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[1] Several models for two-phase flow in porous media identify trapping and connectivity
of fluids as an important contribution to macroscale hysteresis. This is especially true for
hysteresis in relative permeabilities. The trapping models propose trajectories from the
initial saturation to the end saturation in various ways and are often based on experiments or
pore-network model results for the endpoints. However, experimental data or pore-scale
model results are often not available for the trajectories, that is, the fate of the connectivity
of the fluids while saturation changes. Here, using a quasi static pore-network model,
supported by a set of pore-scale laboratory experiments, we study how the topology of the
fluids changes during drainage and imbibition including first, main and scanning curves. We
find a strong hysteretic behavior in the relationship between disconnected nonwetting fluid
saturation and the wetting fluid saturation in a water-wet medium. The coalescence of the
invading nonwetting phase with the existing disconnected nonwetting phase depends
critically on the presence (or lack thereof) of connected nonwetting phase at the beginning
of the drainage process as well as on the pore geometry. This dependence involves a
mechanism we refer to as ‘‘reversible corner filling.’’ This mechanism can also be seen in
laboratory experiments in volcanic tuff. The impact of these pore-network model results on
existing macroscopic models is discussed.
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1. Introduction

[2] Two-phase flow in porous media is important in
many scientific fields, including hydrology, petroleum res-
ervoir engineering, and soil science. Standard approaches
to model two-phase flow involve mass balance equations
for the fluids or components in the system, some version of
Darcy’s law modified to account for the presence of multi-
ple fluid phases, and a relationship between capillary pres-
sure and phase saturation. The modifier in the Darcy
equation is the relative permeability function, which is usu-
ally taken to be a nonlinear function of phase saturation.
The capillary pressure is also usually taken to be a nonlin-
ear function of saturation. Both of these nonlinear functions
contain residual phase saturations and exhibit hysteresis,
two characteristics of multiphase porous media systems
that are often important in practical problems.

[3] Residual saturation of one phase, call it phase n, is a
result of the development of subregions of phase n that

become hydraulically isolated within the pores, such that
each isolated region of fluid n is surrounded by the other
fluid phase, call it fluid w. Isolated region of fluid n loses
connection with the bulk (or connected) portion of that fluid
(n) (see Figure 1). The amount of isolated fluid, which under
most conditions is considered to be immobile and trapped, is
important for many applications, including oil reservoir anal-
ysis where trapped oil (or gas) means less production of
hydrocarbon, and carbon sequestration problems where trap-
ping of CO2 leads to safe underground storage.

[4] Hysteresis refers to a process- and history-dependent
relationship. This process dependence is a result of the com-
plex geometry and topology of the interconnected pore space
in porous materials as well as the hysteresis of contact angle.
The effect of pore geometry on hysteresis in capillary pres-
sure and relative permeability curves has been investigated
extensively using a pore-network model by Jerauld and
Salter [1990]. However, Jerauld and Salter only marginally
addressed how the disconnected nonwetting phase evolves
and how it depends on the fluid topology.

[5] A number of mathematical models to describe vari-
ous aspects of hysteretic functions have been proposed in
the literature. Two general approaches have evolved. The
first is based on the concept that drainage (invasion by a
nonwetting fluid, n) tends to follow a different pattern than
imbibition (invasion by a wetting fluid, w). This concept
argues that regions of the pore space domain are accessed
differently during drainage and imbibition. A classic exam-
ple of this type of approach is that of Mualem [1974];
related work includes Parker and Lenhard [1987] and Scott
et al. [1983]. A second approach is based on the idea that
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hysteresis is due to an insufficient or incomplete descrip-
tion of the system, and additional internal state variables
need to be included in the description. This idea dates at
least to Everett and Whitton [1952], with recent examples
including theories that suggest interfacial area as an addi-
tional variable [Hassanizadeh and Gray, 1993; Niessner
and Hassanizadeh, 2008] as well as theories suggesting
that the phases should be further refined into connected and
disconnected regions [Hilfer, 2006; Doster et al., 2010].
Other models focused on trapping have also been proposed,
beginning with the classic work of Land [1968], who
looked at the amount of nonwetting phase trapped after an
incomplete first-drainage cycle (that is, drainage from full
saturation of wetting phase to some intermediate saturation,
called the turning-point saturation) followed by imbibition.
Land related the trapped (or residual) saturation at the end
of the imbibition to the turning-point saturation. Other no-
table models that have focused on nonwetting-phase trap-
ping include Jerauld [1997], van Kats and van Duijn
[2001], Land [1968], and Spiteri et al. [2005].

[6] One interesting aspect of fluid trapping is how the to-
pology of trapped regions develops and evolves as the fluid
saturation changes, for example, from the turning-point sat-
uration described earlier, where there is no trapped fluid, to
the saturation at the end of the imbibition cycle, where
there may be significant amounts of trapped fluid. We may
also reasonably ask, given the hysteretic nature of the
major constitutive relationships such as capillary pressure
and relative permeability curves, whether or not the rela-
tionship between trapped fluid and phase saturation is itself
hysteretic. Because trapped regions are difficult to observe
in typical physical experiments, and because they appear to
play significant roles in many problems of practical inter-
est, we will use computational tools that allow us to track
explicitly fluid configurations on the pore scale and thereby
identify trapped fluid regions as they form. Our tool of
choice is a pore-scale network model described in Joekar-
Niasar and Hassanizadeh [2011]. This model uses a net-
work of pore bodies and pore throats with different choices

for the geometry of the pore elements. With these models,
we can simulate invasion experiments under a wide variety
of conditions, impose multiple turning points in both drain-
age and imbibition, simulate many cycles of drainage and
imbibition with arbitrary stopping points, and impose dif-
ferent kinds of boundary conditions.

