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Three-Dimensional MulƟ phase 
SegmentaƟ on of X-Ray CT Data of 
Porous Materials Using a Bayesian 
Markov Random Field Framework
Advancements in noninvasive imaging methods such as X-ray computed tomography 
(CT) have led to a recent surge of applicaƟ ons in porous media research with objecƟ ves 
ranging from theoreƟ cal aspects of pore-scale fl uid and interfacial dynamics to pracƟ cal 
applicaƟ ons such as enhanced oil recovery and advanced contaminant remediaƟ on. While 
substanƟ al eff orts and resources have been devoted to advance CT technology, microscale 
analysis, and fl uid dynamics simulaƟ ons, the development of effi  cient and stable three-
dimensional mulƟ phase image segmentaƟ on methods applicable to large data sets is 
lacking. To eliminate the need for wet–dry or dual-energy scans, image alignment, and 
subtracƟ on analysis, commonly applied in X-ray micro-CT, a segmentaƟ on method based 
on a Bayesian Markov random fi eld (MRF) framework amenable to true three-dimensional 
mulƟ phase processing was developed and evaluated. Furthermore, several heurisƟ c and 
determinisƟ c combinatorial opƟ mizaƟ on schemes required to solve the labeling problem 
of the MRF image model were implemented and tested for computaƟ onal effi  ciency and 
their impact on segmentaƟ on results. Test results for three grayscale data sets consist-
ing of dry glass beads, parƟ ally saturated glass beads, and parƟ ally saturated crushed tuff  
obtained with synchrotron X-ray micro-CT demonstrate great potenƟ al of the MRF image 
model for three-dimensional mulƟ phase segmentaƟ on. While our results are promising 
and the developed algorithm is stable and computaƟ onally more effi  cient than other com-
monly applied porous media segmentaƟ on models, further potenƟ al improvements exist 
for fully automated operaƟ on.

AbbreviaƟ ons: CT, computed tomography; GUI, graphical user interface; ICM, iterated condiƟ onal modes; 
MAP, maximum a posteriori; MMD, modifi ed Metropolis dynamics; MRF, Markov random fi eld.

In recent years, soil and porous media research has experienced a vast 
increase in the application of X-ray CT. Th is trend is attributable to steadily increasing com-
putational capabilities, signifi cant advancements in synchrotron and benchtop micro-CT 
technology (e.g., Vaz et al., 2011), and easier access to industrial and synchrotron X-ray CT 
facilities. While substantial eff orts and resources have been devoted to advancing CT tech-
nology, microscale analysis, and fl uid dynamics simulations, the development of adequate 
three-dimensional, multiphase image segmentation methods for the conversion of inverted 
grayscale CT volumes into a discrete form that permits quantitative characterization of 
phase boundaries and subsequent modeling of fl ow processes and liquid distribution within 
porous materials seems to lag behind. Although there are numerous segmentation methods 
documented in the literature (mostly for medical or optical character recognition applica-
tions), a stable three-dimensional multiphase algorithm for porous materials is lacking. (For 
a comprehensive survey and comparison of commonly applied methods, see Iassonov et al. 
[2009] and Baveye et al. [2010]).

Most of the available codes are limited to two phases (e.g., Lindquist, 1999; Schlüter et al., 
2010) or are not applicable to true three-dimensional processing, thereby omitting impor-
tant information contained in the three-dimensional voxel neighborhood and potentially 
introducing directional bias (Elliot and Heck, 2007) (note that in contrast to a pixel, which 
describes the smallest element within a two-dimensional image, a voxel is the smallest 
element of a three-dimensional data set). Furthermore, many researchers manually defi ne 
segmentation thresholds based on the shape of the global grayscale or linear attenuation 
coeffi  cient histograms, which may introduce operator bias in situations where phase con-
trasts are not clearly defi ned (i.e., phase attenuation values overlap). It also should be stated 
that there is a vast discrepancy in segmentation results when diff erent methods are applied 
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to the same X-ray CT data set (Iassonov et al., 2009; Baveye et al., 
2010; Wang et al., 2011).

Due to the lack of multiphase segmentation capabilities, it is 
common practice to conduct dual-energy or wet–dry scans, seg-
ment and align the obtained data sets, and perform subtraction 
analysis to separate phases (e.g., Porter and Wildenschild, 2010). 
Th is is a complex, multistep process susceptible to errors. Very few 
algorithms developed for medical (Chuang et al., 2006; Held et al., 
1997) and pattern and object recognition applications (Berthod et 
al., 1996) are applicable to direct multiphase segmentation. Th e 
fuzzy c-means method (Chuang et al., 2006) considers gray-level 
intensity and probability for each class of voxels (i.e., phase) based 
on local spatial information calculated for a small voxel neighbor-
hood. Berthod et al. (1996) proposed a two-dimensional algorithm 
for supervised Bayesian segmentation based on MRFs. Because 
more nearest neighbors are considered, extension to three dimen-
sions provides more information for the maximum a posteriori 
(MAP) approach when compared with the two-dimensional model 
proposed by Berthod et al. (1996). Th e MAP approach was pre-
viously used for image processing, image analysis, and computer 
vision (e.g., Geman and Geman, 1984; Deng and Clausi, 2005; 
Sudderth and Freeman, 2008; Chantas et al., 2010; Levada et 
al., 2010; Paulsen et al., 2010) but has not been applied to three-
dimensional multiphase segmentation of porous media X-ray CT 
data. Although the MAP approach can segment multiple phases, 
its use has generally been limited to binary segmentation.

