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Abstract. We have developed a new approach for generating pore throat

cross sections of various shapes based on distributions of shape factors and

radii of inscribed circles. These distributions are obtained from analysis of

grains packing. General formulas for calculating geometrical properties and

entry capillary pressure for given shape factor and inscribed circle radius are

developed. These relationships are employed in a pore network, which has

a number of special features. In particular, it is highly flexible in terms of

location of pore bodies, variable coordination number, as well as variable cross-

sectional shapes. The pore-network model is employed for simulating the equi-

librium distribution of two fluids in a granular porous medium, under both

drainage and imbibition conditions.

The pore-network model is verified by comparing simulation results with

experimental data of quasi-static drainage and imbibition experiments in a

glass-bead medium. The pore-level topology and geometrical description of

pore bodies and pore throats, essential for building the network, are rigor-

ously extracted from experimental data using image analysis (3DMA-Rock

software). Calculated capillary pressure-saturation (P c-Sw) and specific in-

terfacial area-saturation (anw-Sw) curves show very good agreement with mea-

sured ones, for both drainage and imbibition. We show that the shape fac-

tor can significantly influence the form of macroscopic P c-Sw and anw-Sw

curves, if the length and volumes associated to the pore throats is consid-

erable. Furthermore, using continuous generation of shape factor distribu-

tion, the model can be validated against the grain size distribution. After
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validating the model against experiments, in addition to primary and main

curves, we simulate many scanning curves to generate P c-Sw-anw surfaces

for drainage and imbibition, separately. Results show that these two surfaces

lie very close to each other, and the average normalized difference is small,

in the range of simulations uncertainty. Our results illustrate that P c-Sw-

anw surfaces show very little hysteresis and, therefore, specific interfacial area

can be considered as an essential variable for reducing or eliminating the hys-

teresis observed in P c-Sw curves.
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1. Introduction

1.1. Pore-network Modeling

Among other sources, pore-scale information is very much needed for gaining insight in,

and for fundamental understanding of, the physics of flow and transport in porous media.

Thus, in recent years, various imaging techniques, such as X-ray computed microtomogra-

phy [for recent overview see Wildenschild et al., 2002; Kaestner et al., 2008] and magnetic

resonance imaging (MRI) have been employed to obtain detailed pore-scale information

from many porous media. Combined with pore-scale modeling methods, such detailed

information can be used to understand the interplay of various flow mechanisms and pro-

duce data for investigating macroscale theories. Depending on the pore-scale modeling

technique, pore space geometry can be either used directly or as a simplified network of

pores. Direct simulation techniques, such as Lattice-Boltzmann method [Shan and Chen,

1994; Ahrenholz et al., 2008; Schaap et al., 2007; Porter et al., 2009], are computationally

demanding. Thus, often pore-network models are used where the pore space is idealized

as a network of “pore bodies” and “pore throats”.

Pore-network models - pioneered by Fatt [1956] - have been extensively used to study a

variety of flow and transport phenomena in porous media. They can be divided into quasi-

static and dynamic ones. Quasi-static pore-network models simulate only equilibrium

states of drainage and imbibition processes without solving the pressure field [see e.g.

Fatt , 1956]. For a review of the literature, see Celia et al. [1995] and Blunt [2001]. But,

dynamic pore-network models simulate the transient behavior of (multiphase) flow [see e.g.
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Koplik and Lasseter , 1985; Dias and Payatakes , 1986; Dahle and Celia, 1999; Nordhaug

et al., 2003].

The main challenge in development of the structure of a pore network is to preserve

essential features of the void space (relevant to multiphase flow). While representing the

void space as a network of simplified geometries, it should be tractable for computations.

Major characteristics of a pore network are its topology (i.e. positioning of pore bodies,

and the number and orientation of links) and geometry of elements.

Regarding the topology, if pore bodies are centered at nodes of a regular lattice, the

network is referred to as a “structured” network. The number of pore throats connected

to a pore body is called “coordination number”. Many pore-network models have a

coordination number of six, with pore throats oriented along the three principal directions

of the lattice. We refer to these as regular networks. But, there are some network models

with variable coordination number and with pore throats oriented in many directions [see

e.g. Mogensen and Stenby , 1998; Piri and Blunt , 2005; Joekar-Niasar et al., 2009; Raoof

and Hassanizadeh, 2009; Ryazanov et al., 2009].

Geometry of the network is represented by shape and size of pore bodies and pore

throats. Commonly, all pore bodies in a pore-network model are assigned the same shape,

such as sphere [e.g. Reeves and Celia, 1996; Bakke and Øren, 1997; Øren and Bakke, 2002]

or cube [e.g. Mogensen and Stenby , 1998; Patzek , 2001]. In yet some other models, no

pore bodies are defined at all; i.e. no geometry is assigned to the connection points of

pore throats. Instead, a variable cross section is assigned to each pore throat [see e.g.

Dias and Payatakes , 1986]. However, an accurate representation of the exact geometry

of large voids among grains in a real porous medium is not straight forward. Since pore
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bodies are the controlling elements during imbibition, any inaccuracy in representation of

pore bodies increases the difficulty of simulation of the imbibition process.

Similarly, different choices are made for the shape of pore throats. In many models, all

pore throats are assigned the same cross-sectional shape [e.g. Reeves and Celia, 1996]. But

pore networks where different cross-sectional shapes are assigned to various pore throats

have been also developed. We refer to them as “mixed cross-sectional” pore networks

[Bakke and Øren, 1997; Patzek , 2001; Øren and Bakke, 2002].

The cross-sectional shape of a pore throat is commonly parametrized by means of a

shape factor. In two dimensions, the shape factor is defined as the ratio of cross-sectional

area (A) to the square of the perimeter (P ); G = A/P 2. The influence of shape factor

on the entry capillary pressure, conductance, residual saturation, and interfacial area of a

pore with triangular cross section was first studied by Mason and Morrow [1991]. Since

then, shape factor has been used for specification of pore throats shapes especially in

quasi-static pore-network models.

Bakke and Øren [1997] developed a pore-network model with mixed cross sections for

actual sandstones. However, the range of shape factor that was recovered in their model

was very limited (to 0.0481, which corresponds to an equilateral triangle). In a model

by Man and Jing [2000], pore throats were assigned star-shape cross section with four

vertices. However, the authors chose pore throat cross sections in an arbitrary fashion

and did not compare their P c-Sw curves with experiments. Patzek [2001] developed

a network with cubic pore bodies and four different polygonal cross sections for pore

throats. He simulated relative permeability-saturation (kr-S
w) and capillary pressure-

saturation (P c-Sw) relationships for Bentheimer sandstone. The author did not specify
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how the choice of specific cross-sectional shapes for pore throats and pore bodies was

related to the sandstone geometrical properties. Piri and Blunt [2005] developed a pore-

network model for two- and three-phase flow for a mixed-wet porous medium. They

chose circular, square, and triangular shapes for pore throat cross sections, and simulated

relative permeability curves for Berea sandstone. Sholokhova et al. [2009] developed a

model with three different cross sections (triangle, rectangle and ellipse) to study single-

phase absolute permeability. They compared their results with the experimental data

for Fontainebleau sandstone. Ryazanov et al. [2009] developed an unstructured irregular

network with star-shape pore throats without including pore bodies. The structure were

derived from image analysis of Berea sandstone.

In all above-mentioned pore-network models the full range of shape factor distribution

was not continuously generated. Since, for G > 0.0481 triangular cross sections cannot

be used, regular polygons are applied. Consequently, the resulting network has a stepped

shape factor distribution instead of a continuous one. In fact, for a given shape fac-

tor, many different (combinations of) cross-sectional shapes are possible. Therefore, one

should investigate the effect of number of vertices of a pore throat cross section on the

macroscale porous media properties.

