisions as functions of vehicle-following attributes and other driving maneuvers immediately before collisions. The
National Automotive Sampling System-General Estimates System crash data set, collected from 2005 to 2008, was used to estimate the
model. This research analyzes collisions among passenger cars and trucks, with an emphasis on their vehicular characteristics. Results show
that driving behavior is different when vehicular characteristics are different and when roles of the striking and struck vehicles are grouped
according to cars and trucks. This research contributes to a better understanding of the differences in unsafe driving acts between cars and
trucks, and implications on future policies on car and truck drivers. DOI: 10.1061/(ASCE)TE.1943-5436.0000621. © 2013 American Soci-
ety of Civil Engineers.
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Introduction

In the United States, the annual number of collisions in highways
averaged 6.1 million from 2000 to 2009 (RITA 2010). Because the
task of driving on highways is complex due to its interactivity and
heterogeneity of traffic, and the prevalence of high-speed impacts,
it is necessary to extend transportation safety analysis to identify
factors that lead to the different manners of collision on interstate
highways.

An increasing concern in highway safety is the presence and
increase in volume of trucks in the traffic stream. Registered large
trucks in the United States have increased from approximately
8.5 million in 2005 to almost 11 million in 2009 (FMCSA
2011b). Because of the different dynamical characteristics of trucks
and passenger cars, drivers may misjudge others’ maneuvers when
following or traveling alongside a vehicle. It is not surprising that
collisions that involve large commercial vehicles usually result in
more severe injuries or fatalities compared to collisions that involve
only passenger cars (Islam and Hernandez 2012). As reported in
Knipling (2013), about 80% of truck-related fatalities occur in
car-truck crashes in the United States. In 2009, 75 percent of fatal
crashes involving trucks had “collisions with vehicle in transport”
as the most harmful event (FMCSA 2011a). In addition, collisions
involving trucks usually result in significant financial costs. The
estimated total cost to society of crashes involving large single-unit
trucks was $14.7 billion, and for combination trucks, it was
$26.5 billion (FMCSA 2011a). It is necessary, then, to intensify

efforts to study the close, yet relatively risky, interaction of different
types of vehicles that share the road and identify inadequate or in-
appropriate actions that lead to these collisions.

In the analysis of crashes, crash type is an important descriptor,
as is number of crashes, crash rate, and crash severity. Zaloshnja
et al. (2004) looked into costs resulting from a particular type of
collision at urban intersections. The purpose of the study was to
evaluate traffic safety intervention effectiveness since the latter
varies according to crash type. The comprehensive cost per crash,
including medical-related costs, emergency services, property dam-
age, lost productivity, and monetized value of pain, was estimated
to examine crash effects by type. According to the results, the cost
to society in 2001 dollars in no-intersection roads with a speed limit
of 50 mph or higher is $25.6 billion per year for rear-end collisions
and $25.1 billion per year for sideswipe collisions.

The manner of collision or crash types as an outcome of a crash
that is related to driver, vehicle, and roadway factors has not been
studied extensively, especially for highways. Typically, disaggre-
gate models in crash analysis focus on injury severity levels as
the outcome. Although studies have developed different statistical
or econometric models to predict the manner of collision at inter-
sections [see, for example, Abdel-Aty and Nawathe (2006), Keller
et al. (2006), Kim et al. (2007) and Ye et al. (2009)], far less at-
tention has been paid to analyzing factors that lead to the different
types of collisions on interstate highways.

Investigating crash type is crucial when identifying potential
safety improvements for a roadway. Crash type analysis is imple-
mented in the Highway Safety Improvement Program (HSIP)
Manual (Herbel et al. 2010) to quantify the actual or expected
safety of a roadway. The HSIP Manual uses crash type to identify
high-risk facilities for potential safety improvement.

This study is one of the first to construct statistical models that
predict the type of same-direction collisions (which, according to
police reports, may be rear-end, angle, or sideswipe) based on the
roles and precrash actions of the passenger cars and/or trucks in-
volved in a highway crash. The explanatory variables were segre-
gated to account for precrash actions and attributes for each role
in the crash (i.e., striking or struck vehicle). Four different models
were developed for different types of vehicles (cars or trucks)
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involved in a two-vehicle collision. In this way, it is possible to
study the factors that contribute to different types of collisions
and identify causes that are specific to a particular type of vehicle.

A mixed logit (MXL) estimation procedure (Washington et al.
2011) was used to identify significant precrash factors describing
vehicle characteristics and “follow-the-leader” behavior between
the striking and struck vehicles. These possible factors are used
to predict the possible manner of collision.

Unreported or inaccurate information in the crash data can be
accommodated by using the MXL modeling approach. Factors
not captured in the crash database concerning vehicle dynamics,
such as weight, range of vision, and stability when driving, may
have an effect on the model; and therefore, their influence must
be considered. Factors attributed to the driver, such as driving ex-
perience, driving style (aggressive/defensive driving), unreported
fatigue, and attentiveness, also may have an impact on the model.
As a way to address possible reservations in the information pro-
vided from the data, the MXL model is proposed.

