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Adversarial Training on Point Clouds for
Sim-to-Real 3D Object Detection

Robert DeBortoli1∗, Li Fuxin1, Ashish Kapoor2, Geoffrey A. Hollinger1

Abstract—In this work we address the problem of 3D ob-
ject detection from point clouds in data-limited environments.
Training with simulated data is a common approach in such
scenarios; however a sim-to-real gap exists between clean and
crisp simulated clouds and noisy real clouds. Previous sim-to-real
approaches for processing point cloud scenes have compressed
clouds into 2D and used 2D transfer techniques. However, this
may compress useful 3D information and does not effectively
reason about the unstructured nature of point cloud data. We
thus propose a 3D adversarial training architecture that leverages
an adaptive sampling module to reason about the unstructured
nature of point cloud data. Our approach encourages the 3D
feature encoder to extract features that are invariant across
simulated and real scenes. We validate our approach in the
context of the DARPA Subterranean Challenge and demonstrate
that our 3D adversarial training architecture improves 3D object
detection performance by up to 15% depending on the data
representation.

Index Terms—Deep Learning Methods, Field Robots, Object
Detection, Segmentation and Categorization

I. INTRODUCTION

SCENARIOS such as search and rescue in poorly-lit un-
derground environments [1] and autonomous driving in

poor weather [2] can cause the same object or environment to
appear differently in camera imagery depending on the condi-
tions. Light Detection and Ranging (LiDARs) are increasingly
being used as a complementary sensor to cameras because of
their ability to better capture clear sensor data in such low-
light or poor weather conditions. In this work we address 3D
object detection in point clouds from a LiDAR.

Recently, deep learning approaches have achieved state-of-
the-art performance for object detection from point clouds [3].
Oftentimes such methods rely on having large amounts of real
data for training. In this work we target applications where
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(a) Real survivor in point cloud (pink points) and inset image.

(b) Synthetic survivor in point cloud (pink points) and inset image.

Fig. 1: Example of the sim-to-real gap for point cloud object detection. The
real point cloud (top) has rough walls and features as well as objects such
as the generator that are not found in simulation. The synthetic point cloud
(bottom) has relatively smooth surfaces. Points are colored for visualization
purposes only and are not used for object detection.

a large amount of training data do not exist; such as those
in agricultural robotics [4] or those motivating the DARPA
Subterranean (SubT) Challenge [5].

Simulators can be used to generate large amounts of training
data, however, as shown in Fig. 1, a sim-to-real gap often
exists. This gap limits the performance of networks that
naively incorporate simulated data for training [6], [7].

Addressing the sim-to-real gap for point clouds has received
limited research attention, often focusing on enforcing simi-
larity constraints between real and synthetic feature extraction.
For example, SqueezeSegV2 is a feature comparison approach
which uses a geodesic distance function between real and
synthetic feature vectors [8]. However, in [8] point clouds
were compressed into 2D first which can cause the loss of
detailed 3D information [9]. While fully 3D methods exist,
these approaches often focus on small-scale applications such
as single-object classification, which we will show is not
always scalable to larger robotic scenes [9].

Adversarial training is an alternative method for feature
comparison which has seen success for comparing features
from 2D camera images. For example, Ganin et al. [6] used
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adversarial training with synthetic road signs to assist with
training a network that classifies real road signs. This is
accomplished by using an adversarial discriminator to promote
extraction of similar features from real and synthetic data.

While such approaches are effective for 2D images, we
note that 3D point cloud data is quite different than images
particularly with respect to the highly-unstructured nature
of point cloud data. Towards developing effective solutions
for real-world point cloud object detection, we develop a
fully 3D adversarial discriminator which does not compress
information into 2D, and is lightweight enough to scale to
large robotics scenes. Our adversarial discriminator is not
specific to a fixed 3D representation and we analyze its
performance with both point and voxel-based detectors [3],
[10]. Additionally, for point-based backbones we develop an
adaptive sampling module which maintains important data
throughout the discriminator.

In summary, in this work we:

• Develop a flexible and lightweight 3D adversarial training
scheme that leverages an adaptive sampling module to
reason over large robotic scenes.

• Demonstrate the utility of this scheme across voxelized
and point-based 3D object detection architectures.