1.2. Objectives

The focus of this work is two-fold.

a. We develop a well-defined procedure for the selection of the cross-sectional shape of

pore elements based on image analysis data. Contrary to the previous pore networks, in

this work, the choice of pore cross sections is linked either to the local shape factor or

to the overall shape factor distribution. This allows us to recover the full shape factor
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distribution continuously and avoid an arbitrary selection of polygonal cross sections.

Furthermore, this approach gives us information about the gains size distribution, which

can be checked against the actual grain size distribution.

We carefully select a mix of pore throat cross sections - irregular or regular hyperbolic

polygons. This allows us to match pore-space topological and geometrical data obtained

from micro-tomographic imaging for any given value of shape factor. We develop formulas

for the entry capillary pressure of various shapes, which can be solved numerically. Pore

bodies are represented by prolate spheroids. In this work, we have employed 3DMA-Rock

software [Lindquist , 2009] for image analysis.

b. Pore-network models have been mainly used to study standard concepts such as

relative permeability and capillary pressure-saturation relationships. Here, we also study

the role of fluid-fluid interfacial areas in elucidating and parameterizing capillary effects

in a two-phase flow. In particular, we investigate the conjecture by Hassanizadeh and

Gray [1990, 1993] that specific interfacial area, anw (defined as the amount of fluid-fluid

interfacial area per unit volume of the porous medium) is a major state variable in two-

phase flow and the main variable for proper modeling of capillary hysteresis.

This conjecture has been investigated earlier by Reeves and Celia [1996]; Held and Celia

[2001]; Joekar-Niasar et al. [2008, 2009] using pore-network models. Reeves and Celia

[1996]; Held and Celia [2001], and Joekar-Niasar et al. [2008] used regular structured

pore networks with circular cross sections. Reeves and Celia [1996] and Joekar-Niasar

et al. [2008] concluded that hysteresis can be significantly reduced by including anw to

generate one surface defined F (P c, Sw, anw) = 0. Joekar-Niasar et al. [2008] showed that

with increase of aspect ratio (ratio of pore body radius to pore throat radius), effect of
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anw in reducing the hysteresis decreases. However, their results were not compared with

experiments. All these models lack some major structural features such as angularity

of the cross sections and irregularity of the network. Thus, it is not clear whether the

conclusions would hold in a real porous media with an unstructured irregular and angular

pore network.

The only published comparison between pore-network results and experimental data

in this regard is the work by Joekar-Niasar et al. [2009] who simulated drainage and

imbibition experiments, performed in a two-dimensional micromodel. They generated im-

bibition and drainage P c-Sw-anw surfaces and found that including anw reduced hysteresis.

Since the micro-model was two-dimensional and had high porosity, the experiments had

very uncommon features as follow. The saturation of the wetting phase changed between

0.68 and 1.0, so the range of saturation in P c-Sw-anw surface was too limited. Due to

the high porosity and small aspect ratio, the nonwetting phase did not trap at all dur-

ing imbibition (no snap-off). This is very uncommon in practice. Furthermore, due to

two-dimensionality of the model, the hysteresis in P c-Sw curves was not significant (only

about 20%) and the flow path was restricted to a three-dimensional medium.

In this work, we have developed a three-dimensional irregular unstructured pore-network

model and validated it against experimental data. Data were obtained from air-water

drainage and imbibition experiments in a glass-bead column and reported in Culligan

et al. [2004]. We compare our results against measured capillary pressure-saturation (P c-

Sw) and specific interfacial area-saturation (anw-Sw) curves during both drainage and

imbibition and found very good agreement. Then, we generated P c-Sw-anw surfaces for
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drainage and imbibition and study the conjecture developed by Hassanizadeh and Gray

[1990, 1993].

2. Pore-Network Model

2.1. Pore Network Structure and Geometry

We develop an irregular and unstructured pore-network model. Pore bodies are rep-

resented by prolate spheroids and pore throats by tubes with n-hyperbolic polygonal

cross sections (n denotes the number of vertices). Pore throat cross sections do not vary

along their lengths. The topological and geometrical properties of the pore network are

recovered from image analysis.

In the following parts, we present the formulations required for defining pore throat and

pore body geometries.

2.1.1. Pore Throats

Cross Section Determination: Cross sections of pore throats are chosen such that

the full range of shape factor, (G = A/P 2), calculated from image analysis, is recovered.

The range of shape factor values for various cross sections is shown in Figure 1. Generally,

with increasing of number of vertices, the shape factor increases as shown in Figure 1.

A circle has the maximum shape factor, equal to 0.0795. For very elongated geometries

(those with a small area but a large perimeter) the shape factor approaches zero.

In this study, we consider two general types for cross sections; irregular hyperbolic

triangles (n = 3) and regular hyperbolic polygons with number of vertices n ≥ 3 as shown

in Figures 2(a) and (b), respectively. In irregular hyperbolic triangles, edges have different

lengths (and radii of curvature). We consider only the case that the corner angles are zero.

The range of shape factor values for various cross sections used in our network are shown
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in Figure 1. We choose irregular hyperbolic triangles for shape factors less than 0.0163,

and regular hyperbolic polygons otherwise. In regular hyperbolic polygons, all edges have

the same length and the same radius of curvature. The corner angles are also equal and

can be zero or larger (Figure 2(b)). For a given inscribed circle with radius R, by changing

the corner angle, we can change the radius of curvature of edges, perimeter, area, and

consequently shape factor G.

For a given cross section type, with increasing the corner angle from zero to the maxi-

mum possible value of (n−2
n

π), the cross section changes from a regular hyperbolic polygo-

nal cross section to a regular polygonal cross section, and the shape factor increases. The

choice of cross section type is based on the measured shape factor distribution of the pore

throats acquired by image analysis. Geometrical properties and entry capillary pressures

of these two general cross sections are obtained as described below.

Irregular Hyperbolic Triangles: When three circles with different radii, namely

R1, R2, R3 are tangential to each other, they close off a specific geometrical shape among

themselves (hatched region in Figure 2(a)). This is typically the cross section of a pore

throat in a granular medium. This shape can be uniquely characterized by the radius

of its inscribed circle R and its shape factor G. In principle, for a desired set of values

for R and G, it is possible to calculate radii R1, R2, R3, and angles α, β, and γ (shown

in Figure 2(a)). The required equations, derived in Appendix A, are given below. They

constitute a set of six nonlinear coupled equations that can be solved numerically using
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the Newton-Raphson method.

R =
R1R2R3

R1R2 + R2R3 + R1R3 + 2
√

R1R2R3(R1 + R2 + R3)
(1)

sin α =
2
√

R1R2R3(R1 + R2 + R3)

(R1 + R2)(R1 + R3)
(2)

sin β =
2
√

R1R2R3(R1 + R2 + R3)

(R1 + R2)(R2 + R3)
(3)

sin γ =
2
√

R1R2R3(R1 + R2 + R3)

(R2 + R3)(R1 + R3)
(4)

α + β + γ = π (5)

G =

√
R1R2R3(R1 + R2 + R3)− 0.5(R2

1α + R2
2β + R2

3γ)

(R1α + R2β + R3γ)2
(6)

Regular Hyperbolic Polygons (n vertices): A regular hyperbolic polygon is en-

closed among three or more intersecting circles of equal radius. For example, Figure 2(b)

shows a hyperbolic pentagonal cross section generated by five intersecting circles with

radius R1. A regular hyperbolic polygon is uniquely characterized by its inscribed radius

R, shape factor G, and number of vertices n. Thus, for given R, G, and n, the following

set of equations can be solved to determine R1 and ϕ. ϕ is the angle between the tangent

at a vertex and the line connecting the vertex to the center of the cross section.

