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ABSTRACT 

Studies investigating crash rates by roadway classification are few and far between and even more 

so if extended to focus on heavy vehicles.  This study explores and compares two advanced 

econometric methods, random-parameter Tobit regression and latent class Tobit regression, to 

determine contributing factors for heavy vehicle crashes per million-vehicle-miles-traveled while 

accounting for the unobserved heterogeneity present in crash data.  The increasing crash rates in 

Idaho, crash proportion by roadway classification, and available data make for an ideal case study.  

Empirical results show that although the random-parameter Tobit regression model provides better 

insight into heavy vehicle crash rates than the fixed-parameter approach, the latent class Tobit 

regression model is the preferred methodology for the given dataset.   Traffic volumes, roadway 

characteristics, and traffic control devices were among the variables found to be statistically 

significant.   Results from this study provide an alternate framework to account for heterogeneity, 

while identifying key factors by roadway classification that influence heavy vehicle crash rates. 

The illustrated framework and analysis by roadway classification can provide guidance to 

transportation agencies and policy makers, and prompt future studies to include a latent class 

analysis and/or analysis by road classification.   
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INTRODUCTION  

Heavy vehicle crashes have a substantial economic impact on commerce and society. In 

the United States, heavy vehicle crashes were about $87 billion in 2011 and costs due to delay and 

other consequences were roughly $28 billion (1,2). These values will continue to increase as the 

economy continues to grow, as will the volume of heavy vehicles on the nation’s freight 

infrastructure. For example, from 2010 to 2013 a 2.3% increase of heavy vehicles was experienced 

(about 6,000,000 vehicles) (3). This number is expected to continue to grow and crashes associated 

with heavy vehicles will remain a concern for safety planners and safety related agencies. Although 

heavy vehicle crashes have decreased over the past two decades, the number of fatal crashes per 

100-million vehicle-miles-traveled compared to passenger cars is higher (1.34 versus 1.08 in 

2014)(4, 5). In Idaho, the state experienced a 5.6% increase in heavy vehicle crashes and a 4.4% 

increase in heavy vehicle crashes per million-vehicle-miles-traveled (MVMT) from 2010 to 2013 

(6).  50% of these crashes occurred on local roads, 28% of injury crashes happened on interstates, 

and approximately 68% of fatalities happened on U.S. and State Highways (6). These statistics 

illustrate the need for continued research in understanding the relationship between heavy vehicle 

crash rates and roadway classification.  

There have been a number of studies that have addressed crash frequency through the 

application of count and spatial based models (7–15). However, most of these studies have focused 

on data related to pedestrians, passenger cars, or all traffic mixes in a single modeling framework 

and do not address heavy vehicles explicitly.  Although there have been several recent efforts to 

understand heavy vehicle injury severity factors (16–18), heavy vehicle crash rate analyses are 

sparse. This is especially true for heavy vehicle crash rates by functional class of road. A possible 

reason for this deficiency in the literature may stem from the availability of sufficient data to 

capture the complex interactions of multiple crash rate factors under a single framework by 

functional class.   

 Recent studies have addressed the issue of insufficient data through the application of 

statistical and econometric methods that account for unobserved factors (unobserved 

heterogeneity), which are factors unknown to the analyst and that may vary across observations, 

see Mannering et al. for a complete review of these methods (19). For instance, weather conditions 

that continually change over time, as well as driver response to the changing weather condition. 

These models allow the analyst to account for these variations and make more informed inferences 

regarding the effects of the contributing factors (19).  

With this in mind, the present study seeks to identify factors that impact heavy vehicle 

crashes per MVMT by road classification through the application and performance based 

comparison of two “heterogeneity” models, namely random-parameter- and latent class- Tobit 

regression. The Tobit modeling framework is selected due to the nature of crash rate data. Similar 

to frequency models, a crash rate analysis is likely to have several observations in which no crash 

has occurred, therefore a censoring method is recommended to account for the skewed nature of 

the response variable (crash rate). It has be shown that the Tobit regression framework can account 

for the skewed nature of crash rate data without omitting observations by censoring the analysis at 

a given value (20).  These models have been successfully applied to related transportation safety 

data, for example, Anastasopoulos et al. used the fixed-parameter Tobit model to investigate crash 

rates on interstates in Indiana and determine contributing factors (21).  To extend the Tobit 

framework, Anastasopoulos et al. utilized the random-parameter Tobit model to determine factors 

that influence crash rates per 100-million VMT on highways (22). Islam and Hernandez 
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investigated fatalities per million truck-miles-traveled and fatalities per ton-mile of freight for 

heavy vehicles through the application of a random-parameter Tobit regression model and Chen 

et al. utilized a random-effects Tobit model to analyze crash rates with refined-scale data (23, 24). 

From a latent class Tobit regression application, there are no known applications to transportation 

safety data, however the method has been applied to social science studies (see (25, 26)).  

