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Abstract: In recent years, a growing concern related to large truck accidents has increased owing to the level of injury severity that can be
sustained and to the related potential economic impact. Current studies related to large truck–involved crashes are scarce and do not address
the human factors that can greatly influence accident outcomes. This study presents an analysis of data from the fusion of several national data
sets addressing injury severity related to large truck–involved crashes. This is accomplished by considering human, road environment, and
vehicular factors in large truck–involved crashes on U.S. interstates. A random-parameter ordered-probit model was estimated to predict the
likelihood of five injury severity outcomes—fatality, incapacitating, nonincapacitating, possible injury, and no injury. The modeling approach
accounts for possible unobserved effects relating to human, vehicular, and road environment factors not present in the data. Estimation
findings indicate that the level of injury severity is highly influenced by a number of complex interactions between factors, and the effects
of some factors can vary across observations. DOI: 10.1061/(ASCE)TE.1943-5436.0000539. © 2013 American Society of Civil Engineers.
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Introduction

Trucking is a vital component of any prospering and growing
economy. It is the backbone of many logistic and supply-chain
systems. Growing concerns related to large truck [gross vehicle
weight rating (GVWR) greater than 4,535.9 kg (10,000 pounds)]
crashes have increased in recent years owing to the potential level
of injury severity and economic impact. Recent statistical data in-
dicate that large trucks have a higher rate of crash involvement than
passenger vehicles in the United States controlling for the number
of registered vehicles and vehicle miles traveled (VMT) [Federal
Highway Administration (FHWA) 2010; National Highway Traffic
Safety Administration (NHTSA) 2008]. Although large trucks
accounted for 4% of registered vehicles and 8% of VMT in 2008,
11% of motor vehicle deaths in 2008 were a result of large truck
crashes (FHWA 2010). Large trucks impact the national economy
heavily through daily freight movements. However, large truck–
involved crashes also impact the level of injury severity of collision
partners and incur high societal cost associated with fatalities,
injuries, and property damages.

The cost associated with these large truck–involved crashes
is of great concern and can be substantial. Based on 2005 dollars,
the estimated cost of a police-reported crash involving a large
truck, considering all truck-tractor with trailer configurations, aver-
aged $91,112 (Zaloshnja and Miller 2006). In addition, this study

estimated the average cost per fatality, nonfatality, and property
damage only as $3,604,518, $195,258, and $15,114, respectively.
An earlier study by Zaloshnja and Miller (2004) estimated the cost
associated with different configurations of large trucks involved
in crashes. According to this study, of all configurations of truck-
tractor carrying a different number of trailers and multiple combi-
nation trucks (i.e., large truck carrying two or three trailers) had the
highest cost at $88,483 per crash based on Year 2000 dollars. The
crash costs based on Year 2000 dollars per 1,000 truck miles were
$157 for single unit trucks, $131 for single combination trucks, and
$63 for multiple combinations (Zaloshnja and Miller 2004). These
costs illustrate the potential monetary impacts large truck crashes
have on society. Hence, any increase in the number or severity of
these types of crashes is of great concern to organizations that op-
erate, maintain, and construct the transportation system as well as
to trucking companies.

With this in mind, this study aims to analyze the injury severity
of large truck–involved crashes through an econometric modeling
approach. The random-parameters ordered-probit model is utilized
to shed light on the factors contributing to large truck crashes. To
achieve this, the fusion of three data sets from the National Auto-
motive Sampling System General Estimates System (NASS-GES)
crash database was used. This fused data set is hoped to provide an
improved understanding of the complex interactions between con-
tributing factors influencing large truck crash results. The three
fused data sets pertain to human, vehicle, and road-environment
factors. To capture these complexities using the NASS-GES data-
base, consideration of random parameters provides a mechanism to
account for any unobserved heterogeneity. To the best of the au-
thors’ knowledge, this study is one of the first attempts at modeling
large truck injury severity focusing on the U.S. interstate system by
utilizing the NASS-GES data set. Although the random-parameters
ordered-probit model has been applied to large truck crash severity
from different modeling perspectives, these studies use limited data
sets and do not consider the potential effect of unobserved factors
on crash severity outcomes exclusively (see the next section). By
contrast, our research extends the current literature and introduces
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additional significant variables related to human factors in regard to
large truck crashes.

Literature Review

This section presents a synthesis of previous research with special
attention given to the methodological approaches that establish any
links between crash characteristics and injury severity with human,
vehicle, and road environment factors.

A recent study by Lemp et al. (2011) introduced a heteroske-
dastic ordered-probit (HOP) model to analyze the injury severity
in crashes involving at least one large truck. The analysis of large
trucks in this study was limited to long-combination trucks (LVCs)
of two or more trailers with a GVWR of 36,287 kg (80,000 lb).
They utilized a HOP model specification for greater flexibility
in parameter estimation over the standard ordered-probit (OP)
model to address the issue of heteroskedasticity (i.e., nonconstant
variance) across the observations. Their model results indicated that
in an injurious large truck crash, the likelihood of an injury of lesser
severity was greatly increased if a crash occurred at curved sections
of a roadway, if a crash occurred on a roadway sag, if the trucks
were overweight, if a driver was under the influence of illegal
drugs, and/or if a driver exhibited aggressive driving behavior other
than speeding. Their study was limited to data provided from the
Large Truck Crash Causation Study (LTCCS) collected between
2001 and 2003. Moreover, the modeling approach did not explicitly
account for any unobserved factors (i.e., factors not captured in
the data set but that may be contributing to the injury severity
outcomes).