G =
cos2 ϕ cot π

n
− π(1

2
− 1

n
) + ϕ− 0.5 sin 2ϕ

4n[π(1
2
− 1

n
)− ϕ]2

(7)

R1 = R
sin π

n

cos ϕ− sin π
n

(8)

Detailed explanation for the derivation of this set of equations is given in Appendix B.

Note that for a regular polygon, ϕ = π
2
− π

n
, R1 = ∞, and G =

cot π
n

4n
.

2.1.2. Pore Bodies

The pore bodies are chosen to have the shape of a prolate spheroid with equatorial radii

a and b, where a ≤ b (Figure 3). The volume of a prolate spheroid is equal to 4
3
πa2b.
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2.2. Invasion Criteria

In multiphase flow, the invasion is locally controlled by capillary pressure, i.e. the differ-

ence between nonwetting and wetting phase pressures. Pore throats control the invasion

during drainage, and pore bodies during imbibition. Thus, network models require knowl-

edge of the pore throat entry capillary pressure (for drainage), and the pore body filling

capillary pressure (for imbibition).

2.2.1. Pore Throat Invasion

Figure C.1 shows the schematic cross section of a pore throat filled with nonwetting

and wetting fluids. The fluid-fluid interface has a radius of curvature rc. We denote the

area occupied by the nonwetting phase by An and the length of contact lines between

various phases by Lns, Lnw, and Lws (Figure C.1). The relationship between the entry

capillary pressure (P c
e ) and geometrical parameters is found by examining force balance

under equilibrium conditions (see Appendix C ). This results in:

P c
e

σnw
=

1

rc

=
Lnw + Lns cos θ

An

(9)

where, σnw is the interfacial tension. This equation is equally valid for regular and irregular

hyperbolic polygons.

Irregular Hyperbolic Triangle: According to Equation 9, Lnw, Lns, and An should

be known for a given cross section, in order to calculate rc. The formulas for calculation

of these terms are given in Table D.1 based on the geometries given in Figures D.1(a) and

(b). Detailed explanation for the derivation of the these formulas is given in Appendix D.

Substitution of Lnw, Lns, and An from Table D.1 into Equation 9 results in a highly

nonlinear equation for rc involving nine other unknowns, namely εi, εi
i, εi

i+1 (i = 1, 2, 3).
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That equation, therefore, has to be supplemented with the following nine equations:

tan εi
i =

rc sin εi

Ri cos(θ + εi)
, i = 1, 2, 3 (10a)

tan εi
i+1 =

rc sin εi

Ri+1 cos(θ + εi)
, i = 1, 2, 3 (ε3

4 = ε3
1, R4 = R1) (10b)

εi + εi
i + εi

i+1 =
π

2
− θ, i = 1, 2, 3 (ε3

4 = ε3
1) (10c)

Thus, Equations 9 and 10 form a set of 10 equations to be solved for rc, εi, εi
i, and εi

i+1

(i = 1, 2, 3). The resulting nonlinear system of equations has been solved numerically

using NLEQ1S [Nowak and Weimann, 1991], which employs the global affine invariant

Newton algorithm. Detailed explanation for the derivation of the set of equations is given

in Appendix D. Once rc is known, entry capillary pressure P c
e can be calculated.

Regular Hyperbolic Polygon: Figure D.1(c) shows the vertex of a regular hyper-

bolic polygon filled by the wetting phase. Similar to the approach used for irregular

hyperbolic triangle and according to Figures 2(b) and D.1(c), Lnw, Lns, and An may be

written as functions of geometrical parameters, as derived in Appendix D and shown in

Table D.1.

Substitution of Lnw, Lns, and An in Equation 9 results in a nonlinear equation for rc

involving two other unknowns, namely ε and ε′. That equation, therefore, has to be

supplemented with the following two equations in order to solve for rc, ε, and ε′.

sin ε

sin 2(ϕ + ε′)
=

R1 sin ε′

rc sin(ε + ε′ + θ)
(11a)

2ε′ + ε =
π

2
− θ − ϕ (11b)

We solve this set of equations numerically using standard Newton-Raphson method.

2.2.2. Pore Body Filling
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Since the entry capillary pressure of pore bodies is smaller than that of pore throats,

pore bodies are filled spontaneously under drainage. However, during imbibition they are

filled gradually. For the fluid-fluid interface shown in Figure 3, assuming that the interface

is normal to the equatorial radius a, we can calculate the filling capillary pressure under

imbibition. Here also, Equation 9 applies. An and Lns are given by the following formulas:

An = πa′b′ (12a)

Lns ≈ π
√

2(a′2 + b′2) (12b)

where a′ and b′ are shown in Figure 3. Based on Equations 9 and 12, and introducing

Γ = a/b = a′/b′, it follows that

P c

σnw
=

1

rc

=

√
2(1 + Γ2)

a′
, Γ =

a

b
=

a′

b′
(13)

For a given rc and a′, we can approximate volume of the wetting fluid by:

Vw ≈ 4

3
πa′b′(a−

√
a2 − a′2) (14)

2.3. Translation of Pore Space Data into the Pore Network

Relationships presented so far are employed in development of pore-network elements

by analyzing 3-D microtomography images. We need the following information:

• Skeleton of the porous medium (connectivity information of pore bodies to pore

throats)

• Pore body center coordinates and their coordination number.
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• Pore unit volumes; this is the volume delineated by the narrowest cross sections of

all pore throats connected to a pore body. Figure 4 shows schematically such a pore unit

in two dimensions.

• Equatorial radii of pore bodies. Three principal diameters are determined for each

pore unit by measuring the pore width through the centroid of pore unit in each of the

principal directions. One half of the two smallest principal diameters are assigned as

equatorial radii a, b of the representative prolate spheroids.

• Pore throat cross-sectional area and the corresponding shape factor. They should

be determined so that the total volume of void space is conserved in the network model.

Thus, length of pore throats in the pore-network model will be determined such that the

volume of each and every pore-unit is the same as the volume of corresponding pore body

and corresponding part of connected pore throats.

The procedure for generation of the pore-network model is as follows: In the first step,

exact topology of the porous medium is translated into the pore network; i.e. skele-

ton of the porous medium resulted from image analysis is used to determine number of

pore bodies, number of pore throats, and connectivity. Next, using a search algorithm

and with sequential numbering of pore bodies and pore throats, the connectivity matrix

(showing which pore body is connected to which pore throat) is generated. As a result,

the coordination number distribution of the porous medium is generated in the pore net-

work. Furthermore, in the analysis, we determine which pore throats are located on the

boundary of the imaged section.

In the second step, local geometrical information is assigned to the pore network ele-

ments. The volumes of pore units are estimated by analysis of the 3-D microtomography
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images using 3DMA-Rock software. Calculated equatorial radii a and b determine the

volume (Section 2.1.2) of each pore body. The difference between the pore unit volume

and pore body volume (referred to as “excess volume”) should be assigned to the pore

throats. Excess volume of each pore unit will determined the length of pore throats lo-

cated in that pore unit. Knowing the cross-sectional area of pore throats from image

processing and assuming that all pore throats within a pore unit have the same length,

the length of pore throats belonging to a pore unit can be determined. Finally, the total

length of a pore throat is obtained by adding the two pore throat lengths from the two

neighboring pore units.

As the last step, cross section geometry of each pore throat should be determined. Using

the shape factor and cross sectional area of pore throats, geometry of the cross sections

can be determined using the approach proposed in Section 2.1.1.