Therefore, the present study will use the random-parameter Tobit method to identify 

significant contributing factors to crash rates by roadway functional class while accounting for 

heterogeneity.  However, variables not found to be random in the random-parameter method may 

in fact have varying effects on heavy vehicle crash rates.  Hence, the current study will be extended 

by investigating the results of the Tobit latent class approach by disaggregating the Tobit model 

into unobserved groups (or classes). To accomplish this, an extensive crash database collected and 

maintained by the Idaho Department of Transportation (IDT) is used. The findings of this study 

can provide insight that can aid safety planners and safety related agencies in identifying 

appropriate countermeasures to help reduce and mitigate heavy vehicle crashes. To the best of the 

authors’ knowledge, these are first attempts at developing these types of models for heavy vehicle 

crash rate analysis.   

SOURCE OF DATA 

 The current study uses 7 years of police-recorded crash data obtained from the state of 

Idaho (2007 to 2013).  Each year was filtered to represent heavy vehicle crashes, then combined 

with traffic data from IDT utilizing segment codes and milepost markers that were present in both 

datasets.  The segment codes and milepost numbers of the location of the crash were used to 

determine the intermediate segments within the milepost intervals in the traffic data—these 

segments are used for the modeling process.  Using the complete dataset consisting of exposure 

variables (i.e., roadway geometrics, traffic control devices, number of lanes, etc.) and traffic 

volumes, several indicator variables were created to identify specific exposure conditions and 

traffic volumes that impact crash rates by road classification in Idaho. The final dataset for 

principal arterials, major collectors, and interstates had 1,560, 1,010, and 1,588 heavy vehicle 

crashes, respectively.  (TABLE ) displays the response variable and indicators found to be 

significant throughout the modeling process. 

 

<Insert Table 1> 

METHODOLOGY 

Dependent Variable 

   To model heavy vehicle crash rates, a rate for each segment is calculated using the traffic 

data provided by Idaho (27): 

 

Rs =
∑ Nys

n
y=1

[∑ AADTys × Ls × 365n
y=1 ]

1,000,000
⁄

 (1) 
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where 𝑅𝑠 is the number of crashes per MVMT on segment 𝑠; 𝑦 is the year (2007 to 2013); 𝑁𝑦𝑠 is 

the number of heavy vehicle crashes in year 𝑦 on segment 𝑠; 𝐴𝐴𝐷𝑇𝑦𝑠 is the average annual daily 

traffic for year 𝑦 on segment 𝑠; and, 𝐿𝑠 is the length of segment 𝑠 in miles. 

 Given the datasets available for the current study, a specific methodology was employed 

to get corresponding traffic data for each crash, as formerly described. Being that the current study 

uses seven years of crash data, the likelihood of having one crash on each segment is higher when 

compared to a 3- to 5-year period.  As such, many segments for each road classification were 

identified and analyzed, each of which had at least one crash.  Referring to (Table 1), the minimum 

values of the response variables are approximately zero—if studying fewer years of crash data 

these values could have very likely been zero.  (Figure 1) illustrates the crash rate distribution for 

each road classification, wherein the skewed distributions needed to be addressed during analysis. 

 

 

<Insert Figure 1> 

 

Random-Parameter Tobit Model 

 The distribution of crash rates illustrate the need to utilize a method that can account for 

the large lower bound cluster of observations while maintaining the linear assumptions required 

for regression of a continuous dependent variable (heavy vehicle crash rates by roadway 

classification). In regard to “other principal arterials”, the data was too centered at zero and, even 

with censoring, produced erroneous estimates during analysis; therefore, this classification was 

omitted from the study. Taking this into consideration, the present study seeks to develop a 

statistical model that can be used to determine the contributing factors on heavy vehicle crash rates 

by roadway classification. This study will apply the Tobit regression modeling framework first 

introduced by James Tobin (28). However, key variables not available within many crash datasets 

and variation across the available variables often results in unobserved heterogeneity, and if 

neglected, will lead to biased estimates and inaccurate inferences (see (19) for further discussion).  

To account for such (22, 23, 29–31), the current study will apply the random-parameter approach 

to the traditional Tobit regression framework. As mentioned earlier, Anastasopoulos et al., Islam 

and Hernandez, and Chen et al. all apply successful applications of the random-parameter Tobit 

regression model to transportation safety data (22–24).  Therefore, for this work, the standard Tobit 

model is expressed as:   

 

Ys
∗ = 𝛃′𝐗𝐬 + εs   with   εs~N[0, σ2] and s =  1, 2, …  N  

(2) Ys = Ys
∗  if  Ys

∗ > L 
Ys = 0  if  Ys

∗ ≤ L 
 

where 𝑌𝑠 is the number of crashes per MVMT; 𝐿 is the value the model is left-censored at; 𝐗𝐬 is 

the vector of explanatory variables (AADT, roadway geometrics, etc.); 𝛃′ is the vector of estimated 

parameters; and, 𝜀𝑠 is the normally and independently distributed error term with a mean of zero 

and constant variance, 𝜎2.  To determine the likelihood for the Tobit model over zero observations 

(e.g., the value the Tobit model is left-censored at) and positive observations (1), the following 

function applies (21, 26): 
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L = ∏ [1 − Ψ (
𝛃′𝐗𝐬

σ
)]

0

∏ (
1

σ
)

1

ψ (
Ys − 𝛃′𝐗𝐬

σ
) (3) 

 

where Ψ (
𝛃′𝐗𝐬

σ
) is the standard normal distribution function and ψ (

Ys−𝛃′𝐗𝐬

σ
) is the standard normal 

density function. 