Motivated by the documented demand for advanced segmentation 
capabilities, we developed and implemented a stable and compu-
tationally effi  cient three-dimensional multiphase Bayesian MRF 
algorithm for segmentation of X-ray CT data of porous materials. 
Th ree sample data sets for natural and artifi cial porous materials 
emanating from synchrotron microtomography were used to dem-
onstrate the applicability of the algorithm.

 Materials and Methods
Code Development and ImplementaƟ on
Early models for image characterization were based on stochastic repre-
sentation of image attributes, mainly the gray-level distribution. A widely 
used model for images based on the probability of classes or gray levels is 
referred to as the random fi eld model, which was later extended to the 
MRF model (Moussouris, 1974). Th e motivation for the application of a 
stochastic framework is based on the assumption that the variation and 
interactions among image attributes can be described by probability distri-
butions. Th e MRF model is inherently powerful for image segmentation 
because it can generally handle any number of voxel classes (e.g., represent-
ing diff erent pore-fi lling fl uids or diff erent solid grain materials); however, 
it must be initialized with reasonable statistics (i.e., mean and standard 
deviation) for each voxel class. Th e statistics can be obtained by either a 
global thresholding method or simple manual selection of several seed 
regions within the data that are representative for each voxel class (i.e., 

phase). Th e latter method, i.e., manual selection of seed regions, was used 
in this study. Following the two-dimensional approach of Berthod et al. 
(1996), we developed and implemented a three-dimensional algorithm 
optimized for large X-ray CT data sets of porous materials, where each 
gray level within the three-dimensional data set is assigned a discrete label 
corresponding to one of the considered individual classes (phases) to satisfy
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where Sil  and 
jSl  are labels for sites Si and Sj, respectively, corresponding 

to voxels xi and xj in a three-dimensional space, μL is the mean and σL 
is the standard deviation of labeling L, N is the total number of voxels 
within the X-ray CT data set, and β is a constant that represents the 
homogeneity of regions. A detailed derivation of Eq. [1] is presented in 
Appendix A. Finding a labeling L̂  with the constraint of satisfying Eq. 
[1] is a combinatorial optimization problem. To investigate diff erent opti-
mization approaches, we initially implemented a deterministic (iterated 
conditional modes [ICM] algorithm) and a heuristic (Metropolis algo-
rithm) optimization scheme. Because there was only a small adaptation to 
the Metropolis algorithm required (see Appendix B), we later added and 
tested the modifi ed Metropolis dynamics (MMD) algorithm.

To facilitate the ease of application, an intuitive graphical user interface 
(GUI) was developed in MATLAB (Th e MathWorks, Natick, MA). 
Th e GUI provides options for two- or three-dimensional processing, a 
choice of optimization methods and parameters, tools for data cropping 
and visualization, and diff erent pre- and post-processing fi lters. Because 
MATLAB is based on matrix operations, it lacks effi  ciency when it comes 
to the element-by-element computation inherent to the implemented heu-
ristic and deterministic optimization schemes. To assure computational 
effi  ciency, all algorithms were coded in the C programming language and 
interfaced with the GUI via MATLAB executable functions. To further 
increase effi  ciency, the Open Multi-Processing (OpenMP) application 
programming interface that provides compiler directives, functions, and 
environment variables and enables shared memory parallel programming 
in C, C++, and Fortran (Chandra et al., 2001) was utilized. An added 
advantage of OpenMP is its multiplatform support (i.e., UNIX, Linux, 
Windows, and Mac OS X); C programs with OpenMP directives and 
functions may be compiled on any of these platforms and the gener-
ated executables can utilize multiple cores of a CPU or multiple CPUs 
in a shared memory system. Locally adaptive segmentation algorithms 
(Iassonov et al., 2009) such as the presented MRF model are highly suit-
able for parallel computing, hence utilization of multiple CPUs or CPU 
cores leads to a signifi cant increase in computation speed. It is also worth 
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noting that a parallel random number generator was used for generat-
ing random numbers in the parallel implementation of Metropolis and 
MMD using OpenMP (L’Ecuyer et al., 2002).

To allow input from diff erent data sources, the code was designed to 
accept various image formats (i.e., jpeg, tiff , bmp, and png) and depth 
resolutions (i.e., eight-bit, 16-bit, 32-bit, 64-bit, and fl oating point).

Samples for Model TesƟ ng
A total of three X-ray CT data sets were used for MRF code evalua-
tion. The data used emanated from experiments at the synchrotron 
X-ray microtomography system at the GeoSoilEnviro Consortium for 
Advanced Radiation Sources (GSECARS) bending magnet beamline 
at Argonne National Laboratory, Lemont, IL. All details about the 
GSECARS beamline and scanning procedure were discussed in Porter 
and Wildenschild (2010) and Wildenschild et al. (2002, 2005).

Th e fi rst sample (Fig. 1a) was composed of precision glass beads (diameter 
= 0.8 ± 0.01 mm, density = 2.65 g cm−3, as specifi ed by the manufacturer, 
Glenn Mills, Clift on, NJ). Th e second sample (Fig. 1b) consisted of a pack-
ing of glass beads of three diff erent sizes (Porter et al., 2010). While the 
fi rst sample was scanned in a dry state, the second sample was partially sat-
urated (approximately 50%) with an 11% (w/w) KI solution to increase the 
density contrast between wetting and nonwetting phases. Th e third sample 
(Fig. 1c) was composed of crushed volcanic tuff  that consisted mainly of 
quartz with minor amounts of feldspar, albite, and volcanic glasses. Th is 
sample was also partially saturated with the 11% KI solution.