We used 3DMA-Rock software [Lindquist , 2009] for image analysis. This software em-

ploys a voxel-based medial axis approach to extract topological and geometrical properties

of a porous medium. Detailed information about application of this software can be found

in Prodanović et al. [2006, 2007].

3. Case Study:Two-Phase Experiments in Packed Glass Beads

3.1. Materials and Experiments

We analyze a set of air and water displacement experiments carried out in a synthetic

porous medium [Culligan et al., 2004]. The medium consisted of packed soda lime glass

beads with three size classes, 0.6, 0.85 and 1.0-1.4 mm in diameter. Porosity of the column

was 34%. The beads were packed in a column of 7 mm in diameter and 70 mm in length.
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The column was connected to the atmosphere on the top, and to a water reservoir at the

bottom. Experiment specifications are shown in Table 1.

The column was packed dry and subsequently filled with water. Primary drainage,

main imbibition, and main drainage experiments were performed. To prevent air from

entering the water reservoir, a semi-permeable membrane was placed at the bottom of the

column. Experiments were performed by pumping a known amount of water in or out of

the medium. After shutting off the pump, the system was allowed to equilibrate. Then,

fluid pressures were measured and a 5-mm section of the column was imaged using X-ray

microtomography for each P c-Sw point in the experiments (image voxel length was 17

µm). The three-dimensional images allowed to quantify fluids distribution and determine

saturation and specific interfacial area for each equilibrium point. Water pressure was

measured directly above and below the imaged section as well as in the water line outside

of the column. This procedure was repeated multiple times in each cycle to obtain enough

points to construct a complete drainage or imbibition curve.

3.2. Numerical Simulations

As explained before, the imaged section of glass beads was translated into the pore-

network model. Figure 5(a) shows the shape factor distribution for pore throat cross

sections as computed with 3DMA-Rock. Based on this shape factor distribution, we

select the cross-sectional shapes as shown in Table 2. A small range of the distribution

falls outside the theoretical upper limit (0.0795). This is attributed to the finite resolution

of the image and the fact that the bottlenecks between pore units are not necessarily planar

surfaces. This range is represented by circles in our model. Figure 5(a) shows that the
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majority of pore throats (97.2%) can be reproduced using regular hyperbolic polygonal

cross sections with five vertices.

Figure 5(b) shows the coordination number distribution of the glass beads sample as

computed with 3DMA-Rock. It should be noted that the most frequent coordination

numbers are 3 and 4 for this medium. There is also a coordination number of 113, which

is related to a large pore in the glass beads connected to many other neighboring pores.

Results of image analysis shows that there are 367 pore bodies and 1302 pore throats.

Total volume of the void space is 31.85 mm3. Out of this volume, 26.64 mm3 are assigned

to the pore bodies and 5.21 mm3 to the pore throats.

3.2.1. Boundary Conditions

Pore throats connected to the side boundaries are closed in order to mimic the experi-

ments. Reservoirs of fluids are each at a constant pressure. Top and bottom pore throats

might be assumed to be connected to reservoirs of nonwetting fluid (air) and wetting fluid

(water). As mentioned earlier, the scanned section simulated by our model is only a small

part of a larger column. Since capillary forces are dominant in the experiments, there is

a capillary fingering regime in the column. Thus only a few pores on the scanned column

section are in contact with the invading phase reservoir. It means that our assumption

for “connectivity of the boundary pores” to the nonwetting fluid reservoir is unclear.

Two different assumptions for accessibility of the boundary pores might be considered:

a) assuming all pores on the top boundary of the scanned section are in contact with the

nonwetting fluid reservoir. b) assuming only one of more largest pores on the boundary

of the scanned section are in contact with the nonwetting phase reservoir. The effect of
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these assumptions on P c-Sw and anw-Sw curves and the correct choice in this regard will

be discussed in Section 4.2.

3.2.2. Simulation of Primary and Main Drainage

At the start of primary drainage, the pore network is fully saturated with the wetting

phase (water). For the main drainage, the wetting phase is initially present in some

pores, as determined at the end of an imbibition simulation. The pressure of the wetting

phase reservoir is assumed to be zero and not changing. The pressure of the nonwetting

phase reservoir is initially set to zero, and thus the imposed capillary pressure is also zero.

Drainage simulation starts by increasing the pressure of the nonwetting phase reservoir

to the entry capillary pressure P c
e of the largest pore throat connected to the reservoir

(Equation C1). As the entry capillary pressure of a pore body is smaller than that of a

pore throat, the controlling element is the pore throat. Thus, as soon as the pressure is

high enough to enter a pore throat, because the pore throat has a constant cross section,

nonwetting phase would occupy that pore throat and the connected pore body. When no

other pores can be occupied in that pressure step, the corresponding capillary pressure,

saturation, and interfacial area are calculated. The incremental increase in nonwetting

phase pressure is continued, allowing for more pores to be occupied by the nonwetting

phase. Simulation of drainage scanning curves is more complex than primary drainage

curve. Since each drainage scanning curve starts from an equilibrium imbibition point,

fluid configuration should be captured properly. There may be some trapped nonwetting

phase at the beginning of drainage scanning curve. Therefore, a search algorithm is

required to determine these trapped nonwetting blobs. Invasion can happen only from
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those pores which are in contact with the nonwetting reservoir, and in the process of

invasion, they will connect to the trapped nonwetting phase blobs.

3.2.3. Simulation of Imbibition

The fluid configuration at the end of the primary drainage simulations is used as the

starting condition for main imbibition. The pressure of nonwetting phase reservoir is

decreased, causing the nonwetting phase to recede. The replacement of the nonwetting

phase by the wetting phase starts from those pore throats that have the highest entry

pressure (smallest size). Since there are many pore throats with angular cross sections, the

wetting phase is always present in the corners. With decreasing of the capillary pressure,

the wetting phase content in the corners of pore throats will increase, eventually filling

the pore throat. A pore throat with a noncircular cross section will be filled completely

by the wetting phase only if the following criterion is met [Vidales et al., 1998].

P c ≤ σnw

R
(cos θ − sin θ) (15)

Where R is the radius of inscribed circle. For circular cross sections, a pore throat will be

fully filled if P c ≤ 2σnw

R
cos θ. Once a pore throat connected to the wetting phase reservoir

is filled, the wetting phase enters the neighboring pore body and stops at a position with

a curvature corresponding to the imposed capillary pressure (for which a′ is calculated

from Equation 13). For sake of simplicity of geometrical configurations, we assume that

only one interface may exist in each pore body. As the capillary pressure is decreased

further, the wetting phase gradually fills the pore body. As soon as the interface radius

is equal to the pore body maximum radius (Equation 13), the rest of the pore body and

the connected pore throats fill up instantaneously by the wetting phase. Similar to the
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drainage experiment, for a given boundary pressure, when no other pores can be filled,

capillary pressure, saturation, and interfacial area are calculated. Simulation of imbibition

scanning curves is not different from main imbibition curve. The only difference is the

starting wetting phase saturation.

The simulation of the full cycle of primary drainage and main imbibition took less than

2 minutes on Intel(R) CPU 6600, 2.4GHz with 2GB RAM.

3.2.4. Calculation of Saturation, Capillary Pressure and Specific Interfacial

Area

Under static conditions, and in the absence of gravity, capillary pressures, P c, at all

interfaces are the same, equal to the difference between nonwetting and wetting fluid

reservoir pressures, (P c = P n − Pw). Saturation of each phase can be easily calculated

from the geometry and fluid occupancy of pore bodies and pore throats. We can also

calculate the interfacial areas as we know the location of fluid-fluid interfaces within pore

throats and pore bodies. Two different interface types may be identified: “arc menisci

(AM)”, formed along pore throat edges, and “main terminal menisci (MTM)”, spanning

the cross section of a pore body or a pore throat [Mason and Morrow , 1987]. The area of

“AM ” is calculated from total length of nonwetting-wetting phase lines and length of pore

throats. Behavior of MTM during drainage and imbibition is different. During drainage,

within a pore body filled with the nonwetting phase, there is MTM at the entrance of

a pore throat, which is not invaded yet. Since the exact geometry of the interface is

complicated, we approximate its area during drainage with that of the pore throat cross

section; thus, effectively assuming a flat interface. However, during imbibition the MTM

will be situated within a pore body. The area of a MTM within a prolate spheroidal pore
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body can be calculated using Equation 12(a) and the volume of the wetting phase can be

calculated using Equation 14.