 In an attempt to capture the unobserved heterogeneity, the random-parameter approach is 

now applied to the Tobit framework and estimated parameters can be written as (32): 

 

βs = β + ϕs (4) 
 

where the equivalent log-likelihood function is (26): 

 

LL = ∑ ln ∫ g(ϕs)P(Ys
∗|ϕs)dϕs

ϕs∀s

 (5) 

 

where g(ϕs) is the probability density function of ϕs and P(Ys
∗|ϕs) is the probability of the Tobit 

model (i.e., probability that the value is uncensored).  As stated in previous studies (22, 23), the 

maximum likelihood estimations encounter computing issues due to its complexity.  To address 

this issue, a common approach developed by Halton is used to simulate the maximum likelihood 

by utilizing Halton draws to solve the complex integral seen in Eq. (5) and has been shown to be 

preferable over merely random draws (33–35).   

Latent Class Tobit Model 

 Although the random-parameter method accounts for unobserved heterogeneity, there is a 

possible disadvantage due to the assumption that the parameters vary in a predefined distribution 

and that parameters vary only across singular observations (see (19) for further discussion).  

Taking that into consideration, the latent class approach attempts to capture unobserved 

heterogeneity by allowing estimable parameters to vary with an underlying discrete distribution 

across unobserved groups of observations (or classes). The heterogeneity is accounted for by 

defining a finite number of points and measuring the mass probability of the intervals between 

points.  Applying this to the Tobit regression structure results in: 

 

Ys
∗|(Class = C) = 𝛃′

𝐜
𝐗𝐬 + εs|c   with   εs|c~N[0, σ2

c] and s =  1, 2, …  N 

Ys = Ys
∗  if  Ys

∗ > L 
Ys = 0  if  Ys

∗ ≤ L 

(6) 

 

where 𝛃′
𝐜
 is a vector of estimated parameters belonging to class 𝐶 and Ys

∗|(Class = C) is the 

number of crashes per MVMT of segment 𝑠 in class 𝐶.  The corresponding log-likelihood function 

is now (26): 

 

LL = ∑ log [∑ Psc(δc, ωs)[𝑓(Ys|Class = C, 𝐗𝐬, 𝛃′
𝐜
, σc)]

C

c=1

]

N

s=1

 (7) 
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where Psc(δc, ωs) is the prior to model estimation logit probability of being in class 𝐶 and 

represented by the multinomial logit form (26): 

 

Psc(δc, ωs) =
e(ωsδc)

∑ e(ωsδc)C
c=1

   with c = 1, 2, … C and δC = 0 for normalization (8) 

 

Lastly, after the parameters have been estimated a second estimation is conducted to 

determine the posterior probabilities of crash rate 𝑌𝑠 belonging to class 𝐶 (36).  The posterior 

probability that a heavy vehicle crash belongs to class 𝐶 is determined post-estimation.  That is, 

the posterior probability utilizes the estimated parameters to determine a class probability based 

on the observed crash data (26, 37): 

 

P(Class = C|Crash Rate Ys) =
𝑓(Crash Rate Ys|Class = C)P(Class C)

∑ 𝑓(Crash Rate Ys|Class = C)C
c=1 P(Class C)

 (9) 

 

As mentioned previously, the application of the latent class modeling structure to the Tobit 

regression modeling framework in a safety context is a first.  

MODEL ESTIMATION RESULTS 

Random-Parameter Tobit Model 

  As shown in (TABLE  and Table 3), no parameters were found to be random for principal 

arterials and interstates. However, two parameters were found to be random for major collectors 

and are displayed in (Table 4). To statistically asses the more significant log-likelihood for major 

collectors, fixed- or random-parameter, the ensuing log-likelihood ratio test was conducted: 

 

χ2 = −2[LL(βFP) − LL(βRP)] (10) 
 

where LL(βFP) is the log-likelihood at convergence for the fixed-parameter model; LL(βRP) is the 

log-likelihood at convergence for the random-parameter model; and, χ2 is a chi-square statistic 

with degrees of freedom equal to the number of random parameters.  One more goodness of fit 

measure was applied, the Maddala Pseudo R2 value (38): 

 

R2 = 1 − e(
−2[LL(β)−LL(0)]

N
) (11) 

 

where LL(β) is the log-likelihood at convergence for the best fit model; LL(0) is the log-likelihood 

at zero; and, 𝑁 is the number of observations. 