Zhu and Srinivasan (2011) applied an ordered-probit model us-
ing the data from large truck–involved crashes. The aim of the
study was to address the need for research regarding large truck
safety in addition to contributions to transportation policy, improve-
ment of motor carrier operations, and incident cost reductions. The
study found that head-on collisions and collisions at intersections
were the most serious, whereas crashes on multilane highways
were less severe. Their estimation results indicated that particular
attention must be paid to truck corridors near major tourist spots
because of network (route) unfamiliarity issues of passenger car
drivers. Namely, distracted driving, driving under the influence, or
emotional distraction increased the likelihood of severe crashes.
Other factors such as truck-driver fatigue, aggression, and seat belt
usage turned out to be statistically insignificant. This study was
based on a small data set extracted from the LTCCS study.

As with the present work, Chistoforou et al. (2010) applied a
random-parameter ordered-probit framework to large truck crashes,
but it was applied to road users to address the challenge of external
cost estimation and roadway safety. The data they utilized for their
analysis period is not continuous (2000–2002 and then 2006 were
considered). This discontinuity in the analysis period could lead to
estimation errors; that is, some observed and unobserved factors
may vary from year-to-year. For example, weather may vary from
year-to-year, geometry (e.g., widening shoulder or median or
installing a roadside barrier), or policy-related factors (e.g., change
in posted speed limit). These variations could lead to variations in
the injury severities that are experienced from year-to-year and
could lead to erroneous estimates (Tarko et al. 2011).

Duncan et al. (1998) applied an ordered-probit model for rear-
end collisions between truck and passenger car. The authors found
when a rear-end crash outcome occurs between a passenger car and
truck, factors related to darkness, high speed differentials, high
speed limits, grades (especially when wet), being in a car struck
from the rear, driving while drunk, and being female increase the

likelihood of a high severity of injury for passenger vehicle occu-
pants. The study also found car rollovers and the situation in which
a car is rear-ended by a truck at a high speed differential to be sig-
nificant. Driving on snowy, icy, or congested roads; the use of a
child restraint in passenger vehicles; and being in a rear-ended sta-
tion wagon as opposed to a sedan are likely to reduce the severity
outcome of the crashes. This study was limited to the inadequate
traffic data on certain segments of highway at the time of crash.
That is to say, unavailable road inventory data, such as the number
of lanes and traffic flow data, not present in the crash data set could
lead to unobserved factors influencing injury severity outcomes,
thus leading to biased estimates of the parameters. For instance,
the number of directional lanes indirectly related to the ease or
tendency of lane-changing behavior of the passenger and heavy
vehicle drivers. Similarly, the traffic flow is related to time of day,
types of crashes such as single- and multivehicle (Qin et al. 2006)
as well as speed and injury severities of the involved vehicles. To
limit biased estimates, a comprehensive database should be consid-
ered. This study considers the GES system because it is a nationally
representative sampled crash database.

From a logit-based approach, Chang and Mannering (1999)
applied a nested logit structure to model injury severity based on
vehicle occupancy in terms of exposure effects to address the issue
of severe injury caused by large trucks (i.e., nesting structure was
based on vehicle occupancy). Their results indicate that the effects
of trucks on crash injury severity are greater for multioccupant ve-
hicles over single-occupant vehicles, although the multioccupant
vehicle crash data set was limited in the number of observations.
The authors considered nonincapacitating injury, incapacitating in-
jury, and fatal injury into one single group, which could be sepa-
rated and addressed in different modeling approaches, such as
ordered-probit models where all five categories—fatality, incapaci-
tating, no-incapacitating, possible injury, and property damage only
(no injury)—could be addressed. However, considering disaggre-
gate injury outcomes (i.e., considering nonincapacitating injury,
incapacitating injury, and fatal separately rather than combined)
could be challenging in the model estimation that depends on data
regarding those injury outcomes in the sample.

Khorashadi et al. (2005) investigated injury severity through the
use of a multinomial logit model to address large truck crashes and
fatalities and the limitations of other studies regarding crash
frequencies. Although not incorporated in their study, they identify
the urgency of additional research regarding human factors such as
perceptual, cognitive, and response demands of drivers to explain
the complex interaction of factors in crashes. Their study was
focused on the exclusive use of crash data from California.

A mixed logit framework was implemented by Milton et al.
(2008) to capture injury severities of crashes involving all
vehicles—not explicitly focusing on large truck crashes—on road-
way segments to address the challenges of methodological ap-
proaches related to count models. Their model results indicate
that the average daily traffic (ADT) per lane (in thousands of
vehicles) for slightly less than half of the roadway segments in the
sample result in a decrease in property damage only (PDO) crashes,
which implies an increase in more severe injury outcomes. They
found that increasing pavement friction decreases the likelihood
of possible injury and increases the likelihood of PDO and injury;
whereas a greater snowfall increases the likelihood of PDO and
consequently decreases the likelihood of more severe injury out-
comes. The number of horizontal curves and the number of grade
breaks, both used as a fixed parameter, and the number of inter-
changes per mile in the roadway segment reduces the likelihood
of injury crashes. Their work was limited to an aggregated data
set to avoid missing event specific information.
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From the perspective of large truck–involved crashes,
Vadlamani et al. (2011) conducted a hot spot analysis of high-risk
sites through both a negative binomial regression model and a pro-
posed methodology that utilized property damage only equivalents
(PDOEs). The authors found that the hot spots identified by the
negative binomial model exhibited low fatalities and major injuries
but large minor injuries and PDOs and presented large annual aver-
age daily traffic (AADTs) in contrast to the PDOE methodology. In
addition, site investigations at the hot spots indicated the potential
risk factors such, as weaving activities near freeway junctions and
ramps, absence of acceleration lanes near on-ramps, small should-
ers to accommodate large trucks, narrow lane widths, inadequate
signage, and poor lighting conditions within a tunnel, suggest
inadequate road design and inefficient and unsafe traffic operation.
Their work provides a methodology for screening large truck–
involved crashes and provides a way to quantify the societal im-
pacts of such crashes.