All samples were compacted into small acrylic cylinders (i.d. = 6.54 mm) 
and scanned at an energy level of 33.27 keV at resolutions of 11.8, 13.0, 
and 16.8 μm. Th e obtained radiographs were inverted with a fi ltered back-
projection algorithm (Rivers, 2010) and stored in 16-bit grayscale format. 
Th e ultimate sizes of the inverted data sets were 650 by 650 by 515 voxels 
for Sample 1, 650 by 650 by 427 voxels for Sample 2, and 650 by 650 by 
380 voxels for Sample 3. For the dry glass bead sample (Fig. 1a), which 
was primarily used as a benchmark for model testing, the porosity (φM
= 0.509) was independently determined based on the number, specifi c 
gravity, and mass of precision glass beads required to fi ll the cylindrical 

sample container. Th e container dimensions for volume calculation were 
precisely determined from a vertical radiograph cross-section, i.e., to deter-
mine sample height, the container was truncated at the lower and upper 
edges of the lowest and uppermost glass bead, respectively.

Data Preprocessing
To omit container walls and the surrounding air space that were captured 
together with the actual porous medium sample, all grayscale X-ray CT 
data sets needed to be cropped before segmentation using a cylindrical 
mask (Fig. 2a). To assure that identical data sets were used for sensitivity 
testing of model input parameters, the cropped volumes were saved and 
called for all subsequent enhancement and segmentation steps.

Fig. 1. Samples used for testing the Markov random fi eld code: (a) dry precision glass beads; (b) mixed glass beads and (c) crushed volcanic tuff  
partially saturated with 11% KI solution (for better visibility of phase boundaries, contrast stretching was applied to original X-ray computed tomog-
raphy grayscale data).

Fig. 2. (a) Cropped example cross-section of the original grayscale 
data set of the partially saturated glass bead sample, the same cross-
section aft er (b) contrast stretching and (c) application of median and 
unsharp fi lters, and (d) segmented cross-section.
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SensiƟ vity of SegmentaƟ on Results 
to StaƟ sƟ cal IniƟ alizaƟ on
Unlike for biomedical applications (Held et al., 1997), where the 
statistics of all image classes of interest are known a priori, the 
MRF image model for porous materials needs to be initialized 
with the means and standard deviations of the grayscale distri-
butions of all considered classes (phases), as discussed above and 
presented in detail in Appendix A. In this study, we applied 
manual seeding by randomly selecting regions within each phase 
as outlined above. To evaluate the eff ects of the initial seeding on 
the segmentation results, we gradually increased the volume frac-
tion of seed voxels for each phase for the partially saturated glass 
bead and crushed tuff  samples (three-phase systems) to approxi-
mate the minimum fraction required for stable and repeatable 
segmentation results. Figure 3a shows that for glass beads, the 
segmentation results stabilized when the volume fraction used 
for the statistical initialization of each phase was at least 6.07 
× 10−4. For crushed tuff  (Fig. 3b), the cutoff  volume fraction 
(marked with a dashed line) was around 7.50 × 10−4. Note that 
the solid phase (i.e., glass beads and tuff ) was assigned a separate 
y axis to visualize the variations in greater detail (Fig. 3).

As shown for an example cross-section of the partially saturated glass bead 
sample (Fig. 2a), grayscale X-ray CT data emanating from synchrotron 
sources appear very dark on a computer screen, with little contrast among 
phases. Th is means that the global grayscale distribution is rather narrow, 
occupying only a small portion of the 16-bit (0–65,535 grayscale levels) 
range. Th is can be signifi cantly improved without the loss of physical 
information via contrast stretching, where the narrow distribution is 
linearly mapped (stretched) across the entire 16-bit grayscale range. Th is 
yields brighter images with better phase contrast (Fig. 2b) and allows a 
better informed manual selection of seed regions.

To remove high-frequency noise inherent to X-ray CT data and to 
enhance phase boundaries, we applied median and unsharp fi lters (Joshi, 
2006) to the contrast-stretched data sets (Fig. 2c). Th e median fi lter was 
applied in a 3- by 3- by 3-voxel window. Th e choice of a small voxel neigh-
borhood is imperative for preserving phase edges while removing noise. 
Th e unsharp fi lter enhances phase boundaries locally by subtracting a 
smoothed or unsharp version of an image from its original to obtain an 
edge or high-frequency image, which is subsequently added back to the 
original image.

Aft er image enhancement, seed regions for each phase were selected 
manually from random locations within the three-dimensional data set. 
To accomplish this task, we randomly selected at least three two-dimen-
sional cross-sections close to the bottom, center, and top of the sample 
and marked seed regions within each considered phase until the volume 
fraction of seed voxels was at least 7.50 × 10−4. Because of the monochro-
matic nature of the synchrotron X-ray source, which yields uniform phase 
densities (i.e., no beam hardening), seeding from a single cross-section 
would theoretically be suffi  cient. For data sets from polychromatic sources 
(e.g., industrial or benchtop X-ray CT scanners), where beam hardening is 
an issue, an iterative procedure (Iassonov and Tuller, 2010) can be applied 
to remove density variations prior to segmentation.