 With regard to the principal arterial model, a chi-square statistic of 83.11 and 6 degrees of 

freedom indicated with 99.99% confidence that the fixed-parameter model is preferred over the 

model with simply the constant.  For interstates, a chi-square statistic of 61.25 and 6 degrees of 

freedom showed with 99.99% confidence that the fixed-parameter model is of more significance 

than the model with no estimated parameters.  In the case of major collectors, where variables were 

found to be random, a chi-square statistic of 80.81 and 2 degrees of freedom demonstrated with 

99.99% confidence that the random-parameter model is statistically preferred. 
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<Insert Table 2, Table 3, and Table 4> 

 

Latent Class Tobit Model 

 Latent class regression models for each road classification are shown in (Table 5, Table 6, 

and Table 7).  In line with previous studies, the number of latent classes for each model were 

selected using the Bayesian Information Criterion (BIC)—the number of latent classes that 

produced the smallest BIC were used (39, 40).  However, Louviere et al. suggest that the smallest 

Akaike Information Criterion (AIC) be used to determine the best fit number of classes and this 

was the case for the major collector model (41)—Yang found similar results in terms of the number 

of latent classes based on AIC (42). 

 The class-split for each classification is highly significant and the best fit number of classes 

are different for each model.  Principal arterials have a best fit model with three latent classes as 

is shown in (Table 5), major collectors with four latent classes as is shown in (Table 6), and 

interstates with two latent classes as is shown in (Table 7). 

 

<Insert Table 5, Table 6, and Table 7> 

DISCUSSION 

Tobit Model 

High passenger vehicle AADT (PAADT) decreases crash rates for each road classification 

and has a significant impact on crash rates based on partial effects.  Partial effects refer to a one-

unit increase in an exposure variable, while holding all others constant, and the outcome it has on 

heavy vehicle crash rates.  Partial effects show that PAADT greater than 10,500 on principal 

arterials decreases the number of heavy vehicle crashes per MVMT by 0.084.  Similarly, PAADT 

greater than 2,500 on major collectors reduces the number of heavy vehicle crashes per MVMT 

by 0.143 and PAADT greater than 15,000 on interstates reduces heavy vehicle crashes by 0.013 

per MVMT. Conversely, low total AADT (passenger vehicles and heavy vehicles) increases crash 

rates.  For instance, partial effects indicate that AADT less than 500 on major collectors increases 

the number of heavy vehicle crashes by 0.279 per MVMT.  Likewise, AADT less than 6,500 on 

interstates results in an increase of 0.016 crashes per MVMT.  These findings are in line with 

previous work (21, 22, 30, 43), in which lower AADT increases crash rates while higher AADT 

decreases crash rates.  The same literature finds that the presence of heavy vehicle traffic decreases 

crash rates, yet the present study finds that the presence of heavy vehicle traffic increases crash 

rates for principal arterials and interstates.  A possible explanation could be that such a finding is 

exclusive to the state of Idaho. 

Two parameters were found to be random on major collectors based on the statistical 

significance of the mean and standard deviation.  The estimated parameter for a speed limit less 

than or equal to 40 miles per hour was found to be random and normally distributed with a mean 

of 0.42 and standard deviation of 0.73.  This suggests that for 28.2% of heavy vehicles the 

estimated parameter mean is less than zero and greater than zero for 71.8%.  In other words, lower 

speed limits on major collectors decreases crash rates for 28.2% of heavy vehicles and increases 

crash rates for 71.8%.  Chen et al., however, found that lower speed limits increase crash rates for 
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all observations using the random-effects Tobit model, possibly indicating that the random-effects 

approach is not accounting for all the heterogeneity in their dataset (24).  On the other hand, high 

speed limits decrease crash rates on principal arterials and interstates. Speed limits of 65 miles per 

hour decrease crash rates on principal arterials and partial effects show a reduction of 0.041 crashes 

per MVMT. Interstates with a speed limit equal to 75 miles per hour see a decrease in crash rates 

and partial effects indicate a decrease of 0.008 heavy vehicle crashes per MVMT.  Although higher 

speed limits are prone to more severe crashes, they have been shown to reduce crash rates (see 

(44) for a thorough literature review regarding implications of high speed limits). 

As for road configuration, 2-way major collectors with a double-yellow painted divider 

was found to have a normally distributed random parameter.  With a mean of 0.36 and standard 

deviation of 0.99, this configuration decreases crash rates for 35.8% of heavy vehicles and 

increases crashes rates for 64.2%.  2-way interstates with a raised/depressed divider experience a 

reduction in crash rates and have a partial effect of -0.014.  Road configuration, however, on 

principal arterials increases crash rates—partial effects suggest that 2-way principal arterials with 

a 2-way left-turn lane result in an increase of 0.041 heavy vehicle crashes per MVMT.    

With regard to horizontal geometrics, straight and curved conditions increase crash rates 

for major collectors and interstates.  Major collectors experience an increase in crash rates due to 

straight horizontal geometrics and partial effects show an increase of 0.210 heavy vehicle crashes 

per MVMT.  Horizontal curves increase crash rates on interstates, though there is just a 0.010 

increase. Curved geometrics were found to increase crash risk by Yu et al., while the degree of 

curvature was found to increase crash rate by Chen et al. (24, 29).   