[7] In this study we present
[8] The evolution of trapping, with specific focus on the

general functional form of the trapping function (trapped
nonwetting phase saturation versus the wetting phase satu-
ration) and whether or not it exhibits hysteresis.

[9] The qualitative differences among the different mod-
els proposed in the literature for trapping. We also examine
how trapping relates to hysteresis in the standard capillary
pressure and relative permeability functions.

[10] A new phenomenon in the trapping relationship
from the pore-network model, which we corroborate with
recent novel experimental data. This phenomenon, referred
to as ‘‘reversible corner filling,’’ can cause different trajec-
tory trends of trapped saturation depending on pore geome-
try and initial nonwetting-phase fluid topology. This has
not been addressed before in the literature.

[11] The paper is structured as follows. In section 2, we
provide a survey of existing trapping models, beginning
with the classic model of Land [1968]. In section 3, we pro-
vide an overview of the salient features of the pore-scale
network model that we use in the study. In section 4, we
describe the computational experiments that are performed
and report results related to both trapping and overall hys-
teresis, including the associated capillary pressure and rela-
tive permeability functions. The results are compared,
qualitatively, to results from experiments performed on
volcanic tuff material. Finally, in section 5, we present a
discussion of the results and a set of conclusions.

2. Continuum-Scale Models

[12] Continuum-scale trapping models for the nonwet-
ting phase consist of two parts. The first part determines the
saturation of the remaining nonwetting fluid in the porous
medium after a completed imbibition cycle. It is called the
residual saturation of the nonwetting phase Snr. In most
models, this quantity is assumed to be either a constant or a
function of the maximum nonwetting saturation Smax

rn

� �
which has been reached. That maximum saturation is called
the turning-point saturation, St

n (refer to Figure 2). The sec-
ond part of a trapping model determines the saturation of
the disconnected (or trapped) nonwetting fluid, Sd

n , for a
given wetting fluid saturation, Sw. The connected nonwet-
ting fluid saturation Sc

n sums with the disconnected satura-
tion, Sd

n , to give the total nonwetting saturation
Sn ¼ Sc

n þ Sd
n . Note that for most porous media, the wetting

phase also has a residual or irreducible saturation Swr. In
this paper, we assume that the residual wetting-phase satu-
ration is a constant. This assumption permits us to rescale
the saturations so that Sw ¼ Swr ! Swr ¼ 0.

2.1. Land’s Model

[13] In Land [1968] both parts of a trapping model are pro-
posed. Based on experimental data, Land deduced that the
difference of the reciprocals between the turning-point satura-
tion, St

n, and the residual saturation, Snr, is approximately

Figure 1. Conceptual picture of the connected (check-
board) and nonconnected (light gray) nonwetting fluid
phase. The wetting fluid is depicted white and the porous
medium by dark gray spheres.
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constant for a given system. Hence, the measurement of one
pair, for example, the extreme values St

n ¼ 1 and
Smax

rn ¼ Srn 1ð Þ, suffices to determine the relationship

Snr St
n

� �
¼ St

n

1þ 1=Smax
rn � 1

� �
St

n

: ð1Þ

[14] Land also postulated that equation (1) will hold for
any connected nonwetting saturation Sc

n ; therefore the dis-
connected nonwetting saturation, Sd

n , is the difference
between the two residual saturations, Snr St

n

� �
and Snr Sc

n

� �
.

In terms of the nonwetting saturation Sn, this leads directly
to the following relation,

Sd
n Sn; St

n

� �
¼ 1

2
Sn þ Snr St

n

� �� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn � Snr St

n

� �� �2 þ 4

1=Smax
rn � 1

Sn � Snr St
n

� �� �s" #
: ð2Þ

[15] This model has been obtained for a system of water
and gas but it is proposed to hold for other fluid pairs, for
example, oil and water, if the porous medium is strongly wet-
ting. Even though the model is constructed for imbibition
processes, Land suggested that the difference between drain-
age and imbibition was expected to be small and equation (2)
should hold for drainage processes as well. Figure 3a illus-
trates Sd

n Sw; St
n

� �
for Smax

rn ¼ 0:2 and St
n ¼ 1; 0:8; 0:6; 0:3f g.

2.2. Parker and Lenhard’s Model

[16] A simplified version of the Land model was pro-
posed by Parker et al. [1987] and Lenhard and Parker
[1987] for air and water in soils. The authors used equation
(1) and interpolated linearly between turning-point satura-
tion and residual saturation to obtain a relationship between
Sd

n and Sn. The model thus is written as

Sd
n Sn; St

n

� �
¼

Snr St
n

� �
St

n � Snr St
n

� � St
n � Sn

� �
; Sn < St

n;

0; Sn � St
n:

8<
: ð3Þ

[17] The authors justified this approach by the assump-
tion that all pore classes entrap nonwetting fluid in propor-
tion to their volumes and that compression of entrapped
fluids can be disregarded at typical pressures in the vadose
zone. Figure 3b illustrates this linear trapping relation in
combination with Land’s residual saturation–turning-point
saturation relationship, equation (1), Smax

rn ¼ 0:2, and
St

n ¼ 1; 0:8; 0:6; 0:3f g.

2.3. Jerauld’s Model

[18] In Jerauld [1997], a modification to Land’s equation
(1) was proposed. The modification was based on empirical
data for mixed-wet reservoirs, which suggest that the resid-
ual nonwetting phase saturation is less dependent on the
turning-point saturation St

n for large turning-point satura-
tions than predicted by the Land model. An additional pa-
rameter to take this into account was proposed and
equation (1) was altered to read

Snr St
n

� �
¼ St

n

1þ 1=Smax
rn � 1

� �
St

n
a
: ð4Þ

[19] The parameter a is different for gas and oil and is
given as a ¼ 1þ bSmax

rn = 1� Smax
rn

� �
for gas (with the

additional fitting parameter b) and a ¼ 1= 1� Smax
rn

� �
for

oil. A trapping relation Sd
n Sn; St

n

� �
may be obtained analo-

gously to Land’s model. However, an explicit algebraic
expression Sd

n Sn; St
n

� �
is not possible unless a is an integer.