• Release our 3D object detection dataset and code as a
training resource and benchmark for future work.

We validate our approach on real data collected in a variety
of environments as part of the DARPA Subterranean Challenge
and demonstrate that our approach increases performance by
up to 15%.

II. RELATED WORK

Limited work has been done for closing the sim-to-real gap
for 3D point clouds. Therefore, we first discuss previous work
for 2D camera images. We then discuss object detection and
sim-to-real approaches for 3D point clouds. Finally, we discuss
adaptive sampling methods for 3D point clouds.

A. Using simulated training data with camera images

Addressing the sim-to-real data gap for 2D images has
received much research attention. One common technique is to
use Generative Adversarial Networks (GANs) for generating
realistic images [11]. However GANs are notably difficult to
train for point cloud generation due to the increased dimen-
sionality [12]. Therefore such works often focus on small-scale
generation instead of large scenes [12], [13].

Adversarial training is a lightweight alternative which uses
a discriminator loss as an additional training signal for the fea-
ture extractor, encouraging it to extract similar features from
both simulated and real data [6], [7]. Ganin et al. demonstrated
that this training approach improved real-world performance
when using synthetic data for handwriting and road sign
recognition [6]. Inspired by these increases in performance
for 2D images, we introduce a fully 3D adversarial training
approach which can handle the high-dimensonality and lack
of structure found in 3D point clouds.

B. 3D object detection in point clouds

3D object detection from point clouds has received increas-
ing attention from the research community [3], [14]. For ex-
ample, Qi et al. [3] demonstrated accurate 3D object detection
in indoor environments from only point clouds. Methods such
as ComplexYOLO have also been proposed which project the
point cloud into a 2D view and complete object detection
from that view [14]. Such techniques work fairly well in
autonomous driving scenarios, where large objects such as cars
can be seen easily from top-down views. However, they are not
appropriate for applications such as underground exploration,
where clutter and large overhangs preclude the use of a top-
down projection. Additionally, a 2D projection inherently loses
valuable 3D information that could be used in downstream
tasks and thus many state-of-the-art detectors do not compress
clouds [9], [10].

C. Closing the sim to real gap with point clouds

Reducing the domain shift between simulated and real point
clouds has received increasing research attention. Wu et al.
proposed SqueezeSegV2 which projects point clouds into 2D
and uses a geodesic distance function to compare synthetic
and real features [8]. This geodesic distance function works
well in 2D, however we show it does not scale as well as
our adversarial approach to fully 3D processing. Alternatively,
PointDAN is a method that operates in 3D: by using attention
networks on low-level features it improves 3D object classi-
fication performance between different domains [9]. We will
show that focusing on local features cannot reason over large
3D scenes as well as our adversarial discriminator.

Recently, much work on reducing the domain shift for
point cloud processing has focused on autonomous driving.
For example, Wang et al. demonstrated that by leveraging
knowledge of test dataset car sizes, great improvements could
be made in detection performance when testing on a dataset
different than training dataset [15]. This method works well
for autonomous driving scenarios, however the size of our
objects of interest varied considerably less than cars across
different continents. Targeting applications without target do-
main labels, Yang et al. developed a pseudo-labelling scheme
for unsupervised domain adaptation and while they achieved
great results, we are targeting applications where some target
domain labels exist and can be directly leveraged for training
[16]. This is especially important in the SubT application,
where the domain gap is very large, leading to difficulties
for detectors trained on just source data to produce accurate
detections or pseudo-labels.

D. Adaptive sampling for 3D point clouds

Due to the increased dimensionality of 3D point clouds,
uniform sampling techniques can remove useful information
too early in the processing pipeline [17]. For the point clouds
found in SubT a very small number of points represent the
object of interest and a large amount of the points represent
the walls and floors and therefore a uniform sampling method
may not preserve useful object information.
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Fig. 2: Overview of our 3D adversarial training architecture. The top gray
pipeline is the backbone network, which can be any standard model for
point-based or voxel-based representations. Inside of the dashed box is our
adversarial discriminator which leverages intelligent adaptive sampling layers
(red) to maintain detailed information throughout the pipeline. By flipping the
gradient (“Gradient Flip” in orange above) the feature extractor is encouraged
to fool the discriminator by extracting similar features shared across synthetic
and real data.