The main objective of this research is to develop four MXL
models to predict the likelihood of the resulting manner of collision
if there is a crash that involves two vehicles traveling in the same
direction in a multilane interstate highway under no adverse
weather conditions. A MXL model is developed for a specific role
(strike or struck vehicle) played by a car or a truck involved in a
two-vehicle collision. In each model, the response variable is the
probability of a crash having a discrete manner of collision (rear-
end, angle, or sideswipe). The independent variables or attributes
considered are mainly driving behavior prior to the crash, espe-
cially vehicle following and lane changing. The second objective
of this research is to use the MXL models to examine the roles of
the vehicles in a crash (striking and struck) and observe the actions
performed by each driver prior to the collision. The ultimate objec-
tive is to use the developed MXL models to deduce the differences
in driving behavior with trucks and passenger cars when paired in a
crash with same and different types of vehicle. Identifying similar-
ities and differences in driver behavior of the same or different
types of vehicle can contribute to a better understanding of events
that caused the crash.

Literature Review

Statistical analysis of motor-vehicle crash data has been used to
relate highway collision outcomes to a variety of factors, as re-
viewed in Savolainen et al. (2011). Most crash analysis primarily
focused on the aftermath, described in terms of injury severity or
property damage. Less attention has been paid to diverse failed in-
teractions before the crash and that are explicitly found in the vari-
ous manners of collision. This includes actions taken as a response
to the impending danger, path of vehicle prior to crash, state of
the driver, etc., which can give an insight of driving behavior that
lead to a collision. In addition, econometric models that study the
manner of collision are only found for crashes at intersections
(Abdel-Aty and Nawathe 2006; Kim et al. 2007).

To address severe and costly crashes on highways, several safety
studies have targeted collisions involving trucks to capture possible
factors influencing these collisions (Council et al. 2003; Duncan
et al. 1998). However, factors describing precrash actions in high-
ways between trucks and passenger cars were not included in these
investigations. Yan et al. (2009) constructed a multinomial logit
(MNL) model to analyze vehicle type (car or truck) in terms of their
roles (as a striking or struck vehicle) in rear-end crashes for car-
truck and truck-car collisions. Although this approach for studying
rear-end collisions among different vehicle types is new in the field,

it has some limitations. This study did not consider critical events
experienced by drivers before colliding (e.g., distraction, speed,
and braking behavior) among the explanatory variables. A more
comprehensive study should consider other possible manners out-
comes of collision instead of exclusively analyzing rear-end
crashes.

Abdel-Aty and Abdelwahab (2003) focused on the analysis of
rear-end collisions. It specifically targeted two different types of
vehicle: light trucks and cars. The analysis was performed using
three models: MNL, heteroscedastic extreme value (HEV), and bi-
variate probit (BVP). These models were compared to account for
possible limitations when restricting the study to one specific
model specification: (1) the BVP model was used to account for
two possible (binary) roles (striker and struck); (2) the MNL model
was used to estimate four types of rear-end collisions based on
vehicle type (i.e., car-car, car–light truck, light truck–light truck,
and light truck–car); and (3) the HEV model was used to account
for any independence of irrelevant alternative (IIA) issue in the
MNL model.

In the modeling of different manners of collisions based on how
trucks and passenger vehicles are paired, it is more reasonable to
assume that the coefficients of some of the attributes are random.
This is because some unobserved attributes could be accounting for
rear-end, angle, and sideswipe collisions conditionally.

Recent literature in highway crash analysis using MXL can be
found in Chen and Chen (2011), Milton et al. (2008), and Morgan
and Mannering (2011). Although this study is mostly dedicated to
addressing accident or injury severity, it finds that MXL is the best
modeling approach to justify unobserved effects and heterogeneity
among observations. For example, in the case of Milton et al.
(2008) and its analysis of highway severities, road characteristics,
environment, and driving behavior are the major players. These
factors are expected to vary across roadway segments and thus
are treated as random across the samples. In addition, inclusion
of unobserved characteristics of roads and the environment are ad-
dressed by using MXL. Similarly, the proposed MXL model con-
siders the variability of precrash actions, driving behavior, and
communication between the vehicle driven and the vehicle interact-
ing with in the analysis.

Empirical Setting

The National Automotive Sampling System General Estimates
System (NASS GES) database is a source for national safety
statistics by the U.S. Department of Transportation, National
Highway Traffic Safety Administration (NHTSA 2005) and serves
as an instructive tool for motor vehicle manufacturers, insurance
companies, government agencies, and researchers to enhance road
safety.

The NASS GES crash data is collected from 400 police agen-
cies across the United States. Police crash reports are processed
by the National Center for Statistics and Analysis, a branch of
the Policy and Operations in the NHTSA. GES is a probability-
based representative sample for all motor crashes that resulted in
fatalities, injuries and property damage. The GES database is a
sample of the 6 million crashes occurring nationwide every year,
containing information for about 50,000 collisions.

The GES database is managed via the Statistical Analysis
System (SAS) software (SAS 2004) in which further data manipu-
lation is possible. Data sets may be queried or created based on
user-specified conditions with respect to subsets of data: accident,
vehicle, maneuver, distraction, etc.
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In this research, the NASS GES database was selected because it
captures situational, environmental, vehicular, and human factors
present during the collision. It also provides records of collisions
involving all vehicles that traveled on U.S. highway systems. As
mentioned previously, this study considered two types of vehicle:
passenger cars and trucks. Trucks include tractor-trailers, single-
unit trucks, or cargo vans having gross vehicle weight ratings
(GVWRs) greater than 10,000 pounds as defined by the Insurance
Institute for Highway Safety (IIHS 2009).