The corresponding implicit nonlinear algebraic equation
can be solved numerically to obtain the curves in Figure
3c, with the parameters a ¼ 1:2, Smax

rn ¼ 0:2, and
St

n ¼ 1; 0:8; 0:6; 0:3f g. Note that compared to Figure 3a the
trapping occurs later along the trajectory and hence the dif-
ference between different turning-point saturations is
smaller for St

n > Smax
rn . For larger a, a process-independent

residual saturation becomes a reasonable approximation for
St

n > Smax
rn .

Figure 2. Conceptual picture of hysteresis paths and the
link between capillary pressure hysteresis and disconnected
nonwetting saturation. Red curves illustrate primary drain-
age, blue curves the main hysteresis loop, and green curves
a hysteresis loop turning at a lower turning-point saturation
St

n. This article studies the dashed curves with a pore-
network model.

JOEKAR-NIASAR ET AL.: TRAPPING AND HYSTERESIS IN TWO-PHASE FLOW

3



2.4. Spiteri et al.’s Model

[20] Spiteri et al. [2005] proposed a model which dif-
fered from Land’s approach. The model studies mixed-wet

and oil-wet conditions and is based on pore-network model
results. Their results show a nonmonotonic behavior for
Snr St

n

� �
and the authors use a second-order polynomial,

Figure 3. Illustration of the different trapping models: (a) Land, (b) Parker/Lenhard, (c) Jerauld, (d)
Spiteri, (e) van Kats, (f) Hilfer. The graphs show the disconnected nonwetting-phase saturation Sd

n with
respect to the wetting-phase saturation, Sw ¼ 1� Sn. For all models but the Spiteri model, the traditional
residual saturation, that is, the maximum trapped one, is 0.2. The Jerauld parameter in Figure 3c is
a ¼ 1:2. In Figure 3e and 3f, two parameterizations are shown (see graph for numbers). Note the nega-
tive trapped saturations in Figure 3d. In Figure 3e, for each of the two imbibition curves three drainage
curves are shown with � ¼ 1 (solid), � ¼ 2 (dashed), and � ¼ 0:5 (dash-dotted).
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Snr St
n

� �
¼ �St

n � �St
n

2; ð5Þ

to fit the numerical results. They also challenge the idea
that this equation holds for the connected saturation as

well. Instead they subtract a second-order polynomial from
the difference weighted with a third parameter. The relation
is given by

Sd
n Sn; St

n

� �
¼ Sn �

1

�
�� 1½ � þ �� 1½ �2 þ 4 Sn � Snr St

n

� �
þ � Sn � Snr St

n

� �� �
Sn � St

n

� �� �n o1
2

� �
: ð6Þ

[21] The parameters �; �; � are fitting parameters which
have to be determined from experiments. Figure 3d illus-
trates Sd

n Sn; St
n

� �
for two different parameter sets and for

turning-point saturations St
n ¼ 1; 0:8; 0:6; 0:4f g. Note that

the parameters can be related to the maximum residual sat-
uration as Smax

rn ¼ �� � for full wetting conditions and
main imbibition. The model has to be applied cautiously
because the fitting parameters do not represent physical
processes and there are parameterizations for which the
model predicts unphysical negative disconnected satura-
tions Sd

n even for realistic turning-point saturations St
n (see

Figure 3d) [see, Spiteri et al. 2005].

2.5. van Kats and van Duijn’s Model

[22] van Kats and van Duijn [2001] proposed a trapping
model that, for the first time, takes into account the differ-
ences between drainage and imbibition. In this model the
process of break up and coalescence is modeled using a set
of differential equations. Integration of these differential
equations leads to a direct relationship between discon-
nected and wetting saturation Sd

n Swð Þ. For imbibition, it is
assumed that the production of trapped nonwetting phase,
Sd

n , is proportional to the change in apparent water satura-
tion, Sa

w � Sw þ Sd
n , and that the proportionality factor, f im ,

is a function of the connected nonwetting phase
f im ¼ f im Sc

n

� �
. Because of volume conservation, this may

be expressed in terms of mobile and trapped nonwetting
saturation as follows,

@Sd
n

@t
¼ �f im Sc

n

� � @Sc
n

@t
: ð7Þ

[23] The function f im is obtained from Land’s trapping
relation,

f im Sc
n; Smax

rn

� �
¼ 1

1þ 1=Smax
rn � 1

� �
Sc

n

� �2 : ð8Þ

[24] For drainage, it is assumed that the reduction of the
disconnected nonwetting phase is proportional to the
increase of connected nonwetting phase and that the pro-
portionality factor is a function of the ratio of disconnected
nonwetting saturation Sd

n and the volume which is available
for nonprimary nonwetting invasion, Sa

w � St
n � 1� Sc

n�
St

n and hence

@Sd
n

@t
¼ �f dr Sc

n; S
d
n

� � @Sc
n

@t
: ð9Þ

[25] Equation (9) holds with

f dr Sc
n; S

d
n ; St

n

� �
¼ Sd

n

Sc
n þ St

n

� ��
ð10Þ

and � > 0. For � > 1 the reduction is mostly happening at
the beginning of a drainage while for � < 1 the reduction
is mostly happening close to St

n. The authors take � as a
pure fitting parameter and only study the case � ¼ 1. Note
that the choice � ¼ 1 leads to higher residual saturations
when switching between drainage and imbibition. In con-
trast, a small � leads to reduction of residual saturations.
Figure 3e illustrates the hysteresis loop for two turning-
point saturations St

n ¼ 1; 0:5f g with Smax
rn ¼ 0:2 and � ¼ 1

(solid curves), � ¼ 0:5 (dash-dotted curves) and � ¼ 2
(dashed curves).