One example of adaptive sampling for point clouds is
PointASNL which uses a learned adaptive sampling module
to improve sampling of local neighborhoods [18]. However,
because this module is learned, it potentially will require a
lot of data to train. Alternatively, Nezhadarya et al. propose
an adaptive global sampling technique, similar to global max
pooling, that does not require any additional training [17].
However, standard architectures such as VoteNet require a
fixed number of points after each layer. To address this
[17] copies the downsampled set, which works well for their
object classification application, but may destroy too much
information in large robotic scenes.

Our method starts similar to [17] and generates a down-
sampled set based on the maximally activated features from
the previous layer. However, this downsampled set may be too
small and sparse for entry into the next layer, and therefore we
next upsample using nearest neighbor upsampling around the
downsampled set. This allows for structural information to be
kept and does not require any additional training, an attractive
feature in our data-limited application.

III. METHODS

In this section we first describe the 3D object detection
problem and our overall adversarial training architecture. Next,
we describe our point-based adversarial training architecture
and our adaptive sampling module. Finally, we discuss our
voxel-based adversarial training architecture.

A. Problem description

Given a raw 3D point cloud, in this work we seek to train a
3D object detector that outputs 3D bounding boxes with center
(x, y, z), size (length, width, height), and yaw (θ).

We validate our approach on an application with a particular
lack of data: the subterranean environments which motivate
the DARPA Subterranean Challenge [5]. Competitors in this
challenge must develop a robotic system to venture into un-
explored underground environments and detect certain objects
of interest. In this work we target three object classes that are

Algorithm 1 Training algorithm for point-based adversarial
discriminator architecture

Input: Gradient penalty coefficient λ, ratio of discrim-
inator to backbone updates ncritic, dataset S of real
and synthetic data, learning rate l, pretrained backbone
parameters θ0, and initial discriminator parameters w0.

1: while θ not converged do
2: for j = 0,1, .... ncritic do
3: freal, fsyn, fmixed ← GetFeatures()
4: LD ← Dw(freal)−Dw(fsyn)+

λ(||∇fmixed
Dw(fmixed)||2 − 1)2

5: w ← Adam(∇wLD, w, l)
6: freal, fsyn, fmixed ← GetFeatures()
7: Lbboxreal ← Lbbox(bboxesreal, targetreal)
8: Lbboxsyn ← Lbbox(bboxessyn, targetsyn)
9: Lbboxmixed ← Lbboxreal + Lbboxsyn

10: LD ← Dw(freal)−Dw(fsyn)+
λ(||∇fmixed

Dw(fmixed)||2 − 1)2

11: θ ← Adam(∇θLbboxmixed − LD, w, l)
12: function GETFEATURES
13: inpreal ← SampleRealBatch(S)
14: bboxesreal, freal ← Backbone(inpreal)
15: inpsyn ← SampleSynBatch(S)
16: bboxessyn, fsyn ← Backbone(inpsyn)
17: fmixed ← εfreal + (1− ε)fsyn
18: return freal, fsyn, fmixed

large enough to appear in point cloud data: survivor, backpack,
and fire extinguisher. Examples of these objects and their point
cloud representations are shown in Fig. 5.

Due to the limited availability of real data, Microsoft’s
AirSim robot simulator is used to generate large amounts of
labelled real data [19]. While the simulator provides a myriad
of data, there still exists a sim-to-real gap. Our adversarial
training approach reduces the effect of this gap by better
leveraging the synthetic data during training.

B. Training overview

An overview of our training approach can be found in Fig.
2 and Algorithm 1; we first start by training the discriminator.
We feed input data into the backbone network, take the feature
encoding produced and use it as input into our adversarial
discriminator which completes a binary classification, either
synthetic or real. The Wasserstein-GAN Gradient Penalty Loss
(WGAN-GP)1 is then computed on this output:

LD = Dw(freal)−Dw(fsyn)+

λ(||∇fmixed
Dw(fmixed)||2 − 1)2, (1)

where D and w are the discriminator and its weights, freal
and fsyn are feature encodings from real and synthetic data
respectively, and fmixed is defined as:

fmixed = εfreal + (1− ε)fsyn, (2)

where ε is a random number between 0 and 1 [20].