All the crash records from 2005 to 2008 were combined to form
a single data set using SAS (SAS 2004). The combined data set
was preprocessed to extract cases that meet the desired character-
istics: collisions involving only two vehicles in the same roadway
in the same direction on interstate highways under no adverse
weather conditions. The constraint in traffic direction resulted in
three common manners of collision: rear-end, angle, and sideswipe.
To avoid the same crash being counted twice, information on the
striking and struck vehicles involved in a collision were paired by
the same case number. Further processing consisted of creating four
separate data sets describing (1) Car striking car (C-C); (2) car strik-
ing truck (C-T); (3) truck striking car (T-C); and (4) truck striking
truck (T-T), respectively. By having different data sets, it is possible
to analyze differences on the three manners of collisions. In this
way, it is possible to examine precrash scenarios describing ve-
hicle-following and lane-changing behavior, as well as attributes
of driver, road, and other factors that are exclusive to each vehicle
pair. Additional information concerning the total crashes in each
data set and total crashes corresponding to each manner is provided
in Table 1.

Defining Manner of Collision

In this research, the probability of each manner of collision is mod-
eled as a function of the driver-vehicle-road interaction that took
place before a crash. The dependent variable is the probability
of the manner of collision that resulted from a failed driving maneu-
ver between the two vehicles.

The manner of collision consists of three possible crash out-
comes: rear-end, angle, and sideswipe. A detailed graphical repre-
sentation and comprehensive description of manner of collision can
be found in the Fatality Analysis Reporting System (FARS) manual
(NHTSA 2010). NASS GES and FARS utilized by the NHTSA
used similar sets of data but different coding and software. Fig. 1
portrays (a) rear-end, (b) angle, and (c) sideswipe collisions used in
this study, which are depicted in the FARSManual as Front-to-Rear
(01), Front-to-Side, Same Direction (03), and Sideswipe–Same Di-
rection (07) respectively.

Following the exact definition in NHTSA (2010), rear-end and
same-direction traffic collisions are literally outlined as follows:
1. Front-to-Rear (includes Rear-End): “A rear-end collision is

one in which the front end of one vehicle collides with the
back of another vehicle, while the two vehicles are traveling
in the same direction. Use Front-to-Rear (includes Rear-Ends)
for all ‘rear-end’ crashes and all crashes in which the front of

one vehicle comes in contact with the rear of another in the
First Harmful Event, regardless of the original direction of
travel.”

2. Front-to-Side, Same Direction “is used for angle crashes
where the front of one vehicle makes contact with any point
along the side of another in the First Harmful Event and the
orientation of the vehicles at impact is in the same direction.
This does not include right angles or broadside crashes (See
Front-to-Side, Right Angle).”

3. Sideswipe, Same Direction “occurs if the following conditions
apply to both vehicles:
• The initial engagement does not overlap the corner of either

vehicle by more than four inches, so that there is no sig-
nificant involvement of the front or rear surface areas.

• There is no pocketing of the impact in the suspension areas.
The impact then swipes along the surface of the vehicle
parallel to the direction of travel.

• There is low retardation of the force along the surface of the
vehicle.”

Independent Variables

The independent variables, as found in the NASS GES database,
include mainly vehicle activities prior to impact. In the NASS GES
data set, precrash variables describe what the vehicle was doing just
prior to the crash; what made the vehicle’s situation critical; cor-
rective action made, if any, to this critical situation; and location
of the vehicle just prior to crash.

During the analysis, variables such as road geometry character-
istics (e.g., relation to interchange, un/divided roadway, etc.), traffic
conditions at peak and off-peak hours (e.g., congestion) and driver
characteristics (e.g., young, old, female, male) also were consid-
ered. However, these factors did not make statistical significant
contributions to the model and therefore were excluded.

Additional variables describe any distraction reported, road sur-
face condition at the time of the crash, and the geographical loca-
tion where the crash occurred. Driver distraction is considered as a
state of the driver and thus describes any inattention by the driver.
Condition of surface can be dry, wet, snow or slush, ice, sand, dirt,
or oil. Geographical location is classified by the regions in the
United States; each consists of several states.

A detailed description of variables used in this study can be
found in Table 2. Table 3 lists the binary variables that are signifi-
cant and common in the four estimated MXL models for C-C, C-T,
T-C, and T-T, respectively. The mean of every variable and its
standard deviation in parenthesis are presented in Table 3. The de-
scriptive statistics shows how these characteristics vary among the
different data sets.

Table 1. Number of Crashes

Crash combination Rear-end Angle Sideswipe Total

C-C 2,804 225 734 3,763
C-T 1,049 337 1,033 2,419
T-C 780 236 782 1,798
T-T 370 13 60 443
Total 5,003 811 2,609 8,423

Fig. 1. Possible manners of collision defined in the FARS Manual
(NHTSA 2010); (a) rear-end; (b) angle; (c) sideswipe
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Model Development

Discrete choice analysis was used to identify the effect that vehicle,
driver, and road factors have on each possible manner of collision.
It is possible to identify from the MXL model a particular combi-
nation of observed variables that describes the probability of an
outcome—in this case, the manner of collision. A MXL model re-
laxes the assumptions related to IIA, independent and identically
distributed (IID) errors present in a MNL model and allows ob-
served and unobserved heterogeneity (Greene 2007).