2.6. Hilfer’s Model

[26] Hilfer [2006] proposed a hysteresis model for two-
phase flow in porous media by identifying connected or
percolating parts of phases and the complementary discon-
nected or nonpercolating parts. Each one thus was treated
as a different phase.

[27] In several subsequent works [Doster et al., 2010;
Doster and Hilfer. 2011; Hilfer and Doster, 2010] the case
of immobile disconnected fluid phases was studied, includ-
ing the specification of a trapping relation for the nonwetting
fluid. As in van Kats and van Duijn [2001] differences
between drainage and imbibition are included and breakup
and coalescence were modeled instead of the trapping trajec-
tory. The disconnected nonwetting phase is changed in pro-
portion to the change of total nonwetting phase saturation

@Sd
n

@t
¼ ��n

Sd
n � Sd�

n @tSnð Þ
S�n @tSnð Þ � Sn

@Sn

@t
ð11Þ

with a constant parameter �n, and the process-dependent
saturations defined by

Sd�
n ¼

min Smax
rn ; 1� �mð ÞSn

� �
; @tSn < 0;

0; @tSn � 0;
S�n ¼

Sd�
n ; @tSn < 0;
1; @tSn � 0;

		
ð12Þ

where �m is a regularization parameter preventing unphysi-
cal saturations. Equation (11) has an algebraic solution
given by

Sd
n ¼ Sd�

n þ Sd
n

t � Sd�
n

� � S�n � Sn

S�n � St
n

� ��n

; ð13Þ

where Sd
n

t and St
n denote the saturations at the last process

change. Figure 3f illustrates the trapping relationship for the
turning-point saturation pairs St

n; S
d
n

t
� �

¼ 1; 0ð Þ; 0:8; 0ð Þ;f
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0:2; 0:2ð Þg corresponding to characteristic hysteresis processes
for Srn ¼ 0:2 and �n ¼ 2 (blue and red curves) and �n ¼ 0:5
(pink and cyan curves). Two features distinguish this model
from those previously discussed. First, the residual saturation
Snr changes with the turning-point saturation only for
St

n < Smax
rn . Second, the curvature of the trapping relation has

a different sign for �n < 1 and �n > 1. For �n > 1 the sign of
the curvature of the trapping relation for imbibition is different
from the other models.

3. Pore-Network Model

[28] Pore-network models have been used extensively to
foster the understanding of phenomena related to porous
media flow [Blunt, 2001; Joekar-Niasar and Hassaniza-
deh, 2012]. Here, we use a quasi static pore-network model
developed by Joekar-Niasar et al. [2008, 2010a] to study
how trapping of the nonwetting fluid actually evolves.
Since in quasi static pore-network models only equilibrium
situations under capillary dominated regimes are simulated,
the effect of dynamic parameters such as viscosity ratio
and capillary number on trapping hysteresis cannot be
investigated. In this manuscript use the quasi-static model
and focus on the effect of pore geometry on trapping.

[29] Details of the complete algorithm used in this pore-
network model have been reported in Joekar-Niasar et al.
[2008]. Using this model, we are able to track trapped
regions of the nonwetting phase in any sequence of drain-
age and imbibition scanning curves in a completely water-
wet system.

[30] As shown in Figure 4, the pore network is made of
large pores, referred to as pore bodies, connected to each
other through small (narrow) pore throats. Sizes of pore
bodies follow an uncorrelated truncated log-normal distri-
bution and sizes of pore throats are determined based on
the neighboring pore bodies. Mean, minimum, maximum
and standard deviation of pore bodies are 0.108, 0.055, 0.3,
and 0.04 mm, respectively.

[31] Joekar-Niasar et al. [2010b] have discussed the sig-
nificant effect of angularity of pore elements on calculated

residual wetting phase, entry capillary pressure, and two-
phase conductance. To incorporate a measure of angularity
and irregularity of the solid surfaces (which is typical of nat-
ural porous media), we have assigned different polygonal
cross sections in addition to circular cross sections. The pore
throats can have circular or n-edged regular polygonal cross
sections. The number of edges, n, is an input parameter. The
pore bodies have been represented by spheres or cubes. The
shape of pore throat cross sections and pore bodies control
the amount of residual saturation at the pore level and conse-
quently at the representative elementary volume (REV)
scale. Major pore-scale invasion mechanisms such as piston-
like movement, snap off, and cooperative pore filling have
been included. We refer to Joekar-Niasar et al. [2010a] for
further information. For an imposed capillary pressure under
equilibrium conditions, the occupancy of pore throats and
pore bodies, during imbibition or drainage, has to be deter-
mined. To obtain the fluid occupancy, an entry capillary
pressure for a pore throat for a given geometry is calculated
[Joekar-Niasar et al., 2010a], which depends on pore geom-
etry, interfacial tension and contact angle. Here, we use the
interfacial tension for air-water equal to 0.0725 N/m and the
contact angle equal to 4�.

[32] When the pore elements have angularity, there is
always a residual wetting phase in the corners, controlled
by the capillary pressure. The radius of a capillary interface
in each pore will change with the global capillary pressure
(if the nonwetting phase is connected to its reservoir) and
consequently, the wetting phase saturation as well as the
two-phase conductance will change, even when no piston
displacement takes place.