1https://github.com/caogang/wgan-gp
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Fig. 3: Our novel point-based adversarial discriminator which leverages
an adaptive sampling layer to maintain object information throughout the
processing pipeline. SA(x,y) = VoteNet Set Abstraction layer with x points
and y radius. AS(x) = adaptive sampling to x number of points. Average
pooling is used to avoid destroying detailed information.

Fig. 4: Our novel adversarial discriminator used for voxel-based experiments.
This discriminator works with the PartA2 backbone which leverages sparse
convolutions to operate over voxelized inputs. SpConv(x,y) is a sparse
convolution layer with x number of filters and y stride.

We note that using the WGAN-GP loss function is a
departure from the standard adversarial training paradigm [6].
WGAN-GP leverages a gradient penalty term to provide a
more stable loss signal than standard distance measures and
has typically been used for applications that generate data such
as 2D images or small single-object 3D point clouds [21].
Towards deployment on large 3D robotic scenes, in this work,
we adapt this loss function to the application of adversarial
training on point clouds, thereby enabling stable training on
high-dimensional and unstructured point clouds.

Next, the weights of the discriminator are updated according
to LD. This loop is run ncritic times to ensure the discrimina-
tor is trained enough with respect to the backbone. Next, we
update the weights of the backbone network. Once again, data
is input and now training utilizes both the output bounding
boxes as well as the output of the discriminator. To compute
the bounding box loss, LBBox, we use the standard loss
function found in [3] which balances objectness, bounding
box location, and bounding box size compared to the ground
truth bounding box parameters. During this phase we again
compute the discriminator loss LD, however we now pass the
gradients through the discriminator. After the gradients get
through the discriminator, they are flipped, which trains the
feature extractor layers in the backbone to maximize LD. The
final loss for the backbone is thus:

LBackbone = LBBox − αLD, (3)

where α is a balancing parameter between the two losses.
By training the backbone network to predict accurate

bounding boxes and fool the discriminator, we enforce sim-
ilar feature extraction from synthetic and real data, thereby
enabling better usage of synthetic data during training. At
inference time, the adversarial discriminator is removed and
the backbone architecture produces 3D bounding boxes.

C. Point-based architecture

We next discuss our point-based adversarial architecture and
our adaptive sampling module. The VoteNet model is used as a
backbone for feature extraction and bounding-box generation
[3]. VoteNet operates on the raw point clouds without com-
pression into 2D or discretization by voxelization and is a top
approach for 3D object detection on the ScanNetV2 dataset
[22]. It is thus well-suited for dense environments such as
tight underground tunnels.

An overview of our point-based discriminator can be seen in
Fig. 3. For feature extraction, we leverage 3D Set Abstraction
layers for seamless integration with VoteNet as well as to
support a powerful 3D-aware discriminator. Additionally, we
develop an adaptive sampling module that maintains important
information throughout the discriminator. This module is a
drop-in replacement for the Farthest Point Sampling used in
vanilla Set Abstraction layers. To start, similar to [17], we
downsample to the set of features that are maximally activated.
This downsampled set may be too small for input into the next
layer, so to bring it up to the fixed size required by VoteNet, we
sample the nearest neighbors of the points in the downsampled
set. This is distinctly different than [17] which copies points
in the downsampled set to upsample, potentially losing out on
valuable neighborhood information which could be leveraged
by the discriminator later on for classification.

D. Voxel-based architecture

To demonstrate the flexibility of our 3D adversarial training
approach, we also develop a voxel-based adversarial training
architecture. For our backbone we leverage the PartA2 archi-
tecture; a 3D voxelized model which uses sparse convolution
to efficiently extract features [10]. PartA2 has shown high-
quality 3D object detection capabilities in outdoor scenes and
is one of the best publicly available methods for pedestrian
and cyclist detection on the KITTI dataset [23]. PartA2 is
thus appropriate for cavernous open-spaces underground such
as natural caves.