A better estimate can be obtained if the coefficients of some of
the attributes are treated as random because some unobserved
attributes could be accounting for rear-end, angle, and sideswipe
collisions conditionally. Unobserved attributes also are assumed
to exist due to the subjectivity of the data obtained from police
crash reports. These variables can be hidden in the variability
of perception when measuring driving actions and their consequen-
ces by the police officer or the parties involved in an accident
investigation.

A MXL model should be an alternative approach to improve the
performance of the model. For instance, some attributes with ran-
dom coefficients could include movement prior to crash (traveling
straight, stopped, changing lanes, etc.), as well as region and road
surface conditions. We define I as the set of outcomes, I = {rear-
end collision, angle collision, sideswipe collision}. The MXL prob-
ability of an observation or collision n that results in manner of
collision i (i ∈ I) may be expressed as (Washington et al. 2011)

Pin ¼
Z
x

expðVinÞP
∀ j∈I expðVjnÞ

fðβjφÞdβ ð1Þ

where Pin is the probability of a two-vehicle crash n resulting in
manner of collision i, given that a two-vehicle collision has

occurred; Vin is the deterministic component of the utility value
of manner of collision i associated with collision n; fðβjφÞ is
the density function that determines the weighted average of the
probability; and ϕ is the parameter vector describing the mean
and standard deviation.

The deterministic component of the utility value of manner of
collision i associated with collision n is a linear function

Vin ¼ βiXin ð2Þ

where βi is the row vector of parameters associated with the attrib-
utes of manner of collision i; and Xin is the column vector of ob-
served attribute values of manner of collision i for collision n.

Marginal effects were calculated to see how the probability of a
manner of collision is influenced when changing a binary variable
associated with attribute k from 0 to 1. The marginal effect formula
used is described as follows (Washington et al. 2011) (the subscript
n is dropped for simplicity):

∂Pi

∂xki ¼ ð1 − PiÞPiβk ð3Þ

In addition, to test the practical use of random coefficients
(i.e., MXL model) versus fixed coefficients (i.e., MNL model),
a likelihood ratio test was performed (Jones and Hensher 2007)
as follows:

χ2 ¼ −2½LLMNLðβMNLÞ − LLMXLðβMXLÞ� ð4Þ

where LLMNLðβMNLÞ is the log-likelihood at convergence of the
MNL model; and LLMXLðβMXLÞ is the log-likelihood at conver-
gence of the MXL model.

Table 2. Variable Dictionary

Variable Variable description

DAYLGT General light conditions at the time of the crash (1 if daylight, 0 otherwise)
DRY Condition of road surface at the time of the crash (1 if dry, 0 otherwise)
FAGVSI Striker driving at higher speed than struck vehicle (1 if yes, 0 otherwise)
FBRK Action taken by striker in response to the impending danger (1 if braking, 0 otherwise)
FCHNGL Vehicle precrash situation for striker (1 if changing lanes to the right or left, 0 otherwise)
FDISTR Distraction reported by striker (1 if yes, 0 otherwise)
FENCRC Critical event initiated by striker (1 if striker encroaching into struck vehicle’s lane, 0 otherwise)
FGOING Activity of striker prior to realization of critical event or prior to impact (1 if going straight, 0 otherwise)
FMANVR Striker maneuvered to avoid something in the road (1 if maneuvered, 0 otherwise)
FNOTRL Striking vehicle pulling no trailing unit (1 if no trailing unit, 0 otherwise)
FOVRDG Critical event initiated by striker (1 if striker is traveling over the lane line or off the edge of the road, 0 otherwise)
FRDLEL Path for striker prior to its first involvement in the crash (1 if vehicle stayed on roadway but left travel lane, 0 otherwise)
FSPEDR Speed as a contributing factor to the cause of the crash according to striking vehicle (1 if yes, 0 otherwise)
FSTAYL Path for striker prior to its first involvement in the crash (1 if vehicle stayed in travel lane, 0 otherwise)
FSTGHT Precrash situation for striking vehicle (1 if travelling straight ahead on left or right lane, 0 otherwise)
INTERC Relation to junction (1 if interchange area, 0 otherwise)
LDECST Activity for struck vehicle prior to realization of critical event or prior to impact (1 if decelerating or stopped in

traffic lane, 0 otherwise)
LGOING Activity for struck vehicle prior to realization of critical event or prior to impact (1 if going straight, 0 otherwise)
LNOAVM Action taken by the struck vehicle in response to the impending danger (1 if no avoidance maneuvered, 0 otherwise)
LNOTRL Struck vehicle pulling no trailer units (1 if no trailing unit, 0 otherwise)
LOTHSP Critical event initiated by struck vehicle (1 if traveling in same direction with lower speed, 0 otherwise)
LSTGHT Precrash situation for struck vehicle (1 if straight ahead on left or right lane, 0 otherwise)
ONEAN Alternative specific angle constant
ONERE Alternative specific rear end constant
SOUTH Region (1 if south, 0 otherwise)
SUMMER Season (1 if summer, 0 otherwise)
WEST Region (1 if west, 0 otherwise)
WINTER Season (1 if winter, 0 otherwise)
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Results and Discussion

The econometric software NLOGIT 4.0 (Greene 2007) was used to
develop the MXL models. With this software, it was possible to
separate the different categories of responses (manners of collision)
and create new explanatory variables to better capture the effect that
the variable of interest has on the outcome.