[33] Under imbibition condition, with decrease of the
nonwetting phase pressure, the capillary interfaces start to
relax. Since the pore throats are smaller than the pore
bodies the critical capillary pressure at which the capillary
interface would no longer be stable is higher than that of
pore bodies. As soon as the external pressure difference is
smaller than the critical snap off capillary pressure for a
pore throat, the pore throat will be filled by the wetting
phase. To identify whether the local snap off in a pore
throat makes creation of a trapped nonwetting ganglia, a
search algorithm is done at each pressure step to identify
where the nonwetting phase has been disconnected from its
corresponding boundary. At the end of each search step the
nonwetting phase at each pore element is flagged as discon-
nected or connected.

[34] Saturation of each phase is calculated as the total
volume of each phase (in pore bodies and throats) divided
by the total void volume. Knowledge of the fluid occu-
pancy of pore bodies and pore throats allows the connected
and disconnected fluids at each pore to be identified using a
search algorithm. Because the wetting phase is assumed
always to be connected to its corresponding reservoir, there
is no disconnected wetting phase.

[35] To calculate the relative permeability, first the net-
work of continuous pathways is identified. The continuous
pathway is identified by a search algorithm starting from
one reservoir boundary and tracking across the network to
the other reservoir boundary. If a fluid does not have a con-
tinuous path across the network, its permeability is set to
zero. We calculate the phase conductance in each pore for
the given capillary pressure following Patzek [2001].

Figure 4. Three-dimensional schematic presentation of
the pore network. The inset figures show the cross sections
of pore throats.
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[36] Given the conductance of phase � in a pore throat ij
(denoted by K�

ij ), the Hagen-Poiseuille equation can be
used to relate the flux, Q�

ij , to the phase pressure drop �p�ij
by Q�

ij ¼ K�
ij �p�ij . For the pressure field an assigned pres-

sure difference across the network (�p�) is obtained from
the volumetric conservation law for each pore body. This
conservation law is a linear set of equations given by

Xni

j¼1

Q�
ij ¼

Xni

j¼1

K�
ij �p�ij ¼ 0; i ¼ 1; 2; . . . ;Np ð14Þ

where ni is the number of pore throats connected to the
pore body i and Np is the total number of pore bodies

[37] After solving the equation system for the pressures
field, the inflow rate Q�

in

� �
can be calculated. Phase perme-

ability at a given saturation is given by

K� Swð Þ ¼
��Q�

inL

A�p�
ð15Þ

where L and A denote the length and cross sectional area of
the network, and �� denotes the viscosity of phase �. The
relative permeability will be k�r ¼ K�=K in which K is the
intrinsic permeability of the network. The intrinsic perme-
ability is calculated in the same fashion for a fully saturated
system.

[38] Finally, note that to be able to present results that
can be applied to continuum-scale models discussed in the
previous section, the network size should be chosen so that
at least an REV size is satisfied. For the given statistical
properties (pore body and pore throat sizes) the results
were independent of the network size for networks larger
than a cubic network with 25 pores in each dimension. As
such we used a network with 25 pores in each direction.

4. Results and Discussion

[39] Here, we will compare the trends of the simulation
results with the trapping models. Effects of pore-scale
mechanisms on trapping during drainage and imbibition
and on constitutive relations at the REV scale will also be
presented and discussed.

4.1. Analysis of Trapping Models Based on the Pore-
Network Results

[40] Based on the simulation results, it is possible to
examine the agreement between our results and the pro-
posed trapping models in the literature. Primary and main
drainage, main imbibition, and several scanning drainage
and imbibition curves have been simulated. Examples of
drainage-imbibition-drainage sequence are given in Figures
5a and 5b. Note that drainage and imbibition curves have
been generated for various turning points.

[41] Both figures show that the relationship between
trapped nonwetting-phase saturation and total wetting
phase saturation is hysteretic, consistent with van Kats and
van Duijn [2001] and Hilfer [2006]. For a given wetting-
phase saturation, disconnected nonwetting-phase saturation
is larger during drainage than during imbibition. This
requires � < 1, while the model from Hilfer [2006] requires
� > 1 to obtain capillary pressure saturation relationships

that agree with experimental observations. The trend of
Sd

n -Sw curve can also be examined based on the pore-scale
insights of two-phase flow. The maximum rate of produc-
tion of disconnected nonwetting phase versus total wetting
phase saturation @Sd

n=@Sw

� �
occurs close to the end of the

imbibition curve (Figure 5a). When Sw is very small, the
nonwetting phase can be connected by several flow paths to
its boundary. However, at large Sw the nonwetting phase
loses its connections to the boundary. At a later stage of
imbibition, a single path can be critical as it may be the
only path the connects a nonwetting fluid cluster to the non-
wetting phase reservoir. If this connection is lost, all
remaining nonwetting phase will be trapped. Moreover, our
results show an obvious dependence of the residual satura-
tion on the turning saturation (Figure 6 and the discussion
below).

[42] The general trend observed during imbibition is
qualitatively in agreement with the trapping models sug-
gested by Land [1968], Lenhard et al. [1991], and Jerauld
[1997]. Comparing the results with the models proposed by

Figure 5. Disconnected nonwetting-phase saturation ver-
sus wetting phase saturation for primary drainage followed
by different imbibition(solid)-drainage(dashed) loops. (a)
The loops are started at different turning saturations St

n and
the imbibition is completed so that only disconnected non-
wetting phase remains at the end of the imibibiton process.
(b) All loops start at the same turning saturation but the
secondary drainage is started at various saturations before
the imbibition process is completed. The sequence of the
simulations is A!B!C. Pore throats have square cross
sections and pore bodies are cubic.

JOEKAR-NIASAR ET AL.: TRAPPING AND HYSTERESIS IN TWO-PHASE FLOW

7



Parker et al. [1987] and Lenhard and Parker [1987] we see
that a linear interpolation between turning saturation and
residual saturation is not a good model.