To integrate effectively with the PartA2 backbone, we use
the same type of sparse convolutional feature extractors in our
discriminator as in the backbone. Once again, we leverage
3D-aware layers to enable a powerful discriminator which
can reason about the incoming features fully in 3D. The
discriminator is shown in Fig. 4.

For training the voxel-based architecture we use the same
overall training structure as the point-based architecture in
Algorithm 1. Due to the voxelization process, different batches
had different amounts of voxels which made the computa-
tion of a gradient penalty term between synthetic and real
feature vectors difficult in PyTorch. Therefore, we used the
WGAN optimization technique which is similar to WGAN-
GP, but does not include the gradient penalty term (i.e.
(||∇fmixed

Dw(fmixed)||2 − 1)2 in Equation 1) [24].

IV. EXPERIMENTS AND RESULTS

In this section, we start with a description of our robot
system and point cloud dataset. Next, we demonstrate the
benefits of our adversarial training approach on real-world
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TABLE I: Real dataset composition (# clouds)

Backpack Fire Ext. Survivor No object
Train 49 88 67 1522

Validation 78 29 26 125
Test 54 53 16 568

TABLE II: Synthetic dataset composition (# clouds)

Backpack Fire Ext. Survivor No object
Train 185 225 383 5434

Validation 354 454 180 5229
Test 118 30 163 7069

detection datasets. Finally, we explore the effects of feature
encoding levels as input to our adversarial discriminator.

A. System overview

Real data used for training and testing was captured by
Team Explorer’s custom-built ground vehicles designed for
the DARPA SubT Competition. These vehicles typically travel
with speed up to 2 m/s and have a variety of onboard sensors
including rgb and thermal cameras as well as a Velodyne VLP-
16 used to generate the point clouds for this work. We spin
our Velodyne at 10 Hz and use the LOAM SLAM system
to concatenate sets of about 5 individual scans for generating
high-resolution inputs to our model [25].

To generate synthetic data, we use Microsoft AirSim with
a synthetic underground tunnel environment rendered in the
Unreal engine [19]. High-resolution surface meshes enable
accurate LiDAR simulation. The simulated vehicle has realistic
size, physical capabilities, and LiDAR parameters.

B. Dataset overview

Fig. 5a - 5f and Table I contain an overview of our real
dataset. Training data was captured during the DARPA SubT
STIX event at the Edgar Experimental Mine, CO, the SubT
Tunnel Circuit at the NIOSH Mine, PA, and on the Carnegie
Mellon University (CMU) Campus, PA in representative urban
environments such as a parking garage. Validation data was
captured at Tour-Ed mine, PA. Test data is from the Edgar
Mine, the Tour-Ed mine, and the CMU campus in parts
of the environments different than those used for capturing
training/validation data. After collection, the data was hand-
labelled by a human expert.

Fig. 5g - 5l and Table II contain an overview of our
synthetic dataset. Data was gathered by randomly moving the
robot around, collecting scans, and using AirSim’s automatic
label generation which enabled a large amount of data to be
generated cheaply. Training, validation, and test sets were all
gathered from different locations in the simulation. Addition-
ally, due to the realistic nature of the SubT Challenge, often
only 10-15% of the clouds in the dataset contain objects.

C. 3D object detection performance

We next discuss pre-processing and comparison methods for
both the point and voxel-based experiments. We then present
point and voxel-based object detection results.

(a) Real survivor (b) Real backpack (c) Real fire ext.

(d) Real survivor point
cloud (pink)

(e) Real backpack
point cloud (pink)

(f) Real fire ext. point
cloud (pink)

(g) Synthetic survivor (h) Synthetic backpack (i) Synthetic fire
extinguisher

(j) Synthetic survivor
point cloud (pink)

(k) Synthetic backpack
point cloud (pink)

(l) Synthetic fire ext.
point cloud (pink)

Fig. 5: Dataset overview. (a)-(c) are the objects in camera images taken
from the robot. Notice the motion blur that can occur in camera imagery
underground. (d)-(f) are the objects in point cloud form. (g)-(i) and (j)-(l)
show the camera images and point clouds from AirSim. Note that while the
real and synthetic point cloud representations are similar, the simulated clouds
are often cleaner and more regularly sampled.