4. Results and Discussions

4.1. Grain Size Distribution

The hyperbolic polygon shapes chosen for the pore throat cross sections in our model

were characterized by semi-circular edges. In our model, radii of the edges were calculated

from the shape factor distribution. The consistency of the pore-network model with the

actual soil sample can be examined by comparing the calculated radii of edges and nominal

grain size distribution as shown in Figure 6. The histogram distribution in Figure 6 has

been generated for the three classes of grain size mentioned in the experimental data.

There is a very good agreement between the model and the actual sample. This shows

that generation of the cross sections in the model is consistent with grain sizes while the

shape factor distribution is fully recovered from image analysis.

4.2. Effect of Boundary Pore Connectivity

As explained in Section 3.2.1, not all boundary pores are necessarily connected to the

nonwetting phase reservoir. We did some simulations to analyze effect of this connectivity

boundary pore(s) on P c-Sw and anw-Sw curves. Our analysis (not presented here) shows

that assuming all boundary pores connected to the nonwetting phase has a significant

influence on anw-Sw curve. If all pore bodies located on the boundary are assumed to be

connected to the nonwetting phase reservoir, initially there will be a significant amount

of interfacial area, which is not in agreement with data. But, if we assume only few of

the largest boundary pore(s) be connected to the reservoir, creation of specific interfacial
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area occurs gradually as the pressure is increased. This analysis shows that the imaged

section of glass-bead column is not so large to be insensitive to the boundary conditions.

However, the effect of boundary condition on anw-Sw has been minimized by assuming

the largest pore to be connected to the nonwetting phase reservoir.

4.3. Effect of Shape Factor and Pore Shape on P c, Sw, and anw

As mentioned in Section 1, up to now only shape factor (G) has been introduced in the

development of pore-network models. But, geometrical shape (number of vertices n) and

shape factor (G) are the two parameters that control the entry capillary pressure (P c
e ),

(corner) wetting phase saturation (şw), and specific interfacial area (a̧nw) associated with

arc menisci (AM ). These effects are illustrated for a single pore throat as well as for the

whole network.

First, effects of n and G on entry capillary pressure, corner wetting phase saturation,

and AM area for a single pore are shown. We consider a number of pore throats with a

unit length, and the same cross-sectional area (Atot). All pores have regular hyperbolic

polygon shape with different values for G and n. Corner saturation is defined as the

ratio of cross-sectional area of wetting phase to total cross-sectional area of a pore throat,

Aw/Atot. Figures 7(a) and 7(b) show variations of the corner saturation (şw) as a function

of shape factor (G) and number of vertices (n) for two different situations, rc = 0.5Req,

and rc = 0.15Req, respectively. Req is defined as the radius of a circle with area of Atot,

i.e. Req =
√

Atot/π. These figures show that şw strongly depends on G and n. This

dependence, however, decreases as G and/or n increase. At larger capillary pressures

(rc = 0.15Req), there is a non-monotonic dependence. As the number of vertices increases,

more wetting phase can be kept in the corners (larger şw) for a given shape factor. In
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both cases, for large number of vertices, şw approaches zero because the cross section

approaches a circle.

Although in this work the geometries of pore throats’ cross sections have been idealized,

these results may illustrate the origin of uncertainties in some applications of predictive

pore-network models. If in a real porous medium the volume of pore throats compared

with pore bodies is considerable, shape of the cross section can influence the accuracy of

quantitative assessment. For instance, while in all simulations shown in Figure 7, cross

section areas are the same, residual wetting phase saturations are significantly different for

a given shape factor. This effect can be even more significant for quantitative assessment

of relative permeability curves, where kα ∝ Sα. As Figure 7 shows at small capillary

pressures (high wetting phase saturation), effect of shape of cross sections is important.

Simulations of relative permeabilities using pore-network models show that the largest

inaccuracies occur at high saturations, especially for the wetting phase permeability [e.g.

Blunt et al., 2002; Valvatne and Blunt , 2004]. This implies that for predictive pore-

network modeling, in addition to G, the number of vertices (n) should be included in the

development of pore networks.

Fluid-fluid interfacial area in a pore throat contributes to the AM area. For a single

pore throat, effect of G and n on AM is investigated by examining a̧nw, defined as the

ratio of the length of nonwetting-wetting line (Lnw) to the total cross-sectional area, Atot.

Variations of a̧nw with G and n for rc = 0.5Req is shown in Figures 8(a). As it can be

observed, a̧nw varies monotonically with G values and increases as the number of vertices

increases. With increase of capillary pressure (decrease of rc), corner specific interfacial

area decreases. Our analysis (not presented here) shows that with the increase of P c by a
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factor of three, the specific interfacial area decreases by about half. Effect of geometrical

shape and shape factor on specific interfacial area will be important in those porous media

that have long pore throats. In such porous media, AM area can be even smaller that

AM area. This has been shown by Raeesi and Piri [2009]; depending on the geometry

and topology of a porous medium, interfacial area associated with the arc menisci can be

larger than the interfacial area associated with the area of MTM . Raeesi and Piri [2009]

have simulated AM and MTM area in two mixed cross-sectional pore-network models

based on Berea sandstone and Saudi Aramco sandstone, and show that the area of AM

is larger than the area of MTM .

Finally, the effect of G and n on entry capillary pressure for a single pore throat is

shown in Figure 8(b). Here, entry capillary pressures have been normalized with the

entry capillary pressure for a circular tube with the same cross-sectional area (Atot). It

is evident that the entry capillary pressure decreases monotonically with the increase in

G and/or n. Obviously, as the number of vertices increases, the entry capillary pressure

approaches that of a circular cross section.

To see the effect of shape of cross section on macroscale P c-Sw and anw-Sw curves, we

have simulated drainage experiments with three different networks consisting of circular

cross sections, mixed polygonal cross sections, and mixed hyperbolic polygonal cross sec-

tions. Figures 9(a) and 9(b) show P c-Sw and anw-Sw curves, respectively, compared to

the experimental data. It is obvious that including the hyperbolic polygonal cross section

significantly improves the agreement between simulations and experiments, especially for

P c-Sw curves.
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In simulations shown in Figure 9, all networks have the same skeleton (coordination

number distribution), void volume, and pore throat cross sectional area distribution. Since

the network is small (364 pore bodies), effect of pore geometries are pronounced. A

network with all pores having circular cross sections cannot recover the shape factor

distribution. So, for a given cross-sectional area, it results in a smaller entry capillary

pressure than the other shapes. In addition, there is no saturation associated with the

wetting phase in the corners. The difference between results for a mixed polygonal network

and mixed hyperbolic polygonal network for large saturations is not significant. However,

at small saturations, smallest pores need to be invaded. Obviously for high capillary

pressures, a network with hyperbolic polygonal cross sections can keep more wetting

phase in the corners compared with other types of networks. Effect of n on the specific

interfacial area values over the whole domain is not very significant. This is because in

glass beads, the volume of pore throats compared with the volume of pore bodies is not

significant. Thus, area of AM is much smaller than the area of MTM .