To assure that identical seed regions were used for sensitivity testing of 
the input parameters and comparison of the implemented optimization 
schemes, the mean and standard deviation of the grayscale distribution of 
each selected seed region were calculated and stored in a separate fi le and 
later called for the subsequent segmentation step. Aft er seed region selec-
tion, the MRF and optimization parameters were specifi ed on the GUI 
and the segmentation step was initialized. Aft er segmentation, the result-
ing data set is stored in TIFF format and is ready for further analysis (e.g., 
determination of porosity). An example cross-section for the segmented 
partially saturated glass bead data set is depicted in Fig. 2d.

Results and Discussion
All segmentation results presented here were obtained with a 
Windows 7 (64-bit) workstation with an Intel Core i7–980X 
Extreme (12-MB L2 cache, 3.33 GHz) CPU with six physical 
cores (12 threads with hyper-threading), 24-GB DDR3 SDRAM 
at 1333 MHz, and serial ATA II RAID 1 dual 1-TB hard drives.

Fig. 3. Volume fractions of voxels for (a) partially saturated glass beads 
and (b) crushed tuff  plotted against the volume fraction of seed voxels. 
Results were obtained with iterated conditional modes optimization 
with Markov random fi eld β set to 0.9.
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Although there are small variations visible 
beyond the cutoff  thresholds, the obtained results 
are very solid. If the sample porosity is expressed 
as φCT = (no. of air voxels + no. of liquid voxels)/
(total no. of voxels), the variance for porosities 
obtained for the glass beads for the seed voxel 
volume fraction range between 6.07 × 10−4

and 1.01× 10−3 was only 7.6× 10−7 (Fig. 3a). 
Considering the seed voxel volume fraction range 
between 7.50× 10−4 and 1.88× 10−3 for the 
crushed tuff  (Fig. 3b), the variance for the calcu-
lated porosities was 4.0× 10−6. Based on these 
results, a minimum seed region volume fraction 
of 7.50× 10−4 was chosen for all subsequent seg-
mentations in this study. 

It should be noted that manual seeding is very 
time consuming, with time requirements oft en 
exceeding the actual computation time. While 
manual seeding provides reasonably stable and 
repeatable segmentation results, we acknowledge 
the need for fully automated and unbiased statis-
tical initialization. Th is could be achieved with a 
two-step approach, where, for example, a simple 
and computationally effi  cient clustering method 
(Iassonov et al., 2009) is utilized to automatically 
detect and classify the phases of interest before 
application of the MRF model. Th e implemen-
tation of such an automation scheme is rather 
complex and part of our ongoing research.

SensiƟ vity of SegmentaƟ on Results to Markov 
Random Field Model ParameterizaƟ on
Besides initialization statistics for all considered phases, the MRF 
image model requires parameterization with a β value (Eq. [1]) that 
emphasizes the homogeneity of regions within the X-ray CT data 
set. Th e choice of β refl ects a priori assumptions about the expected 
variation among the respective phases. A small β value is chosen 
for spatially more heterogeneous phase distributions, whereas a 
large β is chosen for more homogeneous conditions (note that β is 
a positive number). Th e choice of β not only aff ects the segmenta-
tion results but also determines the time it takes for the algorithm 
to converge (i.e., ΔE < Ethreshold; see Appendix B). To evaluate 
the eff ects of MRF model parameterization on the segmentation 
results and computational effi  ciency, we fi rst gradually increased 
β from 0.1 to 100 for the dry glass bead sample and compared the 
X-ray CT derived porosities with the physically measured value of 
φM = 0.509 (see above). Figure 4a depicts the X-ray CT derived 
porosities and associated absolute percentage error EA = |[(φCT − 
φM)/φM]100| plotted against β. For all considered β values, the 
X-ray CT derived porosities were very close to the benchmark value, 
with EA gradually decreasing with increasing β. Considering the 
noise in the original X-ray CT data set, even the largest deviation, 

with EA = 0.293% for β, seems to be reasonable for subsequent 
morphometric pore space analysis and fl uid dynamics modeling. 
While the CT-derived porosities showed only small variations, 
the associated computation times and the number of iterations 
required for model convergence varied significantly (Fig. 4b). 
Although there was no gradual trend, the computation times and 
number of iterations were considerably larger for higher β values.

Th e sensitivity of the segmentation results to changes in β was also 
qualitatively evaluated for the partially saturated glass bead and 
crushed tuff  samples (Fig. 5). For these data sets, we unfortunately 
did not have a benchmark from independent measurements for 
comparison. Nevertheless, the obtained results for the partially 
saturated glass beads (Fig. 5a) showed a very similar trend as for 
the dry glass beads (Fig. 4). Th ere was virtually no change in poros-
ity across the entire range of considered β values. Th e numbers of 
segmented phase voxels are depicted in Fig. 5a. Th e variance of 
the CT-derived porosities, φCT, across the observed β range was 
only 1.5 × 10−6. Th e crushed tuff  sample showed vastly diff erent 
behavior (Fig. 5b). While the CT-derived porosities were virtually 
constant up to β = 1.5, starting at β = 2.0 the MRF model misclas-
sifi ed the solid and liquid phases, with the air phase remaining 
virtually constant. Th is can be attributed to the poorly pronounced 
solid–liquid interfaces in the original crushed tuff  CT data set (Fig. 
1c), which could be potentially improved with more sophisticated 