1) Point cloud preprocessing: Before point clouds are input
to the model, there are a number of preprocessing steps.
Clouds are first downsampled about 20% to 80,000 points
to make training and inference faster. Keeping the original
number of points did not significantly improve performance.
Because of the sparsity of objects to be detected in the
environment, clouds are first cropped to 5 meter cubes to make
learning easier. We note that this brings our clouds to about the
same physical size as other point cloud datasets like ScanNet
[22] and that cropping has been used in previous works [26].
To ensure objects were actually observable in the clouds, we
did not label objects that did not meet certain size and number
of point constraints: The backpack had a minimum (length,
height, width) of (10, 10, 10) cm and a minimum of 40 points,
fire extinguishers had a minimum size of (5, 20, 5) cm and
60 points, and the survivor had a minimum size of (25, 25,
25) cm and minimum of 80 points.

2) Comparison methods: We compare our adversarial ap-
proach against a number of baselines. The first three methods
only use the VoteNet architecture (for point-based experi-
ments) or the PartA2 architecture (for voxel-based experi-
ments) and are dataset composition approaches:

• OnlySyn uses only synthetic data for training/validation.
• OnlyReal uses only the small amount of real data.
• SynAndReal mixes the synthetic and real data for train-
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TABLE III: Point-based 3D object detection results

Average precision on real test data
Train method Backpack Survivor Fire Ext. mAP

OnlySyn 0.29±0.14 0.04±0.07 0.00±0.01 0.11±0.03
OnlyReal 0.56±0.02 0.49±0.09 0.05±0.01 0.37±0.04

SynAndReal 0.56±0.03 0.61±0.13 0.03±0.03 0.40±0.02
GeoLoss [8] 0.61±0.02 0.54±0.05 0.07±0.02 0.41±0.03

PointDAN [9] 0.57±0.03 0.45±0.10 0.04±0.03 0.35±0.03
AT (Ours) 0.62±0.04 0.64±0.06 0.04±0.01 0.43±0.04

AT-AS (Ours) 0.63±0.02 0.71±0.04 0.07±0.04 0.47±0.01

ing/validation. To ensure real data is emphasized during
learning, it is sampled at a 2:1 rate with synthetic data.

The remaining methods, including our adversarial training
approach, all have access to synthetic and real data.

• GeodesicLoss (GeoLoss) is based on the work by [8]
which utilizes the geodesic distance between the covari-
ance matrices of the real and synthetic feature vectors
from 2D point cloud images2. While this method is
similar to ours in that it encourages synthetic and real
feature vectors to be similar, our learned adversarial
discriminator is able to scale better to 3D environments.

• PointDAN uses Maximum Mean Discrepancy to align
local features for point cloud object classification3 [9].
Focusing on fine-grained features works well for object
classification, however we show it does not scale as well
as adversarial training to large scenes.

• Adversarial architecture (AT) is our proposed approach
which uses a lightweight and powerful 3D adversarial
discriminator to encourage similar feature extraction from
real and synthetic data in a fully 3D manner.

• Adversarial architecture with adaptive sampling (AT-
AS) uses the same architecture as AT but leverages our
adaptive sampling module in the discriminator to avoid
removing important object information before completing
classification.

Given the small amount of real training data available, it
is relevant to explore if non-deep learning methods could
outperform deep learned methods. For example, Wang et al.
propose a method which extracts shape-factor features from
point clouds and uses an SVM to classify these features as an
object of interest or not [27]. While their code is proprietary,
we implemented this method, ran it on our SubT data, and
found it was unable to achieve higher than 0.01 average
precision on the test set survivor. We hypothesize this is due to
the shape-factor features not being powerful enough to detect
objects with high appearance change, as is the case in our
application. Specifically, the objects for SubT are significantly
smaller than other applications such as the KITTI dataset
and therefore common challenges with point clouds such as
occlusions and varying point densities can be much more
degrading to our objects of interest.

3) Point-based object detection: To train our adversarial
discriminator for point-based object detection, we used a
learning rate of 0.0005, weight decay of 0.1, batch size of 8,
and class sampling weightings of 1, 2, and 2 for the backpack,

2https://github.com/pmorerio/minimal-entropy-correlation-alignment
3https://github.com/canqin001/PointDAN

fire extinguisher and survivor respectively. We used an ncritic
of 2 because the discriminator trained quickly and a λ value of
10. To emphasize useful feature extraction early on, we varied
the α balancing term in a linear manner from 0 to 1 starting
at epoch 0 until epoch 300.