4.4. P c-Sw and anw-Sw Curves

We employ insights obtained from the study of effects of boundary pores and cross

section geometry to simulate the experimental data. Thus, P c-Sw and anw-Sw curves

have been obtained for primary drainage and main imbibition processes using a network

with mixed hyperbolic polygonal pore throats and a single pore connected to the boundary.

Results are shown in Figures 10(a) and 10(b). The agreement with measured curves are

excellent. This is a particularly significant result for imbibition curves as many pore-

network models have had difficulty to match imbibition data points for capillary pressure.
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Figure 10(a) shows that there is a strong hysteresis in P c-Sw curves resulted from

drainage and imbibition (up to 100%). The magnitude of this hysteresis is larger than

that of P c-Sw curves resulted from sand pack columns [Valvatne and Blunt , 2004]; which

is due to the larger aspect ratio of pores in glass bead packing.

Compared with P c-Sw curves, there is more discrepancies between anw-Sw curves es-

pecially during imbibition. This is due to the small size of the domain and simplified

geometries assumed for the interface. Nevertheless, accuracy of the model in prediction

of anw is good. Such model can be a powerful tool for generating input data such as

P c-Sw-anw surface needed for new macroscopic multiphase flow simulators such as Niess-

ner and Hassanizadeh [2008, 2009]. They solved multiphase flow and transport equations

including interfacial area as a new state variable.

4.5. P c-Sw-anw Surfaces

After having validated the model against experimental data, we can use it to investigate

role of specific interfacial area in removing or reducing the hysteresis in capillary pressure-

saturation curves. We have simulated many scanning loops of drainage and imbibition

and have calculated equilibrium values of P c, Sw, and anw. Results are plotted in Figures

11(a) and (b) for drainage and imbibition, respectively, where contours of anw are shown

in P c-Sw plane. The shade coding shows specific interfacial area for a given pair of

capillary pressure and saturation. The natural neighbor interpolation method [Sibson,

1981] has been used to generate the surfaces. The corresponding surfaces have been

depicted in Figures 11(a) and (b) by showing contour lines of equal specific interfacial

area. The correlation coefficient between the two surfaces was found to be 95%. Next,

the difference between imbibition and drainage surfaces has been normalized by drainage
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surface as plotted in Figure 11(c). As it can be observed, the maximum difference in main

loop of drainage and imbibition curves is about 25%. The average normalized difference

over the entire surface is about 15%. To investigate in more detail causes of difference

between drainage and imbibition surfaces, we have included normalized difference between

experimental data and simulations (Figure 11(d)). The average normalized difference in

this figure is 19%, which is very close to the average difference calculated in Figure 11(c)

with similar spatial trend in error variation. We should note that the maximum difference

is observed in the range of capillary pressure-saturation where no data point exists. Thus,

it could be mainly an artifact of the interpolation. A similar trend was found by Joekar-

Niasar et al. [2009] (Figure 12c, page 10), which was also due to lack of imbibition data

points in that region. Comparing Figure 11(c) with 11(d), one can observe that the

difference between the simulated drainage and imbibition surfaces is very close to the

uncertainty range of modeling procedure.

The maximum differences in P c-Sw and anw-Sw curves in micro-model simulations of

Joekar-Niasar et al. [2009] were about 20% and 300%, respectively. None of these values

are common in real three-dimensional porous media. Nevertheless, the reduction in dif-

ference between anw = f(P c, Sw) surfaces over the whole loop of drainage and imbibition

(Sw ∈ [0.65, 1]) was considerable [Joekar-Niasar et al., 2009]. In this work, the maximum

differences between P c-Sw and anw-Sw curves (i.e. the hysteresis effect) are 100% and

50%, respectively. Whereas, the difference between anw = f(P c, Sw) surfaces over the

whole loop of drainage and imbibition (Sw ∈ [0.15, 1]) is about 15%. This is a major re-

duction of hysteretic behavior. Thus, we can conclude that anw = f(P c, Sw) surfaces are

almost identical within experimental and computational uncertainties; i.e. the hysteresis
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in P c-Sw-anw surfaces for the main loop is negligible. One should note that these results

are related to a three-dimensional unstructured and irregular porous medium, which is

topologically and geometrically very different from previous works such as Reeves and

Celia [1996]; Held and Celia [2001]; Joekar-Niasar et al. [2008, 2009].

5. Summary and Conclusions

One of the goals of the study has been to determine whether shape factor alone is

enough to characterize the pore geometry of a granular porous medium. In particular,

the role of actual shape of pores is investigated.

In this paper, a geometry-based approach has been proposed for generation of pore

throat cross sections so that the whole range of shape factor distribution can be repro-

duced. Three different general shapes for pore throats have been considered: irregular

hyperbolic triangles, regular hyperbolic polygons, and circles. General formulas for cal-

culation of geometrical properties and entry capillary pressure of these geometries are

derived. Effects of shape factor as well as cross-sectional shape on entry capillary pres-

sure, corner saturation and corner interfacial area have been investigated for a single pore

throat. We have shown that in addition to shape factor, the shape of cross section (num-

ber of vertices) has a significant effect on entry capillary pressure, corner saturation, and

arc menisci area. These parameters can be very important in porous media with long

pore throats and may contribute significantly to the total pore volume.

We have developed an irregular unstructured mixed cross-sectional pore-network model,

with the pore bodies in the shape of prolate spheroids and pore throats having a mix of

cross sectional shapes described above. The model has been used for simulating drainage

and imbibition experiments carried out by Culligan et al. [2004] in a glass-bead column.
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The capability of the pore-network model for simulating a real porous medium has been

successfully verified, as we reproduce the measured P c-Sw and anw-Sw curves very well.

Moreover, grain size distribution inferred from our pore-network model is in close agree-

ment with the measured distribution. We have shown that the inclusion of shape factor

distribution and cross-sectional shape in the generation of pore network significantly in-

fluence P c-Sw curves. Depending on the number of vertices of a cross section and volume

and length associated with the pore throats, shape factor distribution and cross-sectional

shape can significantly influence anw-Sw curves.

Another goal of this work is to investigate the role of specific interfacial area in reducing

the hysteresis in P c-Sw curves for a real porous medium. Using this pore-network model,

we have generated P c-Sw-anw surfaces for drainage and imbibition, separately. Compar-

ison between these two surfaces shows that they are highly correlated (r2 = 0.95), and

the normalized difference is small, in the range of uncertainty of model calculations. Our

results show that in glass beads with unstructured irregular network with mixed cross

sections, the hysteresis in P c-Sw-anw curves is much smaller than the hysteresis in P c-Sw

curves. The largest relative error between anw = f(P c, Sw) surfaces is found at large sat-

urations, where the specific interfacial area is very small. Finally, we emphasize that the

proposed approach for generating pores cross sections, based on the continuous recovery

of shape factor distribution, is essential for the development of predictive pore-network

models.
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Appendix A: Irregular Hyperbolic Triangle Geometry

For a set of Soddy circles shown in Figure 2(a), the inscribed radius, R, can be deter-

mined based on the radii of the three tangent circles.