Tables 4 and 5 give the estimated results for the MXL models
corresponding to C-C, C-T, T-C, and T-T collisions, respectively. In
this section, the positive and negative influence of the independent
variables used in each model, as dictated by their positive or neg-
ative coefficient, is discussed.

The alternative specific constant accounts for the systematic bias
of all unobserved attributes that contribute to rear-end, angle, and
sideswipe utility values. A negative alternative specific constant
means that attributes not accounted for or found to have insignifi-
cant influence collectively reduces the probability of this outcome
and therefore are less likely to contribute to the relevant manner of
collision. For this study, the base case scenario is sideswipe colli-
sion since no alternative specific constant was specified in the util-
ity function. The opposite is true for a positive alternative specific
constant. The alternative specific constants across the different
models are discussed further at the end of this paper.

The developed MXL model considers all unobserved attributes
that are assumed to exist due to the subjectivity of the data obtained
from police crash reports. These variables can be hidden in the vari-
ability of perception when measuring driving actions and their con-
sequences by the police officer and/or the parties involved in an
accident investigation. Random parameters were considered to vary
across observations according to a normal distribution since it re-
sulted in a good statistical fit. Other distributions, such as normal,
lognormal, triangular, and uniform were tested but were not found
to be statistically significant. The random parameters are obtained
from repeated simulated draws. In this study, 1,000 random draws
were employed using standard Halton sequence (SHS) intelligent
draws as recommended by Bhat (2001).

The statistical significance of random parameters is also shown
in Table 4 for each model. Further exploration of the unobserved
factors taking part in the modeling can be found at the end of the
discussion of the model when estimated random parameters are
considered.

A log-likelihood ratio test between MNL and MXL was per-
formed for each model. As can be seen in Table 5, the confidence
level obtained indicates that MXL is more appropriate. According
to the results, the null hypothesis that the MXLmodel is not statisti-
cally superior to the MNL model is rejected. This means that the
MXL model provides a better approach to model the manner of
collision.

C-C (Model 1): Rear-End Collisions

For the rear-end-collision crash type, the results indicate that the
striking vehicle is traveling straight and the vehicle in front is trav-
eling at a lower speed. Although the striker’s response is to brake
and to stay in the same travel lane, the crash was not avoided. All
these precrash variables influence the occurrence of a rear-end col-
lision, so they have a positive sign. According to the marginal ef-
fects, if the struck car maintains a different speed (in this case a
lower speed than the striker), the probability of rear-end collision
increases by 8.4%. If the striker stays in the same lane prior to the
crash, the probability of rear-ending the car in front increases by
almost 4%. A braking performed by the striker to avoid collision
also increases the chances of being involved in a rear-end collision,
but at a smaller magnitude of 0.7%.

The random parameters estimated for the C-C model are related
to the actions of the striking vehicle and struck vehicle. Interest-
ingly, these variables describe the actions that both parties contrib-
ute to a rear-end collision and may be blamed for. The first random
parameter describes possible speeding for the striker, and the sec-
ond one describes the struck vehicle decelerating or stopping in the
travel lane. It could be that unobserved variability exists in these
factors because speeding and stopping in the lane may be inter-
preted as accepting responsibility for the crash. Therefore, these
reported actions are not fixed across observations. The first random
parameter has a mean of 1.097 and a standard deviation of (1.837).
This indicates that for about 72% of car crashes, speeding increases
the likelihood of a rear-end collision. The second random parameter
has a mean of 1.907 and a standard deviation of (1.649). This sug-
gests that in 88% of car crashes, a slower lead vehicle increases the
likelihood of a rear-end collision.

C-C (Model 1): Angle Collisions

The only contributing factor in the model for an angle collision
between two cars is an avoiding maneuver before the crash. This
maneuver was a reaction to avoid an object on the road. The prob-
ability of an angle collision between cars increases by 8.4% if the
striking car maneuvered to avoid something on the road. However,
angle collision is less likely among cars that crashed on a dry sur-
face. This road condition decreases the probability of this outcome
by 12.5%. This conversely implies that slippery road conditions
also may increase the risk of an angled impact if a car steered
to avoid hitting an object in its travel lane.

C-C (Model 1): Sideswipe Collisions

According to the results in Table 4, sideswipe collisions among cars
are influenced by the maneuvers performed before the crash, as
well as any distraction present. If the striker maneuvered to avoid
hitting an object and drove over the lane marker, the accident is
more likely to be a sideswipe collision. If a car is driving over
the lanes, or if it maneuvered to avoid something in the road,
the probability to hit the vehicle on the side increases by almost
20% and 5.1%, respectively. If the crash occurred in the South re-
gion (Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky,
Louisiana, Maryland, Mississippi, North Carolina, Oklahoma,
South Carolina, Tennessee, Texas, Virginia, West Virginia, and
Washington DC), the crash is less likely to be a sideswipe. Side-
swipe collisions decreases by 1.1% if the striker reported a distrac-
tion. If a crash between cars occurred in the South region, the
probability of having a sideswipe is decreased by 3%.