[43] In contrast to the drainage curves in Figure 5a,
where the initial Sc

n ¼ 0, in Figure 5b the secondary drain-
age starts while there is still connected nonwetting phase
left, Sc

n 6¼ 0. The comparison between the drainage curves
started from Snr Snð Þ (the most outer loop in Figure 5b and
all loops in Figure 5a) and the drainage curves started
before Snr (the four internal loops in Figure 5b) suggests
that trapping during drainage is significantly influenced by
the nonwetting fluid topology at the start of a drainage
path. In an angular network at the start of a drainage path,
if Sd

n 6¼ Snr, the trapped nonwetting phase saturation
remains unchanged while the wetting-phase saturation
changes. The extension of this trend depends on the angu-
larity of the medium and will be discussed in detail in the
next section.

[44] We note that, although Spiteri et al. [2005] also
used pore-network modeling to analyze hysteresis in rela-
tive permeability, they did not report this kind of behavior.
They did not focus on the scanning (especially drainage)
curves nor on the effect that pore geometry has on trapping
and consequently on relative permeability curves.

[45] Another important issue that has been addressed by
trapping models is that the final value of the trapped
nonwetting-phase saturation depends on the turning point
saturation. This dependence is shown in Figure 6 based on
the pore-network results. Models proposed by Land [1968],
Lenhard et al. [1991], Jerauld [1997], and Spiteri et al.
[2005] have been fitted to the data as well. The results show
that for a large value of the turning-point saturation, St

n, the
residual saturation Snr St

n

� �
displays a weak dependence on

St
n. All fits approximate the relation reasonably well. The

best fit is obtained by the relation of Spiteri et al. [2005].

4.2. Reversible Corner Filling Mechanism and
Trapping

[46] As shown in Figure 5b, the initial topology of the
nonwetting fluid during drainage can influence the trajec-
tory of Sd

n versus Sw. Specifically, Sd
n can remain constant

as Sw is decreasing. This behavior can be explained by con-

sidering the cross-sectional configurations of pores filled
with both fluids (inset in Figure 4). Consider a snapshot of
fluids where there is still nonwetting phase connected to the
nonwetting phase reservoir, as the initial condition for a
drainage event. Next to the nonwetting phase, there might
be some pores that are only filled with the wetting phase.
To drain those pores, global capillary pressure should
exceed the entry capillary pressure of these pores. If the
pressure increase is smaller than the entry capillary pres-
sure, the fluids topology does not change.

[47] However, the nonwetting fluid will invade into the
corners of already filled pores, thereby allowing both Sn

and Sw to change (but not Sd
n ). We refer to this mechanism

as ‘‘reversible corner filling.’’ As a result, the wetting-
phase saturation will decrease, the nonwetting-phase satu-
ration will increase but the disconnected nonwetting phase
saturation will remain unchanged. As long as the fluid to-
pology does not change, this process is reversible. This ‘‘re-
versible cornering filling’’ mechanism is also valid when
there is hysteresis in contact angle. Braun and Holland
[1995] investigated the reversibility of the relative perme-
ability curves in porous media with hysteretic contact
angle. Based on their experimental observations, they pro-
posed the ‘‘pinning mechanism’’ and stated that ‘‘as long as
the interfaces remain pinned (in the corners), changes in
fluid geometry are reversible. Outside the range of revers-
ibility, contact angles are at their limiting values, interfaces
move along grain surfaces, and fluid geometries are con-
trolled by processes that result in hysteresis.’’ The mecha-
nism we identify is analogous to this kind of pinning,
although there is no common line in our case. We conjec-
ture that as long as the fluid topology does not change, the
motion of the interface remains reversible.

[48] The relationship between trapped nonwetting-phase
and wetting-phase saturation depends on the pore geome-
try, fluid topology, and contact angle hysteresis. The ‘‘re-
versible corner filling’’ depends significantly on the
angularity of the domain and the initial nonwetting fluid to-
pology. Figure 7a shows the variation of the disconnected
nonwetting-phase saturation versus total wetting phase sat-
uration for three networks with the same topology but dif-
ferent pore cross sections: (1) triangular pore throats with
cubic pore bodies, (2) parallelepiped pore throats with
cubic pore bodies, and (3) cylindrical pore throats with
spherical pore bodies. The figure shows a primary drainage
followed by an imbibition followed by another drainage for
each of the three networks. In circular cross sections, the
trend of Sd

n versus Sw during drainage is independent of ini-
tial nonwetting fluid topology, while in triangular cross sec-
tions, Sd

n remains constant for a large range of Sw. This is
explained by the amount of the wetting phase that can
accumulate in the corners, that is, the difference between
the areas of the cross section and the inscribed circle in
pore throats or the difference between the volumes of pore
bodies and the inscribed spheres. Coupled with the experi-
mental observations, these results strongly argue for the re-
versible corner filling mechanism.

[49] Figure 7b illustrates the impact of pore aspect ratio
(ratio of pore body to pore throat radii) as well as hysteresis
of advancing and receding contact angle on trapping of the
nonwetting phase. The figure shows that for an increased
receding contact angle (from 0 to 20�), the capillary

Figure 6. Residual saturation versus turning saturation
for a network with square cross-sectional pore throats.
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trapping of the nonwetting phase decreases significantly,
while the capillary pressure curves (not shown here) do not
change as much. Our pore-network model results show that
the effect of contact angle hysteresis on relative permeabil-
ity hysteresis is stronger than on the capillary pressure hys-
teresis. However, since this is not the main focus of the
paper, these results are not shown in the manuscript.