All methods were trained to convergence based on valida-
tion mAP, which is usually up to 200 epochs and takes 13
hours on a single GTX 1080 GPU. For the point-based object
detection experiment, all methods used a VoteNet backbone
pretrained on the ScanNet dataset4. For data augmentation we
rotated/translated the clouds, scaled the clouds by ± 10%,
applied ± 2 cm of jitter, and moved objects between clouds.

Methods are evaluated using the VoteNet evaluation pipeline
and average precision metrics are computed at 0.25 3D IOU.
The mean and standard deviation results averaged over three
training runs are shown in Table III. At a high-level, the results
are intuitive: many methods do the best on the large survivor
and perform relatively poorly on the fire extinguisher. Given
the rough walls and overhangs that often accompanied the fire
extinguisher, this was a particularly challenging environment
for such detections.

Investigating the results in detail, the performance difference
between OnlySyn and OnlyReal demonstrates the sim-to-
real-gap. The difference between OnlyReal and SynAndReal
demonstrates the utility of using the synthetic data for in-
creasing the amount of data we have. Due to the use of
attention on low-level features, PointDAN struggles to scale
to larger 3D scenes. The GeodesicLoss provides improvement
over SynAndReal, but due to the inflexible nature of its loss
function, it is not able to beat our adversarial approach in many
cases. Our adversarial architecture (AT) improves performance
on the backpack, survivor, and on the Mean Average Precision
(mAP) metric by not compressing information and learning
the discriminator while training. Finally, our adversarial ar-
chitecture with adaptive sampling (AT-AS) achieves the best
performance on all three objects by maintaining important
information throughout the discriminator.

Qualitative results for our point-based adversarial architec-
ture on real test data from Edgar Mine, CO are shown in Fig. 6.
Overall, we are able to detect objects well in this challenging
real environment. However, one area for future improvement
is the angular estimation of the bounding boxes. In Fig. 6c it
is interesting to note that on the right side of the scene we
have a number of false positives which were caused by the
DARPA organizers covering up another fire extinguisher with
a large form-fitting covering. This was not labelled as a ground
truth object location in our dataset, and is demonstrative of the
difficulty of our task.

4) Voxel-based object detection: For the voxel-based archi-
tecture experiments, data pre-processing and data augmenta-
tion techniques were all similar to the point-based architecture.
All methods use a PartA2 anchor-free backbone5 pretrained
on the KITTI dataset and are trained to convergence based on
validation set mAP.

4https://github.com/facebookresearch/votenet
5https://github.com/open-mmlab/OpenPCDet
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(a) Survivor detection (b) Backpack detection (c) Fire extinguisher detection

Fig. 6: Qualitative results for our point-based adversarial architecture. Green boxes are ground truth, red boxes are predicted bounding boxes. The pink inset
images are zoomed in on the detection shown in the larger scene. All clouds were captured in the Edgar Experimental Mine, CO as part of the DARPA SubT
STIX Integration Exercise. Additional results with 3D manipulation of detections can be found at: https://youtu.be/oXk88gmsx8g

TABLE IV: Voxel-based 3D object detection results

Average precision on real test data
Train method Backpack Survivor Fire Ext. mAP

OnlySyn 0.31±0.06 0.0±0.01 0.07±0.05 0.13±0.01
OnlyReal 0.39±0.06 0.13±0.06 0.18±0.08 0.23±0.01

SynAndReal 0.57±0.05 0.09±0.03 0.13±0.08 0.26±0.02
GeoLoss [8] 0.52±0.08 0.16±0.07 0.12±0.01 0.27±0.04

PointDAN [9] 0.44±0.07 0.15±0.02 0.15±0.08 0.25±0.01
AT (Ours) 0.46±0.12 0.15±0.03 0.24±0.03 0.28±0.05

We use a learning rate of 0.0005, weight decay of 0.1, and
class sampling weightings of 1, 2, and 2 for the backpack, fire
extinguisher and survivor respectively. The same ncritic and
linear increase to α from the point-based experiment are used.
Due to the dense cluttered environments in our dataset we set
a very small voxel size of 1.8 cm which allowed clouds to
fit onto the GPU. Due to the computational expense of these
small voxels, the model took 25 hours to train on 4 Tesla K80
GPUs. We only changed two significant model parameters. To
reduce pooling in these dense environments we increased the
output pool size from 12 to 20. To encourage the detection
of the sparse objects, we decreased the foreground threshold
from 0.65 to 0.25.