The current literature related to the modeling of large truck crash
severity is wide and extensive in nature. However, various aspects
of the problem have not been addressed with particular emphasis,
for instance, on human factors focusing on precrash driving behav-
iors over the U.S. interstate system. It is evident through the pre-
sented works that data sample age and size is an issue. The present
research differentiates itself from the presented works through
the use of a comprehensive nationally representative sampled crash
database that incorporates human-related factors, vehicle factors,
and road environment variables. This study considers additional
human-related factors that are not only limited to the driving
behavior in the precrash phase but also include drivers’ demo-
graphics into the modeling framework. Furthermore, it utilizes a
large database to minimize the effects of unaccounted for factors
dealing with human behavior. Also, large trucks are defined to
be greater than 4,536 kg (10,000 lb) as defined by the Insurance
Institute for Highway Safety (IIHS).

Empirical Setting

The data for large truck crashes was collected from the National
Automotive Sampling System General Estimated System
(NASS-GES) crash database maintained by the National Highway
Traffic Safety Administration (NHTSA). A large truck, as defined
by the IIHS and for this study, can be classified as a tractor-trailer,
single-unit truck, or cargo van having gross vehicle weight rating

(GVWR) greater than 4,536 kg (10,000 lb). According to the
Analytical Users’ Manual (NASS-GES 2005), the GES database
is based on a nationally representative probability sample selected
from an estimated 5.8 million police-reported crashes that occur
annually, resulting in a fatality or injury and those involving major
property damage.

According to a technical report by NHTSA (2009), 25% of
minor injury crashes and half no-injury crashes are unreported
(Savolainen et al. 2011). This study considered the GES sample
data over a period of 4 years from 2005 to 2008 for large truck–
involved crashes. Despite the issues of underreporting for minor
and no personal injury along with the multistage sampling scheme
in the GES database, the GES focuses on crashes of greatest con-
cern to the highway safety community and the general public
(NASS-GES 2005).

To investigate human, vehicle, and road environment factors, a
sample of 8,291 data observations is used in which each observa-
tion is a crash representing the most severely injured occupants
(i.e., the worst injury level) involving at least a large truck on the
interstate system from 2005 to 2008. The nontruck vehicles are
broadly classified as passenger cars and their derivatives and light
trucks [having GVWR less than 4,536 kg (10,000 lb)] and com-
prises approximately 71 and 21%, respectively, of the vehicles
involved with large trucks in this sample. The statistics clearly in-
dicate that quite a large number of passenger vehicles are involved
in large truck crashes. This truck-involved data sample (i.e., 8,291
observations) was extracted from the GES crash data set with an
average of 56,970 crashes (i.e., truck and non-truck–involved
crashes) reported each year from 2005 to 2008. The crash data
set was fused to the vehicle and person data set through the appro-
priate linking variable and crash number, whereas vehicle and per-
son data sets were linked through vehicle and crash number using
the Statistical Analysis System (SAS 2011). The random-parameter
ordered-probit modeling framework was modeled in Limdep
(NLOGIT 4.0) (Greene 2007).

Descriptive statistics of key variables used in the model (i.e., all
independent variables) are presented in Table 1. The dependent
variable has five levels of injury categories—fatality (K), incapaci-
tating (A), nonincapacitating (B), possible injuries (C), and nonin-
jury (O) or property damage only (PDO), which represent 56
(0.06%), 258 (3.1%), 527 (6.3%), 593 (7.1%), and 6,857 (82.7%)
of the sample size considered in this study, respectively.

Human factors cover occupant’s demographics, driving behav-
ior, restraint usage, and driving or living area vicinity. Turning to

Table 1. Descriptive Statistics of Key Variables in the Model

Variable Meaning of variables in the model Mean Standard deviation

CURVE Alignment of highway section (1 for curved section, 0 otherwise) 0.1353 0.3421
WEEKEND Day of the week (1 if weekend, 0 otherwise) 0.1455 0.3526
SUMMER Months of the year [1 if summer months (June–August), 0 otherwise] 0.2387 0.4263
DARK Light condition of street (1 if dark, 0 otherwise) 0.1341 0.3408
VEH_INVL Number of vehicles involved in the crash 2.0526 0.8034
TRAIL1 Trailing unit when the crash occurred (1 if one trailer, 0 otherwise) 0.7523 0.4317
PASSIVE Vehicle role (1 if struck by other vehicle, 0 otherwise) 0.3711 0.4831
RLOVER The most harmful event (1 if rollover, 0 otherwise) 0.8019 0.3985
LRRDDEP Vehicle maneuver during precrash situation (1 if left- or right-side departure, 0 otherwise) 0.1354 0.3422
SSWIPESD Orientation of vehicle at the time of crash (1 if sideswipe in the same direction, 0 otherwise) 0.2632 0.4404
LANECHNG Vehicle maneuver just prior to impending crash (1 if changing lane, 0 otherwise) 0.0988 0.2984
GOSTRGHT Vehicle maneuver just before impending crash (1 if going straight, 0 otherwise) 0.6490 0.4773
SPEEDFAC Factor of crash identified in the investigation (1 if speed, 0 otherwise) 0.1438 0.351
TEXAS1 Drivers’ working/residing place according to license record (1 if Texas, 0 otherwise) 0.1019 0.3026
LAPSHLD Occupants’ use of available vehicle restraints (1 if lap and shoulder belt used, 0 otherwise) 0.8229 0.3817
MALE Gender of the occupants (1 if male, 0 otherwise) 0.9388 0.2396
AGE5565 Age of occupants (1 if age group is 55–65, 0 otherwise) 0.1271 0.3331