Fig. 4. (a) X-ray computed tomography derived porosities and associated absolute 
percentage errors for the dry glass bead sample computed for a range of values of the 
Markov random field (MRF) β, and (b) associated computation times and number of 
iterations required for model convergence. Results were obtained with iterated condi-
tional modes optimization.
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image enhancement techniques such as the anisotropic–nonlinear 
diff usion fi lter (Kaestner et al., 2008). A visual comparison of the 
segmentation results obtained for the crushed tuff  with diff erent 
β values is shown in Fig. 6. As observed for the dry glass beads, the 
computational demand was signifi cantly higher for large β values 
for both the partially saturated glass beads and the tuff  (Fig. 5c 
and 5d). Based on the above analysis and considering the tradeoff  
between computational effi  ciency and accuracy, β values between 
0.5 and 1.3 are reasonable for segmenting X-ray CT data such as 
used for this study. Hence, a value of 0.9 (arithmetic mean) was 
chosen for all subsequent segmentations presented below.

Comparison of Implemented Combinatorial 
OpƟ mizaƟ on Schemes
Before proceeding with a direct comparison of the optimization 
methods used (i.e., Metropolis, MMD, and ICM optimization), 
the required parameterization of the Metropolis and MMD 
algorithms with initial temperature T0, cooling schedule c, and 
relabeling constant α (only used for MMD; see Appendix B) need 
to be discussed. While the cooling schedule has been intensively 
studied, with theoretical limits and formulations proposed in the 
literature (Kirkpatrick et al., 1983; Yip and Pao, 1995, and refer-
ences therein), there is no universal criterion for the choice of T0. 
Th e cooling schedule (0 < c < 1) determines the time required for 
the algorithm to converge. Based on published data, c was set at 
0.98, which means a 2% temperature reduction aft er each itera-
tion step. While the choice of a high T0 may lead to a signifi cant 
increase in computation time, the selection of a low T0 might not 
provide enough time and freedom for the relabeling operation to 

approach the global minimum energy, instead yielding a local min-
imum. To evaluate the eff ects of T0 on the segmentation results 
and computational effi  ciency, we gradually increased T0 from 0.1 
to 20 for the dry glass bead sample and compared the φCT values 

Fig. 6. Visual comparison of segmentation results for crushed tuff  
obtained with diff erent values of the Markov random fi eld β: (a) origi-
nal contrast-stretched sample cross-section, and segmented sample 
cross-sections obtained with (b) β = 0.1, (c) β = 1, and (d) β = 10. 
Results were obtained with iterated conditional modes optimization.

Fig. 5. Number of segmented liquid, air, and solid voxels for (a) partially saturated glass beads and (b) crushed tuff  for a range of values of the 
Markov random fi eld (MRF) β, and associated computation times for (c) glass beads and (d) tuff . Results were obtained with iterated conditional 
modes optimization.



www.VadoseZoneJournal.org

with the physically measured porosity, φM (Fig. 7). Because of the 
similarity of the Metropolis and MMD optimization schemes, 
only the Metropolis algorithm with a cooling schedule of c = 0.98 
was evaluated. As evident from Fig. 7a, the choice of T0 had no 
impact on the segmentation results for the dry glass beads, which 
slightly underestimated φM with an absolute percentage error of 
about 0.28%; however, there was a signifi cant gradual increase 
in the number of required iterations and associated computation 
times with increasing T0. Based on the forgoing evaluation, we 
chose T0 = 1 for all subsequent segmentations with Metropolis 
and MMD optimization in this study.

As detailed in Appendix B, the only diff erence between Metropolis 
and MMD optimization lies in the condition for accepting a new 
labeling. While this is done randomly in the Metropolis algorithm, 
MMD uses a deterministic condition. Th erefore, an additional 
relabeling constant α needs to be specifi ed if the MMD optimi-
zation is applied. As with T0, the choice of α had no signifi cant 
impact on the segmentation results for the dry glass beads. Th e 
absolute percentage error for all considered α values was about 
0.28% (Fig. 8a). In contrast to T0, the number of required itera-
tions decreased with increasing α (Fig. 8b), which can be expected 
based on the MMD pseudocode shown in Appendix B. For the 
comparison of optimization schemes, α = 0.5 was chosen for the 
MMD algorithm.

As shown in Fig. 9a for the dry glass beads, the results obtained 
with Metropolis, MMD, and ICM optimization are indistinguish-
able. Th e CT derived porosities of φCT = 0.5076 are identical to 

the fourth digit, with the ICM algorithm being by far the most 
computationally effi  cient (Fig. 9b). Similar results were obtained 
for the partially saturated glass beads and crushed tuff  (Fig. 10a 
and 10b). Th e CT-derived porosities for Metropolis, MMD, and 
ICM were identical to the third digit (φCT = 0.378) for the 
glass beads. Th e φCT values for the crushed tuff  were 0.431 for 
Metropolis and MMD and 0.436 for ICM. Again, the ICM algo-
rithm was superior with regard to computational effi  ciency. Based 
on this analysis, it is safe to select ICM as the optimization scheme 
of choice for solving the MRF labeling problem as stated in Eq. [1].