R =
R1R2R3

R1R2 + R2R3 + R1R3 + 2
√

R1R2R3(R1 + R2 + R3)
(A1)

The area of the 4ABC may be written as follows:

A4ABC =
√

R1R2R3(R1 + R2 + R3) (A2)

On the other hand, using laws of sines in 4ABC, we can write the following three equa-

tions:

R1 + R2

sin γ
=

R2 + R3

sin α
=

R1 + R3

sin β
=

(R1 + R2)(R2 + R3)(R1 + R3)

2
√

R1R2R3(R1 + R2 + R3)

α + β + γ = π (A3)

The area and perimeter of the irregular hyperbolic triangle, the hatched part of Figure

2(a), is denoted by as Ahatched and Phatched, respectively. They can be written:

Ahatched =
√

R1R2R3(R1 + R2 + R3)− 0.5(R2
1α + R2

2β + R2
3γ) (A4)

Phatched = R1α + R2β + R3γ (A5)

Finally, the shape factor, G, can be calculated, as:

G =

√
R1R2R3(R1 + R2 + R3)− 0.5(R2

1α + R2
2β + R2

3γ)

(R1α + R2β + R3γ)2
(A6)

For given values of G and R, we can solve Equations A1,A3 and A6 numerically, using

Newton-Raphson method, to calculate R1,R2, R3, α, β, and γ.
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Appendix B: Regular Hyperbolic Polygon Geometry

To relate the shape factor to geometry of a cross section, the area and perimeter should

be calculated. The area of the n-hyperbolic polygon (B1..Bn) in Figure 2(b) can be

calculated as follows:

AB1..Bn = AA1..An − n× A4A1A2B1 − n× A2A2B1B2 (B1)

Because ∠A2B1O = π/2 + ϕ and φ = π/n, we obtain:

β = π(
1

2
− 1

n
)− ϕ (B2)

In addition, we note that tan φ = tan π
n

= R1 sin β
R+R1(1−cos β)

, which results in:

R1 = R
sin π

n

cos ϕ− sin π
n

(B3)

The area of a n-polygon, with edge length s is:

AA1..An =
n

4
s2 cot π/n = nR2

1 cos2 ϕ cot
π

n
(B4)

and the areas of 4A1A2B1 and 2A2B1B2 may be written as follows, respectively:

A4A1A2B1 = 0.5R2
1 sin 2ϕ (B5)

A2A2B1B2 = R2
1β (B6)

Using Equations B3, B4,B5, and B6, Equation B1 may be written as:

AB1..Bn =
nR2 sin2 π

n

(cos ϕ− sin π
n
)2

[
cos2 ϕ cot

π

n
− π(

1

2
− 1

n
) + ϕ− 0.5 sin 2ϕ

]
. (B7)

Then, the perimeter of a n-hyperbolic polygon is obtained from:

PB1..Bn = 2nR
sin π

n

cos ϕ− sin π
n

[π(
1

2
− 1

n
)− ϕ] (B8)
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Based on Equations B7 and B8, the shape factor can be written as follows:

G =
A

P 2
=

cos2 ϕ cot π
n
− π(1

2
− 1

n
) + ϕ− 0.5 sin 2ϕ

4n[π(1
2
− 1

n
)− ϕ]2

(B9)

For given values of n and G, Equation B9 can be solved numerically to calculate ϕ and

subsequently the geometry of the cross section will be define from Equation B3.

Appendix C: Balance of Forces for an Invading Interface

Calculation of entry capillary pressure for various cross sections is based on the

MS-P (Mayer-Stowe-Princen) method, suggested by Mayer and Stowe [1965]; Princen

[1969a, b, 1970]; Ma et al. [1996], which follows from the balance of forces for contact

lines. When the nonwetting phase invades a tube with an angular cross section, the wet-

ting phase remains behind in the corners along the tube. The longitudinal curvature of the

resulting fluid-fluid interface inside the tube is zero. For a regular hyperbolic polygonal

cross section, let radius of curvature of the interface within the cross section be denoted

by rc (see Figure C.1). Then, the entry capillary pressure is equal to:

P c
e = P n − Pw =

σnw

rc

(C1)

in which, P n is pressure of the nonwetting phase, and Pw is the pressure of the wetting

phase.

Now, consider an nw-interface formed at the entrance of the tube. This interface will

move into the tube (i.e. nonwetting phase invades the tube) only if the entry capillary

pressure given by Equation C1 is reached. At that instance, the following balance of forces

for the interface can be written:

(P n − Pw)An = Lnwσnw + Lnsσ
ns − Lnsσ

ws (C2)
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where An is that part of a cross section filled with nonwetting phase, Lns is the total length

of solid-fluid-fluid contact line, Lnw is the total length of arc cut through the fluid-fluid

interface in the corners.

From Young equation, we have the following relationship:

σns = σnwcosθ + σws (C3)

Substituting Equation C3 in Equation C2 will result in:

(P n − Pw)An = σnw(Lnw + Lns cos θ) (C4)

Combination of Equations C1 and C4 results in:

Lnw + Lns cos θ

An

=
1

rc

(C5)

In Equation C5, Lnw and Lns depend on cross-sectional geometry and also fluid occupancy.

Geometrical relationships between these terms and rc should be calculated for each cross-

sectional group separately as shown in Section 2.2.1.

Appendix D: Calculation of Entry Capillary Pressure for a Pore Throat

D1. Irregular Hyperbolic Polygonal Cross Sections

Consider the vertex i of an irregular hyperbolic triangle filled by the wetting phase,

shown in Figure D.1. We need to calculate the area of the wetting phase in the corner as

well as the length of nonwetting-wetting interface. Let εi
j denote the angle made by the

tangent at vertex i and line connecting vertex i to the intersection of interface with edge

j (e.g. line BN or BN ′ in Figure D.1). Also, let εi denote the angle between the tangent

to the interface at its intersection with the edge i and the line connecting both ends of
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the interface (line NN ′ in Figure D.1). Then in the triangle 4BNN ′, we can write:

εi + εi
1 + εi

2 =
π

2
− θ, (i = 1, 2, 3) (D1)

, where θ is the fluid-fluid-solid contact angle.

Based on law of sines, we have:

BN

sin(εi + εi
2 + θ)

=
BN ′

sin(εi + εi
1 + θ)

=
NN ′

sin(εi
1 + εi

2)
(D2)

Radii of arcs BN , BN ′, and NN are R1, R2, and rc, respectively. Since angles ∠N ′ON ,

∠ABN , and ∠BA′N ′ are denoted by εi, εi
1, εi

2, respectively, we may rewrite Equation D2,

as follows:

R1 tan εi
1 = R2 tan εi

2 =
rc sin εi

cos(θ + εi)
, i = 1, 2, 3 (D3)

Now, the area of the wetting phase (hatched part in Figure D.1(b)) should be calculated.

That is equal to the area of the triangle BNN ′ minus the total areas of the circular seg-

ments created by chords BN , BN ′, and NN ′, denoted by Acs
BN , Acs

BN ′ , Acs
NN ′ , respectively:

Ai
w = A4BNN ′ − Acs

BN − Acs
BN ′ − Acs

NN ′ (D4)

With some manipulation, we can write the following equation for Ai
w.

Ai
w = 2rcR1 sin εi sin εi

1 cos εi
2 −R2

1(ε
i
1 − 0.5 sin 2εi

1)

−R2
2(ε

i
2 − 0.5 sin 2εi

2)

−r2
c (ε

i − 0.5 sin 2εi) (D5)

Next, the area of that part of pore throat cross section filled by the nonwetting phase (An

in Figure D.1) can be calculated by subtracting the total wetting phase area from the
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pore cross-sectional area (given by Equation A4), Ahatched:

An = Ahatched −
3∑

i=1

Ai
w (D6)

Total length of the nonwetting-wetting interface, Lnw, would be estimated simply as

follows:

Lnw = 2rc

3∑
i=1

εi (D7)

Using Equation A5 and considering the geometry given in Figure D.1, the length of the

nonwetting-solid interface can be calculated.