[50] The pore aspect ratio determines the snap off under
capillary dominated imbibition. We have kept the pore
bodies the same as the benchmark run but have taken
smaller pore throat radii. We changed the aspect ratio by
approximately 20%. The contribution of the pore throats to
the pore volume is small, and therefore this does not alter
porosity significantly. However, the increased aspect ratio
has a significant effect on the early trapping of the nonwet-
ting phase under imbibition. As a consequence, both the
capillary pressure curve and the relative permeability
curves show a significant increase of hysteresis (results not
shown here). Thus, the simulation results imply that the
sensitivity of the macroscopic constitutive relations as well
as the trapping relations to the aspect ratio is more than that
to the contact angle hysteresis in water wet systems.

4.3. Comparison to Laboratory Experiments

[51] To support the simulation results, specifically the re-
versible corner filling trapping mechanisms, we examined a
particular set of experimental data measured on a volcanic
tuff material (the manuscript for this experimental work is
in preparation). A brief description of the experiments is
provided here, for more general details we refer to Porter
et al. [2010].

[52] In these experiments, a number of air-water drain-
age and imbibition cycles were completed on a 6 mm inner
diameter sample of crushed volcanic tuff. The granular ma-
terial consisted of quartz, feldspar, and albite, and had a
D50 (called the median grain size is the grain diameter for
which half the sample (by weight) is smaller and half is
larger) of 1795 mm. The scheme of the experimental setup
is shown in Figure 8. A precision syringe pump was used to
imbibe and drain water to and from the sample, a semi-
permeable membrane was used below the sample to pre-
vent air from entering the pump line, and the air phase was
at atmospheric pressure on top.

[53] The experiment was started with a dry sample and
the sample was taken through primary imbibition and
drainage cycles. Imaging (and saturation measurement)
started with the first imbibition cycle (performed at 1 mL/h).
All the experiments were performed consecutively, such that
the end point of each imbibition cycle comprised the first
point on the subsequent drainage cycle, and so on.

[54] The sample was allowed to equilibrate for 10 min
before it was imaged, and imaging took approximately
10 min. No blurring was observed during imaging, which
indicates that no interfaces were moving during the 10 min
scan; however, that does not preclude longer term equili-
bration, and as such we can only assume that the sample
was in a pseudoequilibrium state. During the drainage and
imbibition cycles, fluid saturations and distributions were
measured using X-ray computed microtomography at the
GeoSoilEnviroConsortium for Advanced Radiation Sour-
ces beam-line 13-BMD at Argonne National Lab. The
water phase was spiked with potassium iodide (1:6 weight
ratio of KI to water) to enhance contrast in the images. An
energy level just above the iodine photoelectric edge
(33.22 keV) was used for imaging. The gray-scale data was
segmented using the approach described in Porter and
Wildenschild [2010]. The resulting image volumes were
cropped for final analysis to a cube with dimensions of
294� 294� 378 voxels, with a voxel resolution of 16.8
mm, this comprises a cube of 4.9 mm � 4.9 mm � 6.4
mm¼ 154.9 mm3.

[55] The nonwetting phase that occupies this pore space
was then separated into connected and disconnected phases
using an algorithm in Avizo FireVR called ‘‘Reconstruct.’’ A
nonwetting phase marker was placed at the top region of
the analyzed pore space (i.e., the region from which non-
wetting phase retreats during imbibition), and any nonwet-
ting phase voxel not connected to this marker was
considered disconnected. Using this approach the imaged
volume was segregated into connected and disconnected
nonwetting phase. Lastly, connected and disconnected phase
saturations were calculated by voxel counting.

[56] A full closed cycle of drainage and imbibition (for
Sd

n versus Sw) is shown in Figure 9a. The experiments are

Figure 7. (a) Effect of pore geometry on Sd
n -Sw curve

under drainage for circular (shown by circle), parallelepi-
ped (shown by square), and triangular (shown by triangle)
pore throats. Drainage and imbibition curves have been
shown in red and blue, respectively. (b) Effect of contact
angle hysteresis and pore aspect ratio on capillary trapping.
In the hysteretic contact angle, receding contact angle has
been set to 20� and advancing to 0.
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consistent with the simulations in that, under drainage,
there is more disconnected nonwetting phase, compared to
imbibition, for a given saturation. Interestingly, during the
main drainage measurements, Sd

n did not change signifi-
cantly with Sw at high saturations, which is consistent with
the reversible corner filling mechanism. To be even more
precise, we visualized fluid distributions in a part of the
medium to show why this plateau was observed. The
images shown in Figure 9b were selected such that they
represent similar disconnected saturations but with differ-
ent wetting saturations. The images show that, while non-
wetting phase invades the sample (violet) and Sw changes
significantly, the disconnected nonwetting phase remains
almost constant. These observations are consistent with the
physical mechanisms captured in the pore-network model
as the underlying process of capillary trapping and the pla-
teau in Sd

n -Sw. As additional corroboration, we note that
‘‘reversible corner filling’’ was not observed in glass bead
experiments using the same fluids (results not presented
here).

4.4. Effect of Trapping on Constitutive Relationships

[57] Figures 10a–10d show the simulation results for a
network with parallelepiped pore throats and cubic pore
bodies. Several continuous drainage and imbibition simula-
tions have been performed. As Figure 10a shows there is
no disconnected nonwetting phase under primary drainage
(from points 1 to 2). In the first scanning imbibition curve
(points 2 to 3) the nonwetting phase eventually becomes
disconnected. The subsequent drainage scanning curve
(points 3 to 4) shows no plateau behavior (Figure 10a) and
therefore no corner filling mechanism. The next imbibition
cycle (points 4 to 5) stops (point 5) before all of the non-
wetting phase is disconnected. The following drainage
curve (points 5 to 6) shows a pronounced plateau region,
driven by the reversible corner filling mechanism. Similar
behavior is seen through the subsequent scanning cycles,
until the ending point (point 9).