C-T (Model 2): Rear-End Collisions

When analyzing a crash where the front of a car collided with the
rear of a truck, the following variables were observed as significant
in the MXL model. The expected straight travel, speeding factors,
and sudden decelerations or stoppings are present the same way as
observed with C-C collisions. A negative coefficient is found for
daylight, meaning that C-T crashes during daylight are less likely to
be rear-end collisions. This could lead to the assumption that the
occurrence of a car colliding with a truck is due to a wrong per-
ception of spacing between vehicles when there is no daylight.
Daylight decreases the probability of a car rear-ending a truck
by 3.6%. Another negative coefficient decreasing the likelihood
of a rear-end collision is if the car maneuvered to avoid something
on the road. The probability of rear-end collisions between a car
and a truck decreases by 1.3% if the car maneuvered to avoid some-
thing on the road.
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Additional variables increasing the outcome of a car-truck crash
to be rear-end are dry road conditions at the time of crash; and
geographical location in the West region in the United States
(Montana, Idaho, Washington, Oregon, California, Nevada, New
Mexico, Arizona, Utah, Colorado, Wyoming, Alaska, and Hawaii).
Some possible reasons for this variables being significant can
be attributed to driving behaviors (e.g., aggressive following) in
this region under ordinary weather conditions. As also described
in Knipling (2013), occurrence of car-truck crashes is higher
(80.8%) when pavement is dry and under no adverse weather
conditions. According to the marginal effects, the most influential
variables are the road is dry, when the truck decelerates or stopped
in the lane and when the car keeps its direction. These variables
increase the probability of rear-end collisions by 10.2%, 4.4%,
and 9% respectively.

C-T (Model 2): Angle Collisions

In the case of a car traveling alongside a heavy vehicle, the model
indicates that an intended maneuver was attempted by the car but
failed. This can be inferred from the precrash situation influencing
the likelihood of an angle collision due to lane changing. If a car
changes lanes, the probability of hitting the truck traveling to the
side increases by 3%. It seems that cars misjudge the gap from the
adjacent lane and the speed and position of the truck traveling on
the side.

A negative effect is obtained from the variable describing a dis-
traction by the striker. The probability of an angle crashes decreases
by 1.3% if the car driver did not experience a distraction. This
reinforces the idea that performing a risky maneuver, rather than
distraction, influences the likelihood of this type of crash.

An additional variable with a negative influence in this crash
outcome is a truck with no trailing unit. The collision between a
car and a truck at an angle deceases by 1.5% if the truck has no
trailing unit. It could be that vehicle dimensions play a role in angle
collisions. The behavior to drive a truck with no unit may differ
than when it is carrying cargo, and this may be misleading for a
car attempting to change lanes.

C-T (Model 2): Sideswipe Collisions

Having a different combination of vehicles but keeping the same
striker vehicle type as car gives an interesting perspective on side-
swipe collisions. A sideswipe crash in a car-truck collision is more
likely to occur if a truck is traveling straight ahead on the left or
right lane of the car, or if the crash occurs in winter. According to
the marginal effects, the probability of a car crashing into a truck in
a sideswipe manner increases by 30% if the truck is going straight.
If a crash occurs during winter, the probability of a sideswipe col-
lision increases by 2%. It is less likely to occur if the striker left the

lane prior to the crash. Sideswipe collisions slightly decreases by
3% if the car lefts the travel lane.

The likelihood of a sideswipe collision is increased if the car
encroaches the next lane where the truck is traveling. However, this
variable behaves differently across observations since some unob-
served factors not captured in the data set also may be influencing
this variable. For instance, for a crash in winter, the car could have
skidded involuntarily to the other lane. The parameter has a mean
value of 1.645 and standard deviation of (2.621). This indicates that
73% of car-truck collisions are more likely to be sideswipe if the
striking vehicle encroaches the next lane.

T-C (Model 3): Rear-End Collisions

When a crash involves a truck striking a car, it is more likely to be a
rear-end type if the truck was speeding and the car in front took no
action to avoid the collision. Again, speed is considered a contrib-
uting factor to the cause of a rear-end collision. For this combina-
tion of vehicles, it is interesting to see that the struck car did not
respond to the impeding danger. The marginal effect indicates that
rear-end collisions between a truck and a car, where the truck is
blamed for the accident, increases by 3.4%; and it increases by
1.6% when there is a speed-related collision and the car does
not make an evasive maneuver when realizing the imminent im-
pact. A crash is less likely to be a rear-end type if the car is going
straight before the truck runs into it. The event of a car going
straight decreases by 1.2% for this type of collision. Although this
might seem unexpected, a possible explanation could be that the car
suddenly merged into the truck’s lane, and going straight was not
the car’s path prior to the impact.