Other notable contributing crash rate factors are traffic control devices and surface defects.  

No traffic control devices on principal arterials decrease crash rates and partial effects indicate a 

reduction of 0.047 heavy vehicle crashes per MVMT.  On the contrary, stop signs on major 

collectors increase heavy vehicle crashes by 0.116 per MVMT.  Interstates with no surface defects 

decrease crash rates.  This variable has the largest effect on interstate crash rates, as partial effects 

suggest a decrease of 0.023. 

Latent Class Tobit Model 

The presence of latent classes suggest that various explanatory variables are heterogeneous.  

For example, 2-way roads with a 2-way left turn lane on principal arterials is positively significant 

in latent class 2, but negative and not significant in latent classes 1 and 3.  These results indicate 

the presence of heterogeneity and that such road configurations can have a negative and positive 

impact on crash rates (45).  Similar findings are presented in each latent class specification and 

exist for each variable. 

With regard to class probability, the prior probabilities for principal arterials indicate that 

the probability of a crash belonging to latent class 3 is the highest at 0.716.  This is seen in the 

posterior probabilities, as 80.7% of the heavy vehicle crashes belong to latent class 3 while 17.9% 

and 1.4% belong to latent class 1 and 2, respectively.  For major collectors, there is a 0.577 prior 

probability that crashes belong to latent class 2.  Posterior probabilities suggest this is so, as 72.4% 

belong to latent class 2 with 4.6%, 12.4%, and 10.7% of crashes belonging to latent class 1, 3 and 

4.  Prior class probabilities for interstates indicate a 0.361 probability of a heavy vehicle crash 

belonging to latent class 1 and 0.639 probability of belonging to latent class 2.  Posterior 

probabilities agree, being that 10.8% of heavy vehicle crashes belong to latent class 1 and 89.2% 

belong to latent class 2. 
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Looking at principal arterials, the partial effects of the Tobit model are significantly greater 

than those of the latent class model.   The partial effect for PAADT greater than 10,500 using the 

Tobit model was -0.084, but according to the latent class model, this PAADT decreases the number 

of heavy vehicle crashes by 0.007 per MVMT.  Overall, the partial effects for the latent class model 

were much less than the Tobit model. 

Moving to major collectors, latent class partial effects were substantially less when 

compared to the Tobit model.  For example, PAADT greater than 2,500 has a partial effect of -

0.143 for the Tobit model, yet the same variable based on the latent class model results in a 

reduction of 0.059 heavy vehicle crashes per MVMT. 

Interstates, however, experienced a decrease in partial effects for some variables and an 

increase in others, even a change in signs for one variable.  For instance, 2-way interstates with a 

raised/depressed divider has a partial effect of -0.014 for the Tobit model while the latent class 

model has the opposite effect and results in an increase of 0.002 heavy vehicle crashes per MVMT.  

The partial effect of the Tobit model for PAADT greater than 15,000 is -0.013, but increases to -

0.008 for the latent class model.  Interstates with no surface defects decrease the number of heavy 

vehicle crashes per MVMT by 0.023 according to the Tobit model and increases the reduction to 

0.108 according to the latent class estimations. 

Model Comparison 

To determine the best fit model for the Idaho crash data, three metrics were evaluated: 

overall model fit, partial effect inferences, and the rate of prediction of actual crash rate values.  

To illustrate, the latent class approach for each road classification had a better overall model fit.  It 

should be noted that log-likelihoods are typically negative, however, it is possible to see positive 

values for regression of a continuous dependent variable.  In such a case, the greater the value (if 

positive), the better the fit of the model.  In terms of partial effects, the latent class framework 

identified different high impact variables and partial effects were much less, as were the partial 

effects for the random-parameter model.  (Table 8) quantitatively shows the fit of the actual crash 

rates versus the predicted crash rates for both regression estimates, while the corresponding plots 

are presented in (Figure 4).  The plots visually illustrate that the Tobit model substantially under-

predicted the crash rates for each road classification and that the latent class model outperformed 

the Tobit model significantly. 

 

 

<Insert Table 8, Figure 2> 

 

SUMMARY & INSIGHTS 

This study utilized two specific econometric frameworks, namely random-parameter Tobit 

regression and latent class Tobit regression, to determine factors that contribute to the number of 

heavy vehicle crashes per MVMT by roadway classification while identifying a preferred method 

to account for unobserved heterogeneity.  Police-reported crash data is often missing key variables 

(e.g., not on data collection forms) and has variation across existing variables, therefore utilizing 

the random-parameter Tobit method allows the analyst to account for heterogeneity by defining a 

distribution.  The latent class approach also accounts for heterogeneity, but no distribution is 

defined and the parameters are permitted to vary across a specified number of classes.  Using 
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goodness-of-fit measures and the rate of prediction, the estimates of the two approaches were 

examined. 

The Idaho case study provides new insights into crash rates by roadway classification.  