598 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / JUNE 2013

J. Transp. Eng. 2013.139:596-604.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
T

E
P 

L
IB

R
A

R
Y

-S
E

R
IA

L
S 

on
 0

5/
28

/1
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Table 1 demographics, males make up approximately 93.8% of the
sample and age between 55 and 65 accounts for approximately
12.7% of the sample. Speed as a contributing factor in the crash
identified through the investigation process accounts for 14.4%
of the sample. Restraint usage (i.e., lap and shoulder belt) accounts
for approximately 82.2% of the sample. Drivers residing in the state
of Texas account for approximately 10.2% of the sample. Turning
to vehicular characteristics, trucks carrying single trailing unit ac-
count for approximately 75.2% of sample. On average, there are
two vehicles involved in the crashes in this study. Vehicular role
being passive in crashes (i.e., being struck by another vehicle in
the crash) accounts for approximately 37.1% of the sample. Then,
road and environmental characteristics, such as curved sections of
the highways, account for approximately 13.5% of the sample.
Lighting condition at the time of the crash, such as darkness, rep-
resents approximately 13.4% of the sample. Temporal characteris-
tics, such as weekend (i.e., Saturdays and Sundays) and summer
months (i.e., June to August), account for approximately 14.5 and
23.9% of the sample, respectively. Finally, crash mechanism such
as rollover, departing the roadway, sideswipe in the same direction,
lane changing, and going straight in the lane accounts for approx-
imately 80.2, 13.5, 26.3, 9.8, and 64.9% of the sample, respectively.

The correlation matrix for the ordered-probit model was per-
formed and indicated that none of the variables of interest have
a correlation value of more than �0.50. The correlation matrix
shows the maximum correlation between departing the roadway
and the number of vehicles involved is −0.477. Similarly, the crash
mechanism, such as lane changing and going straight, shows a
correlation of −0.450. However, these two situations show logical
relationship in terms of their signs (i.e., they are negatively corre-
lated). This is possibly due to a single vehicle running off the road
rather than multiple vehicles. Similarly, lane changing and going
straight (i.e., lane keeping) deal with dissimilar characteristics with
respect to driving maneuvers and in reality may not indicate any
degree of multi-colinearity.

Methodology

To obtain a better understanding of the factors associated with
large truck–involved crashes, a random-parameters ordered-probit–
modeling approach is proposed to capture the injury severity ex-
perienced and to account for any unobserved heterogeneity (Zhu
and Srinivasan 2011; Chistoforou et al. 2010; McKelvey and
Zavoina 1975). Since the level of injury is ordinal in nature, the
KABCO scale [fatality (K), incapacitating (A), nonincapacitating
(B), possible injuries (C), and noninjury (O) or property damage
only (PDO)] is followed. To reduce the bias and variability in the
parameters estimation resulting from any underreporting tendency
in the crash data reporting system, a descending order of injury
severity level 0 for K (fatality), 1 for A (incapacitating injury),
2 for B (nonincapacitating injury), 3 for C (possible injury), and
4 for O (property damage only) is considered. Ye and Lord
(2011) showed that by formulating in descending order of injury
severity (KABCO) rather than ascending order (OCBAK) reduced
the bias and variability of the estimated parameters for the ordered-
probit model. Ye and Lord (2011) tested this under different sim-
ulation scenarios.

With this in mind, the ordered-probit models have been widely
applied to model the marginal probability effects of several
contributory factors on injury severity by considering 0 for no
injury/PDO, 1 for possible injuries, 2 for nonincapacitating injury,
3 for incapacitating injury, and 4 for fatality (Chistoforou et al.
2010; Abdel-Aty 2003; Gray et al. 2008; Kockelman and Kweon

2002; Lee and Abdel-Aty 2005; O’Donnell and Connor 1996; Pai
and Saleh 2008; Quddus et al. 2002; Xie et al. 2009; Zajac and Ivan
2003). However, this study models the level of injuries as five levels
of ordinal categories of the dependent variable and is as follows:
0 for fatality, 1 for incapacitating injury, 2 for nonincapacitating
injury, 3 for possible injury, and 4 for property damage only.

The model is formulated by defining an unobserved variable y�
as a modeling basis of ordinal ranking of the data, with y� specified
as a latent and continuous measure of injury severity of each
observation (Washington et al. 2011)

y� ¼ βXþ ε ð1Þ
where y� = dependent variable (specified as a latent and continuous
measure of injury severity of each observation n); β = vector of
estimable parameters;X = vector of explanatory variables (e.g., hu-
man, roadway segment, vehicle, and crash mechanism character-
istics); and ε = random error term (assumed to be normally
distributed with 0 mean and a variance of 1).

By using Eq. (1) and under the order probit framework, the ob-
served ordinal data y (e.g., injury severity) for each observation can
be represented as (Washington et al. 2011)

y ¼ 0 if ∞ ≤ y� ≤ μ0 y ¼ 1 if μ0 ≤ y� < μ1

y ¼ 2 if μ1 ≤ y� < μ2 y ¼ · · ·

y ¼ I − 1 if μI−2 ≤ y� < μI−1 y ¼ I if μI−1 ≤ y� < ∞
ð2Þ

where μ = estimable parameters or thresholds between two adjacent
injury categories that define y and are estimated jointly with the
model parameters β, which corresponds to integer ordering; and
I = highest integer ordered response (e.g., for PDO, this is 4).