T-C (Model 3): Angle Collisions

If the truck is traveling straight ahead in the adjacent lane of the
vehicle before crashing, it will influence the likelihood of an angle
collision. The chances for a truck to collide at an angle with a car
increases by 2.7% if the truck travels straight ahead on the left or
right lane. However, if a car decelerates or stops in a traffic lane, an
angle crash outcome is less likely to occur. Car decelerating or stop-
ping decreases the outcome by 0.5%.

Both random estimates have a negative influence in the outcome
of angle collisions when a crash has occurred, meaning that it is less
likely to be an angle crash. The first random estimate describes the
truck to be going straight prior to colliding with the car. This ran-
dom parameter has a mean of −1.451 and a standard deviation of
(1.849). This suggests that in 78% of crashes where a truck hit a
car, the outcome is less likely to be an angle collision if the truck
was going straight. Other unobserved behavior such as merging
before the crash may cause random effects on the model. The
second random parameter relates to the season in which the crash
occurred. In this study, the summer season is defined as the months

Table 5. MXL Model Results; Model Statistics

Model statistics C-C C-T T-C T-T

Number of parameters 16 18 15 10
Log-likelihood at convergence −1,118.004 −1,246.184 −1,048.044 −151.023
Log-likelihood at zero −4,134.078 −2,657.543 −1,975.305 −486.685
Chi-squared 6,032.149 2,822.718 1,854.523 671.323
Number of observations 3,763 2,419 1,798 443
Fixed parameter log-likelihood
at convergence

−1,134.079 −1,261.569 −1,051.057 −151.9251
Likelihood ratio (chi-squared) 32.15 30.77 6.026 1.804
Confidence level (%) 99.99 99.98 95.09 99.82
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of June, July, and August. Its variability across observations is as-
sumed to exist because other months may be reported as summer.
The statistical values of −1.696 for mean and (2.2226) for standard
deviation indicate that 78% of these crashes involving a truck and
a car are less likely to be angle collisions.

T-C (Model 3): Sideswipe Collisions

One of the actions prior to impact that can result in a sideswipe
collision between a truck and a car is changing lanes. The precrash
variables with negative coefficients that affect having a crash that
is not a sideswipe are the truck leaving travel lane and the car
decelerating or stopping in the travel lane. Further, a crash on an
interchange contributes to collision types other than sideswipe.

The variable with the highest marginal effect among the attributes
in this utility function is the truck changing lanes. This event in-
creases the probability of this outcome by 21.9%. Other variables
have less influence on the outcome. The truck staying on the road-
way but leaving the travel lane decreases the probability of a side-
swipe collision by 1%. If the car decelerates or stops, this diminishes
the outcome probability by 0.6%. Interestingly, if the crash occurs at
an interchange, sideswipe collisions decrease by 0.3%.

T-T (Model 4): Rear-End Collisions

In T-T rear-end collisions, the precrash actions performed by the
striker that affects the outcome of a rear-end collision between
two trucks is braking and staying in the travel lane. If the truck
stays in the same lane, the probability of crashing into the truck
in front increases by 10.6%. If the truck brakes as a response to
the impending danger, the probability of striking the leading truck
increases by 1.1%. Also, if the struck truck was not pulling any
trailing unit, it also affects the likelihood of this particular manner
of collision. When the truck in front does not carry a trailing unit,
the probability of a rear-end collision among trucks increases by
0.9%. Interestingly, if the striker also has no cargo unit, it is less
likely for the outcome to be a rear-end collision. If the truck striking
another truck that has no trailing unit, the chances of collision de-
crease by almost 1%. This could mean that a truck misjudges the
trajectory of the truck in front because of its smaller dimensions. It
could motivate the trailing truck to behave more aggressively and
tailgate the truck in front. Another reason for this type of impact
could be attributed to the differences in braking capabilities of
larger and smaller trucks.

T-T (Model 4): Angle Collisions

The likelihood of an angle collision between trucks is influenced
mainly by the maneuvering of the striker to avoid an object on the
road. This is supported by the negative alternative specific constant,
which includes additional variables not accounted for. If the striker
performs a maneuver to avoid something on the road, the chance of
hitting the adjacent truck at an angle increases by 10.5%.

T-T (Model 4): Sideswipe Collisions

The T-T sideswipe manner of collision was challenging, as the only
significant variables in the model have negative influences that
decrease the likelihood of the collision. However, this variable
may be useful since it can describe how a sideswipe collision does
not occur. The only fixed parameter describes the struck vehicle as
decelerating or stopping in the lane. If the struck truck decelerates
or stops, the chances of this outcome decrease by almost 4%. A
possible explanation of why any deceleration of two vehicles
traveling side by side will not result in sideswiping can be that

the decelerated vehicle would be left behind, and this action finally
may result in a different manner of collision.

The other parameter, which is treated as random, describes a
negative effect in the outcome because of its negative sign. This
variable describes the striker as going straight before collision.
For an impact along the side of both vehicles, it is expected that
an activity that indicates a movement, such as steering, is more suit-
able. With regard to unobserved factors affecting this variable,
strikers may use this definition as an excuse for not paying attention
to the road. Assuming this, this action may be reported differently
in the observations, so it can be considered as random. This param-
eter has a mean of −4.282 and a standard deviation of (2.745). The
likelihood of getting involved in a sideswipe collision is 94% less
likely when the striker was going straight.