Different road configurations, horizontal geometrics, and traffic control devices were found to be 

significant for each road classification.  A specific road configuration was found to decrease crash 

rates for major collectors and interstates, but increase crash rates on principal arterials.  Curved 

horizontal geometrics increase crash rates on interstates and straight horizontal geometrics increase 

crash rates on major collectors.  Stop signs on major collectors increase crash rates, yet no traffic 

control devices on principal arterials decrease crash rates.  High speed limits decrease crash crates 

on principal arterials and interstates, and lower speed limits increase crash rates for the majority 

of heavy vehicles on major collectors.  The most common insight from this study is that high traffic 

volumes decrease crash rates and low volumes increase crash rates.  With that in mind, unlike 

previous works, this study finds that the presence of heavy vehicles has the potential to increase 

crash rates. 

 To assess the accuracy of the two frameworks, the actual crash rates and predicted crash 

rates were plotted and the Pearson product moment correlation coefficient was provided for each.  

The latent class approach outperformed the traditional Tobit method for each road classification 

and, as a result, should be considered in future crash rate analyses.  In addition, the sample size 

may indicate what information criterion (AIC or BIC) to use when selecting the correct number of 

latent classes.  It needs to be noted, however, that results indicating a better fit for the latent class 

approach are entirely data-specific.  Although the present study has found that the latent class 

model better describes the Idaho crash data, there is the potential that the latent class model may 

not be better suited in crash datasets of other states. This strongly suggests that further work be 

conducted in the comparison of these two heterogeneity methods.  Unfortunately, this is an 

inherent limitation of the latent class modeling framework.  Although the model, in this case, 

captures more heterogeneity and provides a better fit for the data, this is not always the case. 

 In summary, this study exhibits two distinct methodologies to model crash rates while 

accounting for heterogeneity.  Factors that contribute to crash rates differ dependent on road 

classification and in future work should be analyzed separately.  Such findings can assist with 

safety measures in Idaho by providing transportation agencies, engineers, planners, and policy 

makers with contributing crash rate factors coupled with more precision.  For example, road 

configuration was found to impact crash rates by road classification and restriping to reconfigure 

configurations can be an economically viable solution to reduce heavy vehicle crash rates in Idaho.  

In addition, stop signs were found to increase crash rates on major collectors and a possible 

explanation could be ineffective stop sign location; hence, relocating stop signs is yet another 

economically viable solution to reduce heavy vehicle crash rates in Idaho.  The presented 

framework, censored latent class regression, should strongly be considered when conducting future 

crash rate analyses, as well as analysis by roadway classification in other geographic regions. 
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TABLE 1 Descriptive Statistics for Significant Variables by Road Classification 

Classification Variable Mean 
Standard 

Deviation 
Min Max 

Principal 

Arterials 

Crashes per Million-Vehicle Miles-Traveled 

(Response Variable) 
0.127 0.208 0.005 3.488 

Speed Limit (1 if 65MPH, 0 Otherwise) 0.443 0.497 - - 

Traffic Control Device (1 if No Device, 0 

Otherwise) 
0.702 0.458 - - 

Road Configuration (1 if 2-Way & 2-Way Left-

Turn Lane 
0.126 0.333 - - 

Heavy Vehicle AADT (1 if Less Than or Equal 

to 300, 0 Otherwise) 
0.158 0.365 - - 

Passenger Vehicle AADT (1 if Greater Than 

10,500, 0 Otherwise)  
0.108 0.310 - - 

Total AADT (1 if Between 5,000 and 7,000, 0 

Otherwise) 
0.167 0.373 - - 

Major 

Collectors 

Crashes per Million-Vehicle Miles-Traveled 

(Response Variable) 
0.620 1.204 0.017 13.105 

Speed Limit (1 if Less Than or Equal to 40 

MPH, 0 Otherwise) 
0.241 0.428 - - 

Traffic Control Device (1 if Stop Sign, 0 

Otherwise) 
0.159 0.366 - - 

Horizontal Geometrics (1 if Straight, 0 

Otherwise) 
0.789 0.408 - - 

Road Configuration (2-Way & Double-Yellow 

Painted Divider, 0 Otherwise) 
0.129 0.335 - - 

Total AADT (1 if Less Than 500, 0 Otherwise) 0.228 0.420 - - 

Passenger Vehicle AADT (1 if Greater Than 

2,500, 0 Otherwise) 
0.227 0.419 - - 

Interstates 

Crashes per Million-Vehicle Miles-Traveled 

(Response Variable) 
0.034 0.047 0.003 0.726 

Speed Limit (1 if 75 MPH, 0 Otherwise) 0.675 0.469 - - 

Total AADT (1 When Less Than 6,500, 0 

Otherwise) 
0.164 0.370 - - 

Passenger Vehicle AADT (1 if Greater Than 

15,000, 0 Otherwise) 
0.116 0.321 - - 

Heavy Vehicle AADT (1 if Between 2,000 and 

3,000, 0 Otherwise) 
0.256 0.437 - - 

Horizontal Geometrics (1 if Curved, 0 

Otherwise) 
0.230 0.421 - - 

Road Configuration (1 if 2-Way and 

Raised/Depressed Divider) 
0.929 0.258 - - 

Surface Defects (1 if No Surface Defects, 0 

Otherwise) 
0.960 0.195 - - 

Note: AADT = Average Annual Daily Traffic 

 