To estimate the probabilities of I specific ordered response for
each observation n, ε is assumed to be normally distributed with 0
mean and variance 1. The ordered-probit model with ordered
selection probabilities is defined as follows:

Pnðy ¼ 0Þ ¼ Φð−βXÞ
Pnðy ¼ 1Þ ¼ Φðμ1 − βXÞ − Φð−βXÞ
Pnðy ¼ 2Þ ¼ Φðμ2 − βXÞ − Φðμ1 − βXÞ

· · ·

Pnðy ¼ 1Þ ¼ 1 − ΦðμI−1 − βXÞ ð3Þ
where Pnðy ¼ 1Þ is the probability that observation n has I as the
highest ordered response index (for instance, injury outcomes, in
our case PDO), given a crash occurred; and Φð·Þ = standard normal
cumulative distribution function.

Marginal effects are computed at the sample mean for each cat-
egory (Washington et al. 2011; Greene 1997)

Pnðy ¼ 1Þ
∂X ¼ ½ϕðμI−2 − βXÞ − ϕðμI−1 − βXÞ�β ð4Þ

where Φð·Þ = probability mass function of the standard normal
distribution.

To accommodate any unaccounted factors that may vary across
observations, this study extends the standard ordered-probit model
to account for random parameters (Chistoforou et al. 2010;
Train 1997; Revelt and Train 1998; Brownstone and Train
1999; McFadden and Train 2000; Bhat 2001; Eluru et al. 2008;
Anastasopoulos and Mannering 2009; Anastasopoulos et al.
2009a, b). The inclusion of random parameters provides a mecha-
nism to minimalize inconsistent, inefficient, and biased parameter
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estimates (Washington et al. 2011). By contrast, the fixed-
parameters ordered-probit model would lead to bias estimates while
neglecting the unobserved heterogeneity as shown by Chistoforou
et al. (2010). This would be the case because (1) some assumptions
regarding the standard probit model limits its applicability; (2) the
marginal probability effects change their sign while moving from
the smallest to the largest outcome; and (3) possible unobserved
factors are not properly addressed. The assumptions made in the
standard fixed-parameters ordered-probit model (Chistoforou et al.
2010) are (1) independent variables β are fixed over the observa-
tions; (2) threshold μ’s are fixed across observations; (3) probability
functions shown in Eq. (3) are single indexed (i.e., fixed in single
direction); and (4) the error terms are normally distributed. Fur-
thermore, there are limitations in the applicability of the fixed-
parameter probit model. For example, an air bag very likely
decreases the likelihood of fatalities and increases the likelihood of
no-injury crashes (i.e., PDO). However, air bag deployment, in
reality, decreases fatalities but increases minor injuries (i.e., interior
categories). As such, the practical flexibility of fixed-parameter
ordered probit is limited (Washington et al. 2011).

Greene (2007) developed an estimation procedure that utilized
simulated maximum likelihood estimation to incorporate random
parameters in the ordered-probit modeling scheme (Greene 2007).
The random-parameter ordered-probit model is formulated by tak-
ing into account an error term being correlated with the unobserved
factors in εi [as shown in Eq. (1)], which translates the individual
heterogeneity into parameter heterogeneity as follows (Greene
1997):

βin ¼ β þ γin ð5Þ
where γin = randomly distributed term (for example, a normally
distributed term with mean 0 and variance σ2).

Estimation of the random-parameters model is done using a
Halton sequence approach (Milton et al. 2008; Anastasopoulos
and Mannering 2009; Halton 1960; Train 1997; Bhat 2003).
Two hundred Halton draws are used to estimate the parameters that
maximize the simulated log-likelihood function (Chistoforou et al.
2010). As with previous studies, this study considered the normal,
lognormal, triangular, and uniform distributions for the functional
form of the parameter density function (Gkritza and Mannering
2008; Anastasopoulos and Mannering 2009).

Empirical Results and Discussions

Fixed- and random-parameters ordered-probit models are estimated
using maximum likelihood and simulation-based maximum likeli-
hood methods for parameter vector β, respectively. With regard to
the distribution of the random parameters in this analysis, consid-
eration was given to the normal, lognormal, triangular, and uniform
distributions. Only the normal distribution was found to be statisti-
cally significant. Two hundred Halton draws were used for the sim-
ulation-based maximum likelihood estimate. This number of draws
has been empirically shown to produce accurate parameter esti-
mates (Milton et al. 2008; Bhat 2003).

The estimated variables in both models were found to be stat-
istically significant within a 95% confidence level. A likelihood
ratio test comparing the fixed- and random-parameters ordered-
probit models was performed to test the null hypothesis that the
fixed-parameter model is statistically equivalent to the random-
parameters model and the procedure is as follows (Washington et al.
2011):

χ2 ¼ −2½LLFIXðβFIXÞ − LLRANðβRANÞ� ð6Þ

where LLFIXðβFIXÞ = log-likelihood at convergence of the
fixed-parameters model (−4,933.841); and LLRANðβRANÞ = log-
likelihood at convergence of the random-parameters model
(−4,908.552).

The chi-square statistic for the likelihood ratio test with six
degrees of freedom gave a value greater than the 99.99%
(χ2 ¼ 55.578) confidence limit based on one-tailed p-value, indi-
cating that the random-parameter model is statistically superior to
the corresponding fixed-parameter model. This means that the null
hypothesis, that the random-parameters model not being better than
the fixed-parameter model, is rejected. Tables 2 and 3 present the
details of the fixed- and random-parameters models and marginal
effects of the random-parameters model, respectively.

The marginal effects illustrated in Table 3 provide additional
information regarding what occurs with interior injury severity
categories, their corresponding probabilities, and the magnitude
of change across these categories. A negative coefficient (Table 2)
represents an increased impact on injury severity probabilities. For
example, in the context of marginal effects (Table 3), the variable
indicating alignment of highway section (1 for curved section, 0
otherwise) for PDO (Y ¼ 4) with the negative sign (−0.023) indi-
cates that on average the probability of severe injuries is higher
given the crashes that occurred on curved sections. By contrast,
the other categories are positive and on average their probabilities
are lower.