[58] Looking at Figure 10b, we can see the influence of
nonwetting-phase connectivity on macroscopic Pc-Sw

curves. Drainage scanning curves that begin with all non-
wetting fluid being trapped (for example, beginning at point

3) show the usual shape that is concave downward (that is,
the curvature is negative, d2Pc=dS2

w < 0). However, when
some connected nonwetting fluid is present at the onset of
the next drainage cycle (points 5 and 7), the corner filling
mechanism is important, and the shape of the resulting
drainage scanning curve changes qualitatively so that the
curve is concave upward d2Pc=dS2

w < 0
� �

. We are unaware
of any other reports of such behavior, although the experi-
mental results of Chen et al. [2007] appear to show some-
what similar behavior. As a remark, with introducing
hysteresis in the contact angle there would be some differ-
ences in shapes of scanning capillary pressure curves under
drainage and imbibition. The imbibition scanning curves
do not show any similar changes. The implications of this
behavior in the drainage scanning curves remain to be
explored. We observe that simple scaling of the main drain-
age curve to define the scanning curves would appear to be
inappropriate for these cases.

[59] Finally, the effect of nonwetting-phase connectivity
on relative permeability curves is shown for the same set of
simulations. As the wetting phase is assumed to be always
connected to its reservoir, there is no significant difference
between drainage and imbibition wetting-phase relative
permeabilities (Figure 10c). However, nonwetting-phase
relative permeabilities show a significant hysteresis (Figure
10d) driven mainly by the corner filling mechanism. This
behavior has also been reported in Jerauld and Salter
[1990, Figure 13], where a larger nonwetting phase relative
permeability under imbibition compared to drainage is
observed (for a water wet system). Note that these results
differ from those of Spiteri et al. [2005]. In their work, they
assumed that all hysteresis in relative permeability curves
can be removed, if they are plotted against the connected
saturation instead of total saturation. However, our results
show that although the hysteresis will be reduced, there
will still be a difference between relative permeability
curves under drainage and imbibition due to the ‘‘reversible
corner filling’’ mechanism.

[60] As mentioned before, no dynamic effects have been
incorporated in the simulations. Thus, once a region of dis-
connected nonwetting phase is created, it will be static and
will not mobilized. Under dynamic conditions, it is possible

Figure 8. Schematic presentation of the experimental setup.
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to mobilize the capillary trapped ganglia by viscous forces
or by reduction of capillary forces. We plan to study
dynamic effects on trapping in a later publication.

5. Summary and Conclusion

[61] We have used a quasi-static pore-network model to
show the underlying mechanisms that influence trapping of
the nonwetting phase as a function of wetting phase satura-
tion. Results of the pore-network model have been related
to proposed trapping models in the literature and have pro-
vided new insights into the physics of the problem.

[62] All results show a strong hysteresis in trapping dur-
ing drainage and imbibition, which is in agreement with

trapping models suggested by van Kats and van Duijn
[2001] and Hilfer [2006]. However, the trend of discon-
nected nonwetting-phase saturation versus total wetting-
phase saturation shown in the simulations and pore-scale
visualizations is in disagreement with the proposed trend
by Hilfer [2006]. Interestingly, trapping during drainage
shows a strong dependence on nonwetting-phase fluid to-
pology was well as pore geometries including angularity
and aspect ratio. If the nonwetting phase is connected to its
boundary at the onset of the drainage cycle, with gradual
change of capillary pressure, total phase saturation will
also change while the disconnected nonwetting phase may
not change. This mechanism, which is referred to as ‘‘re-
versible corner filling,’’ has not been incorporated into any

Figure 9. (a) Variation of disconnected nonwetting phase saturation Sd
n versus wetting phase saturation

Sw for main drainage (red/dashed line) and imbibition (blue/solid line) experiments in volcanic tuff. (b)
A part of the sample at two drainage observation points has been visualized to illustrate the ‘‘reversible
corner filling’’ mechanism. The violet color represents the connected nonwetting phase, and the green
color represents the disconnected nonwetting phase.
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existing trapping model. This mechanism was also
observed in laboratory experiments performed in a volcanic
tuff where the pore geometry is very irregular. But, it was
not observed in two-phase experiments in glass beads
where the pore geometry is very smooth and connected cor-
ner flow is not expected to occur. These observations are
all consistent and point to reversible corner filling as a
potentially important mechanism.

[63] The contribution of nonwetting fluid topology and
pore geometry to relative permeability-saturation and capil-
lary pressure-saturation curves can be significant. Based on
our results, the shape of drainage scanning curves for the
capillary pressure can significantly change, if corner flow is
significant in a porous medium. This is due to the existence
of connected nonwetting phase at the onset of the drainage
scanning cycle. Moreover, the wetting phase does not show
a strong hysteresis in relative permeability compared to the
nonwetting phase, as the topology of the wetting phase does
not change significantly with change of saturation. But, the
nonwetting phase permeability changes significantly with
trapping as its topology changes dramatically. In contrary to
Braun and Holland [1995], who stated that reversibility of
drainage and imbibition requires ‘‘pinned contact lines’’ to
the solid surface, ‘‘irreversible corner filling’’ mechanism
suggests that as long as the fluid topology does not change
while the saturation is changing the displacement process is
reversible, without involving contact lines.

[64] Based on our results, existing trapping models will
require further development to include effects of porous
medium geometry as well as fluid topology. These factors
can lead to strong hysteresis and nonlinearities in trapping
curves that should be included in the models. Furthermore,
the effect of dynamic parameters (such as capillary number
and fluids viscosity ratios) on trapping has not been
included here but should be studied to develop a more com-
plete picture of trapping and hysteresis.
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