 

 

 

 

 

 

 



Anderson & Hernandez  17 

 

TABLE 2 Best Fit Fixed-Parameter Tobit Regression Estimates for Principal Arterials 

Variable Coefficient t-stat Partial Effect 

Constant 0.12 4.48  

Speed Limit (1 if 65MPH, 0 Otherwise) -0.11 -3.95 -4.09 

Traffic Control Device (1 if No Device, 0 

Otherwise) 
-0.12 -4.33 -4.66 

Road Configuration (1 if 2-Way & 2-Way Left-

Turn Lane) 
0.10 2.81 4.06 

Heavy Vehicle AADT (1 if Less Than or Equal 

to 300, 0 Otherwise) 
0.10 2.88 3.76 

Passenger Vehicle AADT (1 if Greater Than 

10,500, 0 Otherwise)  
-0.22 -4.70 -8.44 

Total AADT (1 if Between 5,000 and 7,000, 0 

Otherwise) 
-0.06 -1.71 -2.26 

Sigma, 𝜎 0.31 26.85  

Number of Observations 862 

Log-Likelihood at Zero -396.68 

Log-Likelihood at Convergence -355.12 

χ2 83.11 

Maddala Pseudo R2 0.092 
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TABLE 3 Best Fit Fixed-Parameter Tobit Regression Estimates for Interstates 

Variable Coefficient t-stat Partial Effect 

Constant 0.09 4.54  

Speed Limit (1 if 75 MPH, 0 Otherwise) -0.02 -2.20 -0.80 

Total AADT (1 When Less Than 6,500, 0 

Otherwise) 
0.03 3.88 1.64 

Passenger Vehicle AADT (1 if Greater Than 

15,000, 0 Otherwise) 
-0.03 -2.28 -1.30 

Heavy Vehicle AADT (1 if Between 2,000 

and 3,000, 0 Otherwise) 
0.02 2.06 0.78 

Horizontal Geometrics (1 if Curved, 0 

Otherwise) 
0.02 2.36 0.95 

Road Configuration (1 if 2-Way and 

Raised/Depressed Divider) 
-0.03 -2.20 -1.37 

Surface Defects (1 if No Surface Defects, 0 

Otherwise) 
-0.05 -2.81 -2.30 

Sigma, 𝜎 0.06 20.74  

Number of Observations 379 

Log-Likelihood at Zero 211.91 

Log-Likelihood at Convergence 242.54 

χ2 61.25 

Maddala Pseudo R2 0.149 
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TABLE 4 Best Fit Random-Parameter Tobit Regression Estimates for Major Collectors 

Variable 

Fixed-Parameter Tobit Random-Parameter Tobit 

Coefficient t-stat 
Partial 

Effect 
Coefficient t-stat 

Partial 

Effect 

Constant -1.31 -5.94  -1.21 -5.40  

Speed Limit (1 if Less Than or 

Equal to 40 MPH, 0 Otherwise) 
0.52 2.87 0.20 0.42 2.30 12.02 

   Standard Deviation of 

Parameter, Normally Distributed 
- - - 0.73 6.67 - 

Traffic Control Device (1 if Stop 

Sign, 0 Otherwise) 
0.45 2.22 0.18 0.40 2.01 11.59 

Horizontal Geometrics (1 if 

Straight, 0 Otherwise) 
0.91 4.38 0.36 0.73 3.67 20.96 

Road Configuration (1 if 2-Way & 

Double-Yellow Painted Divider, 0 

Otherwise) 

0.70 3.10 0.27 0.36 1.53 10.41 

   Standard Deviation of 

Parameter, Normally Distributed 
- - - 0.99 5.45 - 

Total AADT (1 if Less Than 500, 

0 Otherwise) 
1.03 5.61 0.41 0.97 4.88 27.90 

Passenger Vehicle AADT (1 if 

Greater Than 2,500, 0 Otherwise)  
-0.60 -2.90 -0.24 -0.50 -2.22 -14.31 

Sigma, 𝜎 1.82 25.91  1.59 56.33  

Number of Observations 768 768 

Log-Likelihood at Zero -1003.14 -1003.14 

Log-Likelihood at Convergence -967.07 -926.67 

χ2 72.13 80.81 

Maddala Pseudo R2 0.090 0.181 
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TABLE 5 Best Fit Latent Class Tobit Regression Estimates for Principal Arterials 

Variable 
Latent Class 1 Latent Class 2 Latent Class 3 Partial 

Effect Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant 1.51 2.59 0.26 7.90 0.04 11.83  

Speed Limit (1 if 65MPH, 0 

Otherwise) 
0.05 0.06 -0.12 -3.25 0.00 -1.07 -0.45 

Traffic Control Device (1 if No 

Device, 0 Otherwise) 
-1.06 -2.06 -0.11 -3.15 -0.01 -1.93 -0.78 

Road Configuration (1 if 2-

Way & 2-Way Left-Turn Lane) 
-0.94 -0.74 0.09 2.31 0.00 -0.12 0.04 

Heavy Vehicle AADT (1 if 

Less Than or Equal to 300, 0 

Otherwise) 