Six parameters were found to be random with statistically sig-
nificant standard deviations under the assumed distribution (normal
in this case); the constant term, dark conditions, lane changing,
one-trailer trucks, left- or right-side departure, and the number of
vehicles involved in the crashes. For the parameters whose standard
deviations were not statistically different from zero, the parameters
were fixed to be constant across the observations in the model.

Turning to the results found in Table 2, the constant term was
found to be significant with a random parameter that is normally
distributed, with mean 1.425 and standard deviation of 0.207. The
variability in the constant term is likely capturing the unobserved
heterogeneity in large truck–involved crashes, for example, the
underreporting of the level of crash severity by police officers.

In addition to the constant term, other explanatory variables
were found to be significant. These variables are related to the fused
data sets from GES and pertain to human, vehicle, and road-
environmental factors.

Human-Related Factors

Previous work related to large truck injury severity lacked variables
related to human factors. As Table 2 shows, males are more likely
to experience less severe injuries. A possible explanation is the
greater physiological strength and injury-sustaining capability of
males over that of females (O’Donnell and Connor 1996). Also,
Abdel-Aty (2003) found that female drivers are more likely to
be involved in more severe crashes. Another demographic charac-
teristic related to the occupants (i.e., both drivers and passengers) is
the age group between 55 and 65, who are also more likely to be
severely injured. This might also be related to the physiological
strength and injury-sustaining capability of older individuals.

The indicator variable for speed was significant. High-speed
crashes involving large trucks may lead to greater injury severity
levels owing to larger kinetic forces, especially when objects of
substantial mass are involved. Khattak et al. (2003) also found
speeding to be a significant factor that impacts the level of injury
severity experienced by the vehicle’s occupants.

The proper use of in-vehicle restraints is proven to save lives.
As shown in Table 2, vehicle occupants that were restrained by
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lap/shoulder belts were less prone to being severely injured. One
possible explanation is that the components inside the passenger
compartment such as the dashboard, wheel, steering column, con-
sole, head-rest, A-pillar, and windshield may inflict greater damage
to unrestrained individuals as they hurl toward these objects inside
the vehicles during the crash phase as opposed to properly re-
strained individuals. In addition, occupants may be ejected from
the vehicles leading to increased levels of injury severity. Both

Abdel-Aty (2003) and Boufous et al. (2008) identified through their
studies that not wearing a seat belt is a leading risk factor and
may lead to higher injury severities suffered by vehicle occupants.
The findings of this variable are also substantiated by Gkritza and
Mannering (2008).

The indicator variable representing licensed drivers working or
residing in the state of Texas was found to be significant in the
model. When the drivers are licensed and registered in Texas they

Table 3. Marginal Effects Associated to the Random-Parameters Model

Variable

Marginal Effects (Random-parameters model)

Y ¼ 0 Y ¼ 1 Y ¼ 2 Y ¼ 3 Y ¼ 4

Alignment of highway section (1 for curved section, 0 otherwise) 0.000 0.001 0.008 0.013 −0.023
Day of the week (1 if weekend, 0 otherwise) 0.000 −0.000 −0.005 −0.011 0.017
Months of the year [1 if summer months (June–August), 0 otherwise] 0.000 0.002 0.009 0.016 −0.027
Light condition of street (1 if dark, 0 otherwise) 0.000 −0.001 −0.008 −0.016 0.025
Number of vehicles involved in the crash −0.000 −0.002 −0.014 −0.026 0.042
Trailing unit when the crash occurred (1 if one trailer, 0 otherwise) −0.000 −0.005 −0.029 −0.049 0.084
Vehicle role (1 if struck by other vehicle, 0 otherwise) −0.000 −0.003 −0.023 −0.043 0.069
The most harmful event (1 if rollover, 0 otherwise) −0.000 −0.006 −0.033 −0.052 0.093
Vehicle maneuver during precrash situation (1 if left- or right-side departure, 0 otherwise) 0.000 0.005 0.024 0.039 −0.069
Orientation of vehicle at the time of crash (1 if sideswipe in the same direction, 0 otherwise) −0.000 −0.002 −0.016 −0.032 0.050
Vehicle maneuver just prior to impending crash (1 if changing lane, 0 otherwise) 0.000 −0.002 −0.016 −0.035 0.054
Vehicle maneuver just before impending crash (1 if going straight, 0 otherwise) 0.000 −0.001 −0.007 −0.013 0.022
Factor of crash identified in the investigation (1 if speed, 0 otherwise) 0.000 0.001 0.004 0.007 −0.012
Occupants’ use of available vehicle restraints (1 if lap and shoulder restraint used, 0 otherwise) −0.000 −0.004 −0.021 −0.035 0.060
Age of the occupants (1 if for age group of 55–65 years, 0 otherwise) 0.000 0.001 0.007 0.013 −0.022
Gender of the occupants (1 if male, 0 otherwise) −0.000 −0.002 −0.013 −0.022 0.037
Drivers’ working/residing place according to license record (1 if Texas, 0 otherwise) 0.000 0.002 0.009 0.017 −0.028