Comparing Different Driving Behavior

This section compares the different possible manners of collision
that are more or less likely to occur according to the developed
MXL models. The results for each vehicle crash combination point
out the different manner of collisions when a vehicle strikes the
same and different types of vehicle. The manner of collision will
reflect unsafe driving behavior and vehicle dynamics when inter-
acting with same or different types of vehicle. This analysis is based
on the sign of the alternative specific constants for rear-end and
angle collisions for each model, as shown in Table 4.

For instance, if a car hit a truck, according to the positive co-
efficients of 0.879 and 2.122 for rear-end and angle, respectively,
and all attributes being equal, it is less likely to be a sideswipe col-
lision. In the same way, in a crash where a truck ran into a car, the
positive values of 0.477 and 0.779 for rear-end and angle constants
indicate that it is more likely to be a rear-end or an angle collision
rather than a sideswipe. However, in a collision that involves two
trucks, the negative values of −2.546 and −4.374 in rear-end and
angle collisions tell that it is more likely to be a sideswipe. For
crashes involving two cars, the coefficients of −2.128 and 0.522
for rear-end and angle, respectively, demonstrates that the manner
of collision is more likely to be angle.

Knowing the previous likelihood of the manner of collision, it
can be interpreted that cars can better interact with the same ve-
hicles in front and large vehicles on the side traveling parallel.
However, cars are more likely to fail to follow a truck in a safe
manner and change lanes when a truck or a car is in the adjacent
lane. This is supported by the findings in Knipling (2013), which
point to a greater frequency of aggressive driving in car drivers than
truck drivers and errors attributed to car drivers. Accordingly, a
failed interaction among trucks describes a possible failure of
trucks interacting with cars traveling in front or positioned in
the adjacent lane ahead or behind the truck. Longitudinal interac-
tion errors could occur in part because of “trucks’ relative inability
to evade an errant car,” as mentioned in Knipling (2013). For trucks
failing to interact with cars in the adjacent lane, a possible hypoth-
esis can be referred to the lack of visibility when trucks move
from left to right, as suggested in Knipling (2013). Also, it indicates
unsafe driving behavior when the truck matches the position of an-
other truck traveling in the adjacent lane. This can be partly due to
trucks’ lack of stability and the aerodynamics involved when two
trucks are traveling side by side.

Policy Implications

One of the aims of this research is to aid in the decisions
made by public officials to reduce the likelihood of rear-end,
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angle, and sideswipe collisions. The following measures are sug-
gested as an attempt to contribute to safety improvements on
highways.

Roadway improvements should consider the sight distance, ac-
celeration/deceleration capabilities, and vehicular dimensions of
cars and trucks. Proper road access to arterials should look into
removing slower-turning vehicles such as trucks from traffic lanes.
Performing traffic forecast on conflicted sites may help foster the
understanding of the trend of unsafe movements. Adjusting the
U.S. transportation infrastructure based on the current types of ve-
hicle in traffic is essential to increase throughput.

Revisions in lane width or lane delineations, for instance, may
need to be made to allow different types of vehicles to interact
safely on highways. Even vehicle configurations may have to
change to make drivers more aware of vehicles changing lanes.
New configurations of turning signals, electronic onboard devices,
or both may warn drivers so they can avoid crashing into the car in
the next lane. This may result in reducing angle and sideswipe
collisions. Restricting traffic to left or right lanes that are labeled
as acceleration or deceleration lanes can allow for driving maneu-
vers based on vehicle capabilities. This could be complemented by
designated different speed limits to trucks and cars. In addition, a
separation policy when following a different type of vehicle can
help eliminate rear-end collisions.

Improvements in state-highway programs and law enforcement
are crucial to minimizing the possible manners of collision on high-
ways. Providing education to drivers on the different vehicles on
the road and their capabilities can be the first step toward promoting
safety awareness.

Conclusions

This research has explored the use of the MXL model to quantify
the contributions of vehicle characteristics, vehicle following, and
precrash attributes, among other factors, on the probabilities of
three manners of collision on interstate highways.

The activity of the striker prior to collision is of special interest
since vehicle-following attributes are incorporated in the model to
try to explain unsafe interactions between two vehicles prior to a
rear-end crash. An angle collision between the same or different
vehicle types can be commonly attributed to conscious yet aggres-
sive lane changing or unpredicted maneuvers that changed the ve-
hicle’s path. In particular, this manner of collision between cars and
trucks, regardless of their role, is expected to occur due to the differ-
ence in size and dynamics between two distinct types of vehicles,
whether one changes lanes on purpose or not. On interstate high-
ways, trucks are driven mostly in the right lane(s), so an inherent
lane separation exists between cars and trucks. This behavior is
expected to contribute to angle collisions in crashes between a
car and a truck. It is expected that a collision in a sideswipe manner
occurs when the same vehicles are traveling next to each other
in adjacent lanes. It is suspected that an occurrence of this type
of collision between cars and trucks will be attributed to the differ-
ence in longitudinal dimensions. Identifying and understanding
driver behavior leads to responsible countermeasures for road and
insurance policy design and exposes risk implications for truck
companies.
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