ComputaƟ onal Effi  ciency of the Implemented 
Markov Random Field Framework
To discuss the computational effi  ciency of the implemented MRF 
algorithm, we consider ICM optimization only because it is the 
most effi  cient and most likely scheme to be used for solving the 
optimization problem stated in Eq. [1]. It also needs to be noted 
upfront that the presented processor times are inherent to the 
workstation that was used for this study; nonetheless, they pro-
vide some general information about computational effi  ciency. It 
is obvious that the segmentation of large X-ray CT data sets is 
computationally demanding, with the number of computations 
increasing in an approximately linear fashion with increasing 
sample size (i.e., number of voxels), as shown for the partially satu-
rated glass beads and tuff  in Fig. 11. Note that the number of voxels 
was gradually increased by expanding the sample height until the 
full height was reached. Th e processing times for the entire glass 
bead (650 by 650 by 427 voxels) and crushed tuff  (650 by 650 by 
380 voxels) samples were 6.53 and 10.83 min, respectively.

Fig. 7. (a) X-ray computed tomography derived porosities and 
associated absolute percentage errors for the dry glass bead sample 
computed for a range of initial temperature (T0) values, and (b) 
associated computation times and number of iterations required for 
model convergence. Results were obtained with Metropolis optimiza-
tion (cooling schedule c = 0.98) and Markov random fi eld β set to 0.9.

Fig. 8. (a) X-ray computed tomography derived porosities and associ-
ated absolute percentage errors for the dry glass bead sample computed 
for a range of relabeling constant α values for the modifi ed Metropolis 
dynamics (MMD) algorithm, and (b) associated computation times 
and number of iterations required for model convergence. Results 
were obtained with initial temperature T0 = 1, cooling schedule c = 
0.98, and Markov random fi eld β set to 0.9.
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While the results depicted in Fig. 11 imply a linear increase in com-
putation time with increasing sample size, for very large X-ray CT 
data sets linearity might be lost because the overhead due to the 
creation and release of slave threads increases with the number of 
iterations required for model convergence. For a 2000- by 2000- by 
951-voxel, three-phase data set (which we could not utilize for this 
study due to a confi dentiality clause), the computation time was 
only 58 min. Based on the comprehensive experience of researchers 
with other global and locally adaptive segmentation algorithms 
that were tested with similar hardware (Iassonov et al., 2009), the 
implemented MRF algorithm is reasonably fast, especially when 
compared with other locally adaptive methods.

Another avenue to increase computational speed, which is part 
of our ongoing research, is the utilization of graphics processing 
units (GPUs) that traditionally were confi ned to video cards and 
have been mostly used to accelerate the processing and building of 
images. Recent technological advances have led to the development 
of general purpose graphics processing units (GPGPUs), which are 
perfectly suited for parallel computing due to their large number 
of physical cores that can perform particular fl oating-point opera-
tions, unlike a CPU, which performs general purpose operations. 
Th e GPGPUs cannot be used as standalone units because they 
require initial instructions and data sent from a CPU to carry out 
parallel operations on a few hundred cores and then return the 
results to the CPU. Preliminary tests with a NVIDIA Tesla GPU 
computing system (e.g., D870 with two GPUs, 3-Gb dedicated 
memory, 860 GFLOPS) using the CUDA SDK (NVIDIA Corp., 

Fig. 10. Comparison of segmentation results for partially saturated (a) glass beads and (b) crushed tuff  obtained with Metropolis, modifi ed Metropolis 
dynamics (MMD), and iterated conditional modes (ICM) optimization and associated computation times for (c) glass beads and (d) tuff . Results were 
obtained with initial temperature T0 = 1, cooling schedule c = 0.98, MMD relabeling constant α = 0.5, and Markov random fi eld β set to 0.9.

Fig. 9. (a) Comparison of segmentation results for dry glass beads 
obtained with Metropolis, modifi ed Metropolis dynamics (MMD), 
and iterated conditional modes (ICM) optimization, and (b) 
associated computation times. Results were obtained with initial tem-
perature T0 = 1, cooling schedule c = 0.98, MMD relabeling constant 
α = 0.5, and Markov random fi eld β set to 0.9.
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2007) programming language yielded promising results with the 
potential of a 100-fold increase in computation speed for the sam-
ples presented in this study.

Summary and Conclusions
A multiphase segmentation method based on a Bayesian MRF 
framework amenable to true three-dimensional processing was 
developed and evaluated. Two heuristic (Metropolis and MMD) 
and one deterministic (ICM) combinatorial optimization 
schemes required to solve the labeling problem of the MRF image 
model were implemented and tested for computational effi  ciency 
and their impacts on the segmentation results. Th e test results for 
three grayscale data sets consisting of dry glass beads, partially sat-
urated glass beads, and partially saturated crushed tuff  obtained 
with synchrotron X-ray micro-CT demonstrate the great poten-
tial of the MRF image model for three-dimensional multiphase 
segmentation. Evaluation of the manual statistical seeding used 
in this study revealed that for the investigated X-ray CT data sets, 
selection of at least 6 × 104 voxels from each considered phase was 
required for stable and repeatable results. Evaluation of the eff ects 
of the MRF β parameter, which defi nes the homogeneity of phases 
within the X-ray CT data set, on the segmentation results and 
computational effi  ciency yielded an applicable range bound by 0.5 
and 1.3. Values of T0 = 1 for the initial temperature and c = 0.98 
for the cooling schedule, parameters inherent to Metropolis and 
MMD optimization, were derived considering relative percentage 
errors and computation time. A comparison of all implemented 
optimization schemes showed that the ICM algorithm was by far 
the most computationally effi  cient and yielded almost identical 
results to Metropolis and MMD.