Table 2. Large Truck–Involved Injury Severity Model Results

Variable

Fixed-parameters model Random-parameters model

Coefficient t-stat Coefficient (standard deviation) t-stat

Constant 1.512 13.653 1.425 (0.207) 10.126
Alignment of highway section (1 for curved section, 0 otherwise) −0.149 −2.795 −0.167 −2.761
Day of the week (1 if weekend, 0 otherwise) 0.102 2.107 0.150 2.763
Months of the year [1 if summer months (June–August), 0 otherwise] −0.171 −4.543 −0.201 −4.706
Light condition of street (1 if dark, 0 otherwise) −0.137 −2.857 0.227 (1.084) 3.433
Number of vehicles involved in the crash 0.050 2.175 0.341 (0.333) 12.068
Trailing unit when the crash occurred (1 if one trailer, 0 otherwise) 0.336 9.220 0.552 (0.501) 13.183
Vehicle role (1 if struck by other vehicle, 0 otherwise) 0.469 10.712 0.621 11.912
The most harmful event (1 if rollover, 0 otherwise) 0.412 10.345 0.578 13.017
Vehicle maneuver during precrash situation (1 if left- or right-side
departure, 0 otherwise)

−0.481 −9.626 −0.441 ð0.473Þ −8.227
Orientation of vehicle at the time of crash (1 if sideswipe in the same
direction, 0 otherwise)

0.357 7.110 0.480 8.158

Vehicle maneuver just before impending crash (1 if changing lane,
0 otherwise)

0.232 2.942 0.658 (0.816) 6.114

Vehicle maneuver just before impending crash (1 if going straight,
0 otherwise)

0.116 2.600 0.168 3.230

Factor of crash identified in the investigation (1 if speed, 0 otherwise) −0.098 −2.179 −0.094 −1.905
Occupants’ use of available vehicle restraints (1 if lap and shoulder
restraint used, 0 otherwise)

0.305 7.531 0.401 8.809

Age of the occupants (1 if for age group of 55–65 years, 0 otherwise) −0.114 −2.299 −0.161 −2.836
Gender of the occupants (1 if male, 0 otherwise) 0.182 2.790 0.254 3.455
Drivers’ working/residing place according to license record
(1 if Texas, 0 otherwise)

−0.140 −2.698 −0.202 −3.296

Threshold 1, μ1 0.772 27.782 1.1062 15.992
Threshold 2, μ2 1.350 59.431 1.906 26.086
Threshold 3, μ3 1.738 73.697 2.439 32.790
Log-likelihood at zero, LLð0Þ −5493.706 −5493.706
Log-likelihood at convergence, LLðβÞ −4933.841 −4908.552
Chi-square 1119.728 1170.308
Number of observations, N 8,291 8,291
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are more likely to be involved in more severe injury crashes. This
variable may be capturing the driving complexities related to the
diverse geographical nature of the state of Texas.

Vehicle-Related Factors

As with the influential aspects of human-related factors on large
truck–involved crashes, factors associated with the vehicle are pre-
sented in this study. The indicator variable for a trailing unit (i.e., a
truck is hauling a trailer) was found to be statistically significant
with a random parameter that is normally distributed, with mean
0.553 and standard deviation of 0.510. This indicates that
82.0% (less than zero) of the crash occurrences involving a truck
with a trailing unit will experience a lower level of injury severity,
whereas 18.0% experience more severe injury. This variable may
be capturing the varying degree of driving experience and training
with hauling a trailing unit. The randomness in the coefficient
may be accounting for driver experience levels of trucks with trail-
ing units.

Considering the vehicle role, when large trucks are struck by
other vehicles, the likelihood of the injury outcome is less severe.
A possible explanation is that large trucks when struck by other
vehicles (such as passenger cars) may sustain less damage because
of their structural design integrity and size difference. By contrast,
Duncan et al. (1998) found that passenger vehicles being rear-ended
by high velocity trucks resulted in higher injury outcomes. Addi-
tionally, this variable may be capturing other vehicular dynamics
specific to large trucks (e.g., damage sustainability potential).

When the number of vehicles involved in a crash increases,
the level of injury severity decreases. This continuous variable is
statistically significant with a random parameter that is normally
distributed, with mean 0.341 and standard deviation of 0.333. This
indicates that for 97.6% (less than zero) of the crash occurrences, as
the number of vehicles in the crash increases, the resultant outcome
is lower levels of injury severity, whereas 2.4% experience more
severe injuries. A possible explanation for this finding is that
crashes with many vehicles, such as pile-ups, lessen injury severity
resulting from some unforeseen dynamics and preventive technol-
ogies present in vehicles (Chakravarthy et al. 2009).

Road and Environmental-Related Factors

This section discusses road and environmental factors that are
significant. As shown in Table 2, the indicator variable representing
curved road sections leads to more severe injury categories. Con-
sequently, the drivers of large trucks often deal with a higher level
of difficulty in negotiating curved sections, especially when con-
sidering the weight and size of the vehicle. In addition, this variable
may be capturing the influence of locational factors related to curve
sections as well as the skill level of drivers.

Regarding street lighting conditions, dark conditions (i.e., no
lighting) are significant with a random parameter that is normally
distributed, with mean 0.227 and standard deviation of 1.084. This
implies that for roughly 76.2% (less than zero) of the crash occur-
rences in which street lighting conditions is classified as dark, a
lower level of injury severity is a possible outcome, whereas the
opposite is true for approximately 23.8%. Several studies have
found that dark or limited lighting conditions could increase injury
severity outcomes (Xie et al. 2009; Chimba and Sando 2009; Helai
et al. 2008). Also, this variable may be capturing varying nighttime
driving behavior in addition to visibility and sight distance-related
factors not reported. Truck drivers are usually more cautious in dark
conditions on highways than passenger vehicle drivers.