Lns = R1α + R2β + R3γ − 2
3∑

i=1

(
Riε

i
i + Riε

i−1
i

)
, ε0

1 = ε3
1 (D8)

Substituting Equations D6, D7, and D8 in Equation C5 results in a new equation, which

relates all εi
j|i = 1, 2, 3, j = 1, 2 and εi|i = 1, 2, 3 to the radius of curvature of the interface

rc. Te resulting equation, together with Equations D1 and D3, can be solved numerically

to calculate rc. Subsequently, it is possible to calculate the entry capillary pressure from

Equation C1.

D2. Regular Hyperbolic Polygonal Cross Sections

The procedure for calculation of entry capillary pressure for a regular hyperbolic polyg-

onal cross section, is similar to the method used for regular hyperbolic polygonal cross

sections. There are few differences in geometry that should be taken into consideration.

Considering Figure D.1(c), since the geometry is regular, R1 = R2 = .. = Rn. Therefore,

all εi
j = ε′, (j = 1, 2, i = 1, 2, .., n) are equal and denoted by ε′. In addition, ∠NBN ′ in

Figure D.1(c) will be equal to 2(ε′ + ϕ). The angle ε′ is referred to the angle made by

the tangent at a vertex and line connecting the vertex to the intersection of interface and
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edge. For 4BNN ′ we can write 2ε′+ε = π
2
−θ−ϕ. Based on the law of sines in 4BNN ′

we may write:

rc sin ε

sin 2(ϕ + ε′)
=

R1 sin ε′

sin(ε + ε′ + θ)
, 2ε′ + ε =

π

2
− θ − ϕ (D9)

Next, for the area of the wetting phase, Ai
w, we can write:

Ai
w = 2rcR1 sin ε sin ε′ cos(ε′ + ϕ) −2R2

1(ε
′ − 0.5 sin 2ε′)

−r2
c (ε− 0.5 sin 2ε) (D10)

Knowing the area of a regular hyperbolic cross section from Equation B7, AB1..Bn , the

area of the nonwetting phase in this cross section can be calculated as follows:

An = AB1..Bn − nAi
w (D11)

The total length of the nonwetting-wetting interface,Lnw , is simply given by:

Lnw = 2nrcε (D12)

According to Equation B8, the total length of Lns is given by:

Lns = PB1..Bn − 4nR1ε
′ (D13)

Substituting Equations D11, D12, and D13 in Equation C5 results in a new equation,

which relates ε′ and ε to the radius of curvature of the interface rc. The resulting equation

and Equation D9 can be solved numerically to calculate rc. Finally, the entry capillary

pressure is calculated from Equation C1.
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Table 2. Classification of cross sections based on the shape factor distribution.

Zone Shape Factor (G) Cross Section

1 G < 0.0163 irregular hyperbolic triangle (3 vertices)
2 0.0163 ≤ G < 0.0217 regular hyperbolic triangle (3 vertices)
3 0.0217 ≤ G < 0.0244 regular hyperbolic polygon (4 vertices)
4 0.0244 ≤ G < 0.0688 regular hyperbolic polygon (5 vertices)
5 0.0688 ≤ G circle

Table D.1. Formulas for An, Lns and Lnw for different cross sections.

Irregular Hyperbolic Triangle Regular Hyperbolic Polygon

An =
√

R1R2R3(R1 + R2 + R3) An =
nR2 sin2 π

n

(cos ϕ−sin π
n

)2

[
cos2 ϕ cot π

n
− π(1

2
− 1

n
) + ϕ− 0.5 sin 2ϕ

]

−0.5(R2
1α + R2

2β + R2
3γ) −2nrcR1 sin ε sin ε′ cos(ε′ + ϕ)

−∑3
i=1

[
2rcRi sin εi sin εi

i cos εi
i+1

]
+2nR2

1(ε
′ − 0.5 sin 2ε′)

+
∑3

i=1 [R2
i (ε

i
i − 0.5 sin 2εi

i)] +nr2
c (ε− 0.5 sin 2ε)

+
∑3

i=1

[
R2

i+1(ε
i
i+1 − 0.5 sin 2εi

i+1)
]

+
∑3

i=1 [r2
c (ε

i − 0.5 sin 2εi)],
(ε3

4 = ε3
1, R4 = R1)

Lns = R1α + R2β + R3γ Lns = 2nR
sin π

n

cos ϕ−sin π
n
[π(1

2
− 1

n
)− ϕ]− 4nR1ε

′

−2
∑3

i=1

(
Riε

i
i + Riε

i−1
i

)
, (ε0

1 = ε3
1)

Lnw = 2rc

∑3
i=1 εi Lnw = 2nrcε

Figure 1. Shape factor range for different cross sections; for each cross section zone (y-axis),

the potential range of shape factor (G) has been shown in dashed-line.

Figure 2. Cross sections of pore throats for a) irregular hyperbolic triangle generated by three

different tangential circles (soddy circles), b) regular hyperbolic polygon with five vertices. The

hyperbolic polygon B1..5 has an inscribed radius R and a half corner angle ϕ. The edge radius

of curvature is R1.

Figure 3. Schematic configuration of an interface within a pore body (assumed as a prolate

spheroid) during imbibition.

Figure 4. Schematic presentation of pore units in bright color and grains in dark color.
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Figure 5. a) Shape factor distribution for pore throats in the glass-bead medium. Pore

throats classification (zone numbers are given in circles) has been made according to Table 2. b)

Coordination number frequency (% number of pore bodies) of the glass beads sample.

Figure 6. Comparison between grain size distribution resulted from the model and the

experimental data.

Figure 7. Effect of shape factor and number of vertices on corner saturation, şw, in a pore

throat for a) Radius of curvature rc = 0.5Req, b) Radius of curvature rc = 0.15Req. All cross

sections have the same cross-sectional area Atot.

Figure 8. Effect of shape factor and number of vertices on a) nonwetting-wetting corner specific

interfacial area a̧nw in a pore throat for radius of curvature rc = 0.5Req, b) entry capillary pressure.

Entry capillary pressures have been normalized with the entry capillary pressure for a circular

tube with cross-sectional area equal to Atot. All cross sections have the same cross-sectional area

denoted by Atot.

Figure 9. Effect of selection of pore throat cross section on a) P c-Sw drainage curve and b)

anw-Sw drainage curve.

Figure 10. Comparison between simulations and experiments for drainage and imbibition a)

P c-Sw curves b) anw-Sw curves.

Figure 11. Contours of specific interfacial area and normalized differences shown in the

capillary pressure-saturation plane. a) Simulated P c-Sw-anw surface for drainage, b) Simulated

P c-Sw-anw surface for imbibition, c) Difference between (a) and (b) normalized by (a), d) Differ-

ence between simulations and experimental data normalized by experimental data. Color coding

in (a) and (b) shows specific interfacial area, and in (c) and (d) it shows the normalized difference.

All surfaces have been generated using natural neighboring interpolation.
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Figure C.1. A typical regular hyperbolic polygonal cross section filled with the wetting and

nonwetting phases. The nonwetting-wetting interface has a radius of curvature denoted by rc

and the nonwetting area is denoted by An.

Figure D.1. a) Schematic presentation of interfaces in an irregular hyperbolic triangle b)

Geometry of an interface and wetting phase in vertex 1. Center of the arcs with radii R1, R2,

and rc are denoted by A, A′, and O, respectively (see also Figure 2(a)). The angle εi
j is referred

to the angle made by the tangent at vertex i and line connecting vertex i to the intersection of

interface with edge j. The angle εi is referred to the angle between the tangent to the interface at

its intersection with the edge i and the line connecting both ends of the interface. c) Geometry

of a fluid-fluid interface and the wetting phase in the vertex of a regular hyperbolic polygon. The

geometry is defined by half corner angle, ϕ, contact angle, θ, interface radius of curvature, rc,

inscribed radius R, and edge radius of curvature, R1 (see also Figure 2(b))
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