Besides computational effi  ciency and stability, the most distinct 
advantage of the MRF image model is that it can handle any 
number of voxel classes (e.g., representing diff erent pore-fi lling 

fl uids or diff erent solid grain materials), eliminating the need 
for wet–dry or dual-energy scans, image alignment, and sub-
traction analysis commonly applied in X-ray micro-CT analysis. 
Furthermore, the MRF model was implemented for full three-
dimensional processing, which is a signifi cant advantage when 
compared with many other codes that only allow two-dimen-
sional “slice by slice” processing of X-ray CT data.

To eliminate potential operator bias, we are currently working 
on a fully automated version that utilizes a simple and effi  cient 
segmentation method for automated seed region selection and ini-
tialization of the MRF model. For further increase in computation 
speed, the current code is converted to CUDA to take advantage of 
the powerful parallel computing environment of GPGPUs.

Appendix A
Three-Dimensional Bayesian Markov Random 
Field Model for MulƟ phase SegmentaƟ on
Th e applicability of MRF theory to image modeling is based 
on the Hammersley–Cliff ord theorem (Besag, 1974) that links 
MRF and Gibbs probability distributions. Because of the com-
plexity of deriving a joint probability distribution PX for MRF 
from its conditional distribution, the theorem is applied to 
reduce PX to the simpler Gibbs distribution (Kindermann and 
Snell, 1980; Li, 2009). Furthermore, the local property of MRF 
yields algorithms that can be implemented in a massively parallel 
manner, making MRF a reliable method for solving the image 
segmentation problem.

Th e theory of MRF on graphs was fi rst proposed by Geman and 
Geman (1984). Bayesian MRF image segmentation utilizes graph 
theory (Berthod et al., 1996) by assigning a discrete set of sites S, 
which are equivalent to the voxel locations within the X-ray CT 
data set, and a discrete set of labels that correspond to the individ-
ual phases or classes, L = (1, 2, …, m), within the X-ray CT data set. 
Considering n sites and m labels yields mn possible labeling options.

Representing the gray-level attribute of an image voxel with 
xi defi nes an image as X = (xi, 1 ≤ i ≤ N), where N is the total 
number of voxels in the X-ray CT data set. Applying the degraded 
image model (Geman and Geman, 1984; Derin et al., 1984), the 
segmentation task is to find a label L for the voxel set X that 
maximizes the conditional probability P(L|X). Applying Bayes’ 
theorem, the conditional probability can be expressed as

( ) ( )
( )
( )

=| |
P L

P L X P X L
P X

 [A1]

Because additive white Gaussian noise is assumed (i.e., the random 
variables, representing voxel values [xi, 1 ≤ i ≤ N] within the 
image X are independent and identically distributed), P(X|L) may 
be written as

Fig. 11. Processor computation times plotted as a function of the 
number of image voxels for partially saturated glass beads and crushed 
tuff . Results were obtained using iterated conditional modes optimi-
zation with Markov random fi eld β set to 0.9.
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Following the MAP labeling solution presented by Berthod et al. 
(1996) yields
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With −1/T < 0, Eq. [A7] reduces to
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Note that there are two terms in Eq. [A8]. Th e fi rst term is due to 
the value at the site or gray level for a particular labeling L, and 
the second term is due to the interactions with neighboring voxels. 
Bayesian MRF segmentation is basically the assignment of labels 
to image voxels such that Eq. [A8] is satisfi ed. Finding a label-
ing with the constraint of satisfying Eq. [A8] is a combinatorial 
optimization problem. Many heuristic optimization schemes 
(for an overview, see Holland, 1975; Goldberg, 1989; Glover and 
Kochenberger, 2003; Blum and Roli, 2003; and references therein) 
and some deterministic optimization schemes (e.g., Geman and 
Geman, 1984; Besag, 1986) are documented in the literature. As 
discussed above, we strove to test and evaluate heuristic as well as 
deterministic optimization schemes, as detailed in Appendix B.

 Appendix B
Implemented HeurisƟ c and DeterminisƟ c 
OpƟ mizaƟ on Schemes
Th e labeling problem described in Appendix A may be solved 
with combinatorial optimization. To investigate fundamentally 
diff erent approaches, we initially implemented a deterministic 
(ICM algorithm) and a heuristic (Metropolis algorithm) opti-
mization scheme. Because there was only a small adaptation to 
the Metropolis algorithm required, we later added and tested the 
MMD algorithm, as detailed below.

Metropolis OpƟ mizaƟ on Algorithm
Metropolis optimization (Metropolis et al., 1953; Kirkpatrick 
et al., 1983) is a modifi ed Monte Carlo method used to obtain a 
sequence of random samples from a probability distribution when 

( ) ( )
=

=∏
1
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i
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where P(xi|L) is given by the Gaussian 
distribution
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with μL as the mean and σL as the standard deviation of labeling L. 
Th e conditional probability P(X|L) is the probability of observing 
the respective grayscale values for a voxel set X given a particular 
labeling L of the entire three-dimensional volume, and P(xi|L) is 
the probability of observing the grayscale value of the individual 
voxel xi given the labeling L of the entire three-dimensional volume.

Following the two-dimensional framework of Berthod et al. 
(1996), the Markovian term in Eq. [A1] that describes the infl u-
ence of neighboring voxels was extended to three dimensions:
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with lSi and lSj as labels for sites Si and Sj, respectively, correspond-
ing to voxels xi and xj in a three-dimensional space, and β as a 
constant that represents the homogeneity of individual phases.