Although not explicitly related to road and environmental fac-
tors, the indicator variable for weekend driving is significant. If
crashes occur on the weekend, the injury severity sustained by the
occupants of large trucks is less severe. This variable might be
capturing the effect of weekend driving patterns, density, and fre-
quency of truck trips. Moreover, the indicator variable representing
the summer months was also significant and increased the possibil-
ity of injury severity. This may be the case because in the summer
months there is a higher number of vehicles on the road, which
increases the exposure of passenger vehicles on the highways. This
exposure clearly indicates greater interaction of passenger vehicles
with large trucks, resulting in increasing likelihood of severe
crashes. A similar result was found by Malyshkina and Mannering
(2009).

Crash Mechanism-Related Factors

Lastly, variables related to crash mechanism are presented next. As
illustrated in Table 2, the indicator variable representing truck roll-
overs is significant and more likely to lead to crashes that are less
severe. The significance of this variable may stem from vehicular
compartment rigidness and properly working restraint systems. The
variable may also be capturing driver skill level as well as rollover
locational factors. A study by Khattak et al. (2003) and Cate and
Richards (2001) found that rollovers cause increased injury sever-
ities of occupants in large trucks. In addition, their study associated
greater injury severity with curves of 5 degrees or more. The ran-
domness of the variable coefficient may be accounting for these
types of crashes.

Sideswipe in the same direction is significant and likely to lead
to less severe large truck crashes. A possible explanation may be
that truck drivers’ skill level and training in regard to steering con-
trol in the same direction is possibly minimizing the injury severity
outcomes under sideswipe scenarios.

When large trucks depart from the traveled roadway either to the
left or right side of the travel direction is significant with a random
parameter that is normally distributed, with mean −0.441 and stan-
dard deviation of 0.473. This indicates that 99.9% (less than zero)
of the crash occurrences in which a large truck departs from the
roadway will experience a higher level of injury severity, whereas
0.1% will less-severe injuries. The increased level of severity for
veering off the road may stem from the possibility of collisions with
stationary objects or other dangers present on the traveled roadway.
The wide range of variability may be attributable to the factors
related to driver skill level and training. A study performed by
Yamamoto and Shankar (2004) also found that running off
the roadway may lead to increased injury severities sustained by
vehicle occupants.

Lane changing as an evasive maneuver before an impend-
ing crash is significant with a random parameter that is normally
distributed, with mean 0.659 and standard deviation of 0.816. This
implies that approximately 66.2% (less than zero) of the crash
occurrences in which lane changing was an evasive maneuver ob-
served a lower level of injury severity, whereas for approximately
33.8% a higher level of injury severity may result. A possible ex-
planation for the variability of this estimate may stem from unfore-
seen factors related to oncoming traffic, median types, or secondary
crashes influencing the reported severity. Lane changing as a crash
risk factor was also found to be significant by Gray et al. (2008) and
Khattak et al. (2003). Similarly, driving straight as an evasive
maneuver to avoid a crash is found to be fixed and resulted in
less-severe injuries possibilities. This could be due to driver alert-
ness and crash anticipation because drivers can more successfully
brace themselves for impact if they are holding a straight trajectory.

602 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / JUNE 2013

J. Transp. Eng. 2013.139:596-604.

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
T

E
P 

L
IB

R
A

R
Y

-S
E

R
IA

L
S 

on
 0

5/
28

/1
3.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Summary and Future Work

This paper analyzed large truck injury severity through a random-
parameters ordered-probit modeling framework. The random-
parameters ordered probit is an important approach because it
allows an accounting and correction for unobserved heterogeneity
that can arise from factors such as human (i.e., drivers and passen-
gers), vehicle, road-environment, weather, underreporting, tempo-
ral, and other unobserved factors not captured. The data used in this
study was from NASS-GES database for the years of 2005 to 2008
and, to the best of the authors’ knowledge, is one of first studies to
explicitly use this database for the modeling of large truck injury
outcomes.

The results of the analyses provide some interesting findings.
First, human-related factors from the fused GES data set are found
to be significant in the model. Of these, the estimate for the factor of
crash identified in the investigation “speed” indicator variable was
fixed. However, lane-changing behavior and departing the roadway
during pre-crash stages are random and vary across observations
in contrast with variables related to gender, age of occupants,
in-vehicle restraint usage, and Texas truck drivers’ parameter esti-
mates that are fixed. Second, in terms of vehicle-related variables
from the fused data set, the estimates for a trailing unit and the
number of vehicles involved are random, whereas variables related
to vehicle role in a collision, orientation of vehicle at the time of
crash, and vehicle maneuvering during precrash are also fixed.
Third, the dark indicator variables for road and environment-related
factors are random. In addition, indicator variables related to high-
way alignment, day of the week, and summer months (serves as a
proxy for traffic conditions) are also fixed across large truck crash
occurrences.

A key finding is the change of signs from the dark condition
observed between the fixed- and random-parameters models.
Under the fixed model, this variable would increase the likelihood
of severe injuries. By contrast, the random-parameters model iden-
tified the variable coefficient to be random, accounting for unob-
served factors that lead to cases of severe injuries (i.e., above zero)
or less severe cases (i.e., below zero).

Although this study is exploratory in nature, the modeling ap-
proach presented in this paper offers a methodology to analyze
large truck injury severity and at the same time to account for un-
observed factors. Applying this approach to state-specific data sets
with available AADT data, car-following dynamics, and human
response over a longer time period could potentially provide addi-
tional information in regard to large truck crashes. In addition, data
sets with driver skill and other cognitive processing information can
greatly improve parameter estimates as well as help in the develop-
ment and improvement of truck driver training.

Concerning future research, current work is focusing on a
random-parameters (mixed) logit modeling framework to investi-
gate whether better coefficient estimates can be obtained in addition
to finding more statistically significant variables. Furthermore,
local trucking companies are cooperating on truck driver training to
identify variables of interest for simulation-based safety analyses.
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