Voxel-based methods are evaluated in the same manner
as the point-based experiment. The results averaged over 3
training runs are shown in Table IV. Overall, the results are
intuitive and follow the same trend as the point-based methods:
SynAndReal is able to leverage the quantity of the synthetic
data and the small amount of real data to perform better than
OnlySyn and OnlyReal. PointDAN is unable to provide much
improvement due to its focus on small fine-grained features.
Different than for the point-based methods, our adversarial
approach performs similarly to the GeodesicLoss approach.
This could be because a structured voxelized representation
does not require the increased flexibility of the adversarial
discriminator. Additionally, due to difficulties implementing
the WGAN-GP loss function for our voxel-based architecture,
the use of a less-stable WGAN loss function could be to blame.
In spite of this, our method still does the best at detecting the
fire extinguisher, and in terms of Mean Average Precision, if
only by a small margin.

While the trends between the voxel-based and point-based
architectures are similar, the performance of the voxel-based
architecture is not as high overall. This could be because the
dense environments VoteNet was designed for, more closely
resemble the tight underground tunnels in our dataset.

TABLE V: Effect of feature encoding level on detection performance

Mean Average Precision (mAP)
Architecture Level2 Level3 Level4
Point-based 0.38 0.41 0.47
Voxel-based 0.25 0.31 0.21

Qualitative results for our voxel-based architecture can be
found in Fig. 7. Overall, the detector once again is adept
at detecting objects in this challenging environment. It is
interesting to note that in Fig. 7a that there are few points on
the survivor’s legs and even though the label does not extend
over the legs, the detector is able to use contextual information
to extend outward in that direction.

D. Utility of leveraging feature vector across encoding levels

Fig. 2 shows the adversarial discriminator taking input from
the fourth level of feature encoding (called “Level4”). In this
experiment, for both the point and voxel-based architectures,
we examine the effect of taking the feature vector input from
different levels of the encoding pipeline.

The results are shown in Table V. For the point-based
architecture, the results are fairly intuitive: as the hierarchy
of features are built up, the encoded feature vector is more
useful to the adversarial discriminator. For the voxel-based
architecture it is interesting to note that the performance goes
down by using the most-encoded feature vector, Level4. This
could be due to the more aggressive pooling that occurs with
the PartA2 feature extraction pipeline.

V. CONCLUSION

In this work we developed a 3D adversarial training archi-
tecture for point cloud object detection in robotic environments
where real data is extremely limited. To our knowledge this
is the first 3D adversarial approach targeting 3D robotic
scenes. Our approach does not compress information into 2D
and is lightweight enough to scale to 3D robotics scenes.
Additionally, we developed an adaptive sampling module to
maintain important 3D information throughout the discrimi-
nator. These characteristics offered large performance benefits
for unstructured point-based representations.

There are a number of interesting future research directions.
Given the performance improvement from using adaptive
sampling for point-based architectures, it would be interesting
to adapt the module to work on voxelized representations.
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(a) Survivor detection (b) Backpack detection (c) Fire extinguisher detection

Fig. 7: Qualitative results for our voxel-based adversarial architecture. Green boxes are ground truth, red boxes are predicted bounding boxes. All clouds were
captured in the Edgar Experimental Mine, CO as part of the DARPA SubT STIX Integration Exercise. Additional results with 3D manipulation of detections
can be found at: https://youtu.be/oXk88gmsx8g

Another interesting research direction is to improve our small
object detection ability which could be achieved by using
point-voxel fusion methods [28]. This could improve our
performance on the fire extinguisher and enable the detection
of other small objects of interest indicative of nearby survivors,
such as a helmet.
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