Because the joint probability distribution P(X) for observing the 
grayscale values for a voxel set X is a constant 0 ≤ ε ≤ 1 indepen-
dent of labeling, the a posteriori probability P(L|X) of Eq. [A1] is 
maximized following Eq. [A2]:
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Considering Eq. [A3] and [A4], Eq. [A5] reduces to
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direct sampling is challenging. Th e Metropolis algorithm is suit-
able for cases where the objective is to obtain an acceptable solution 
within a reasonable time while avoiding exhaustive searches for the 
best solution without any time constraint.

Th e principle behind this algorithm is to calculate the properties of 
any substance that can be considered as a composition of interact-
ing individual molecules. For the case of image segmentation, the 
objective is to fi nd an acceptable labeling that satisfi es Eq. [A8]. 
Th is requires defi ning an “energy” function (analogous to the inter-
action energy of the molecules within a substance) that represents 
the current labeling, which needs to be minimized by randomly 
choosing new labels. From Eq. [A8], the argument of the argmin( ) 
term becomes that energy function. Th e pseudocode of the imple-
mented Metropolis algorithm is 

1. Initialize a labeling currentL̂  ← 0L̂  for which the energy 
Ecurrent ← E( L̂ ) due to the fi rst term in Eq. [A8] is a 
minimum, and initialize temperature Tcurrent ← T0.

2. Repeat:

 i. randomly assign a new label: 
newL̂  ← neighbor ( currentL̂ )

 ii. calculate the energy due to the new label: 
Enew ← E( currentL̂ )

 iii. if exp[−(Enew − Ecurrent)/Tcurrent] > random ( ), then 
accept label and energy newL̂  ← currentL̂ , Enew ← 
Ecurrent, respectively. If not, go to 2.i.

 iv. calculate the change in energy: ΔE ← Enew − Ecurrent

 v. calculate a new temperature and update: 
Tnew ← Tcurrent × c

until ΔE < Ethreshold

In Step 1, a labeling 0L̂  for all voxels, which corresponds to the 
least energy contribution due to all possible labels for each voxel, 
li, is assigned and its corresponding energy is calculated. Also an 
initial temperature is chosen. In Steps 2.i and 2.ii, the voxels are 
randomly assigned new labels individually, resulting in a new 
labeling of the entire three-dimensional volume, newL̂ , and a cor-
responding energy, Enew. In Step 2.iii, the new labeling is accepted 
if exp[−(Enew − Ecurrent)/Tcurrent is greater than a random number 
(in the range [0,1])—the Boltzmann probability condition for 
the Metropolis algorithm. In Step 2.iv, the change in energy is 
determined. Th e loop continues aft er reducing the temperature 
(“cooling”). Th ese steps are repeated until the change in energy 
is below a predefi ned threshold, i.e., the exit criterion is reached.

Because of the similarity to the Metropolis algorithm, we also 
implemented the MMD algorithm (Kato et al., 1992). Th e only 
diff erence lies in the condition for accepting a new labeling. While 

this is done randomly in the Metropolis algorithm, MMD uses a 
deterministic condition. Th erefore, only the if statement in the 
above pseudocode needs to be replaced with: if exp[−(Enew − 
Ecurrent)/T] > const (0 ≤ α ≤ 1).

Iterated CondiƟ onal Modes Algorithm
Unlike the Metropolis and MMD algorithms, the ICM algorithm 
is a deterministic optimization scheme (Besag, 1986) that opti-
mizes labeling on a voxel-by-voxel basis rather than for the entire 
data set. Th e algorithm is initialized by assigning each image voxel 
the label that yields the lowest energy according to the fi rst term 
in Eq. [A8]. To achieve a MAP (i.e., to satisfy Eq. [A8]), each voxel 
is relabeled in each iteration step based on the least energy con-
tribution from that particular voxel due to all possible labels. A 
new energy is then calculated. Th e algorithm terminates when the 
energy change is below a certain threshold. Th e pseudocode for the 
implemented ICM algorithm is

1. Initialize a labeling currentL̂  ← 0L̂ , for which the energy 
Ecurrent ← E( L̂ ) is a minimum.

2. Repeat:

 i. calculate the energy of each voxel due to the label l1: 
esmall ← e(l1) 

 ii. determine the label for each voxel that contributes to 
the least energy; repeat for li = l2, …, ln. 

a. check if e(li) < esmall
b. accept this label as the new desired label: lnew ← li

 iii. update the new label for the set of all voxels, newL̂ , 
and calculate the corresponding energy, 
Enew ← E( newL̂ )

 iv. calculate the change in energy: ΔE ← Enew − Ecurrent

 v. update the current energy, Ecurrent ← Enew

until ΔE < Ethreshold

In Step 1, a labeling for all voxels, 0L̂ , that corresponds to the 
least energy contribution due to all possible labels for each voxel, 
li, is assigned and its corresponding energy is calculated. In Steps 
2.i and 2.ii, the voxels are assigned new labels, lnew, that yield the 
lowest energy according to Eq. [A8]. In Step 2.iii, the resulting new 
labeling , newL̂ , for the entire three-dimensional volume is updated 
and its corresponding overall energy is calculated. Every time a 
new labeling is assigned, the change in energy is calculated and the 
loop continues until this change is below a predefi ned threshold, 
i.e., the exit criterion.
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