0.93 1.86 0.05 1.34 0.00 0.69 0.49 

Passenger Vehicle AADT (1 if 

Greater Than 10,500, 0 

Otherwise)  

-0.53 -0.10 -0.12 -1.58 -0.01 -1.56 -0.71 

Total AADT (1 if Between 

5,000 and 7,000, 0 Otherwise) 
1.15 0.65 0.00 -0.05 0.00 -0.09 0.34 

Sigma, 𝜎 0.61 2.31 0.15 10.52 0.02 15.46  

        
Class Probability (t-statistic) 0.022 (2.77) 0.262 (9.06) 0.716 (25.24)  
        
Number of Observations 862       
Log-Likelihood at Zero 166.81       
Log-Likelihood at Convergence 195.60       
Akaike Information Criterion -339.20       
Bayesian Information Criterion -215.50       
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TABLE 6 Best Fit Latent Class Tobit Regression Estimates for Major Collectors 

Variable 
Latent Class 1 Latent Class 2 Latent Class 3 Latent Class 4 Partial 

Effect Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant 2.11 0.71 0.08 3.83 0.07 0.93 0.43 1.69  

Speed Limit (1 if Less Than or Equal 

to 40 MPH, 0 Otherwise) 
2.66 1.40 0.02 1.16 0.05 0.88 0.43 2.67 9.94 

Traffic Control Device (1 if Stop 

Sign, 0 Otherwise) 
1.94 1.05 0.01 0.39 0.06 1.19 0.55 3.08 1.18 

Horizontal Geometrics (1 if Straight, 

0 Otherwise) 
-1.28 -0.61 0.02 1.00 0.13 2.17 0.02 0.07 -5.24 

Road Configuration (2-Way & 

Double-Yellow Painted Divider, 0 

Otherwise) 

2.46 1.07 0.02 0.81 0.13 1.85 -0.09 -0.44 6.56 

Total AADT (1 if Less Than 500, 0 

Otherwise) 
2.28 1.17 0.01 0.33 0.29 5.52 0.74 4.26 7.00 

Passenger Vehicle AADT (1 if 

Greater Than 2,500, 0 Otherwise)  
-3.71 -1.04 -0.03 -1.39 -0.06 -0.90 0.35 1.87 -5.91 

Sigma, 𝜎 3.10 3.83 0.07 9.64 0.16 5.44 0.44 5.38  
          

Class Probability (t-statistic) 0.076 (3.93) 0.577 (13.22) 0.227 (4.97) 0.120 (4.98)  

          
Number of Observations 768         
Log-Likelihood at Zero -437.00         
Log-Likelihood at Convergence -414.63         
Akaike Information Criterion 899.30         
Bayesian Information Criterion 1061.80         
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TABLE 7 Best Fit Latent Class Tobit Regression Estimates for Interstates 

 

Variable 
Latent Class 1 Latent Class 2 Partial 

Effect Coefficient t-stat Coefficient t-stat 

Constant 0.72 5.05 -0.01 -0.20  

Speed Limit (1 if 75 MPH, 0 

Otherwise) 
0.00 0.02 -0.01 -1.49 -0.37 

Total AADT (1 When Less Than 

6,500, 0 Otherwise) 
0.00 -0.10 0.03 2.23 0.69 

Passenger Vehicle AADT (1 if 

Greater Than 15,000, 0 

Otherwise) 

-0.01 -0.29 -0.02 -0.61 -0.77 

Heavy Vehicle AADT (1 if 

Between 2,000 and 3,000, 0 

Otherwise) 

0.00 -0.12 0.02 2.32 0.65 

Horizontal Geometrics (1 if 

Curved, 0 Otherwise) 
-0.01 -0.55 0.02 1.63 0.24 

Road Configuration (1 if 2-Way 

and Raised/Depressed Divider) 
-0.01 -0.24 0.01 0.48 0.23 

Surface Defects (1 if No Surface 

Defects, 0 Otherwise) 
-0.70 -4.81 0.01 0.36 -10.78 

Sigma, 𝜎 0.03 4.21 0.04 11.84  

      
Class Probability (t-statistic) 0.361 (2.30) 0.639 (4.06)  
      
Number of Observations 379     
Log-Likelihood at Zero 363.56     
Log-Likelihood at Convergence 385.48     
Akaike Information Criterion -733.00     
Bayesian Information Criterion -658.10     
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TABLE 8 Fit of Predicted Crash Rates 

Classification Tobit R2 Latent Class R2 

Principal Arterials 0.09 0.76 

Major Collectors 0.29 0.88 

Interstates 0.22 0.72 
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FIGURE 3 Heavy vehicle crash rate distribution by roadway classification. 
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FIGURE 4 Actual crash rates versus predicted crash rates. 


