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Abstract— We propose a multi-robot exploration algorithm
that uses adaptive coordination to provide heterogeneous be-
havior. The key idea is to maximize the efficiency of exploring
and mapping an unknown environment when a team is faced
with unreliable communication and limited battery life (e.g.,
with aerial rotorcraft). The proposed algorithm utilizes four
states: explore, meet, sacrifice, and relay. The explore state
uses a frontier-based exploration algorithm, the meet state
returns to the last known location of communication to share
data, the sacrifice state sends the robot out to explore without
consideration of remaining battery, and the relay state lands
the robot until a meeting occurs. This approach allows robots
to take on the role of a relay to improve communication
between team members. In addition, the robots can “sacrifice”
themselves by continuing to explore even when they do not have
sufficient battery to return to the base station. We compare
the performance of the proposed approach to state-of-the-art
frontier-based exploration, and results show gains in explored
area. The feasibility of components of the proposed approach is
also demonstrated on a team of two custom-built quadcopters
exploring an office environment.

I. INTRODUCTION

The reduced cost and increased reliability of autonomous
vehicles and sensing technology has made it possible to
field multi-robot teams capable of mapping unknown en-
vironments. High-impact applications include urban search
and rescue, military reconnaissance, and underground mine
rescue operations. The algorithm presented here is applicable
across application domains, but is primarily motivated by the
use of autonomous rotorcraft to explore indoor environments
(e.g., buildings, caves, and mines). In such scenarios, clutter
and rubble often make the use of ground vehicles impractical,
and fixed-wing aircraft are not appropriate because of tight
spaces and obstacles. Small autonomous rotorcraft (e.g.,
quadcopters) are capable of highly-agile operation within
confined spaces and are not impeded by ground obstacles [1].
As such, they are uniquely suited for such exploration tasks.

A key limitation of small autonomous rotorcraft is that
they typically have limited battery life (often on the order of
tens of minutes) [2]. This limitation restricts their operating
lifespan and makes it challenging to complete complex
exploration missions in a limited amount of time. The use of
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Fig. 1: Unmanned aerial vehicle (UAV) flying in an indoor environment. Our
proposed algorithm allows UAVs to “sacrifice” themselves by continuing to
explore even when they do not have sufficient battery for returning to the
base station. The resulting information is then transmitted back to the base
station through the use of relay UAVs.

multiple rotorcraft is one method of overcoming this limita-
tion because their combined flight time may be sufficient to
complete the mission. However, many indoor environments
create restrictions on communication between vehicles (e.g.,
WiFi range and signal strength limitations), which makes
it difficult to communicate between team members. Finally,
the scenarios of interest do not allow for instrumenting
the environment with wireless access points or cameras to
improve communication or localization. The combination of
these factors motivates the design of multi-robot coordination
techniques that allow for adaptive, heterogeneous behavior to
improve the exploration efficiency of the team.

The proposed algorithm utilizes four states – explore,
meet, sacrifice, and relay – to improve exploration efficiency
in such scenarios. When in the explore state, a robot uses
an existing frontier-based exploration algorithm to generate
goals for the robots. When in the meet state, a robot returns
to a previous location in attempt to rendezvous with team
members. Finally, in the sacrifice state, a robot continues
exploring even when it no longer has sufficient battery life
to return to the base station. Once the robot has nearly
exhausted its battery, it may land to act as a communication
relay.

The proposed algorithm is the first to provide heteroge-
neous exploration capabilities with limitations on communi-
cation and battery life. The key novelties of this paper are:
(1) a multi-robot coordination algorithm that provides sophis-
ticated relay and sacrifice behavior to adjust for limitations
on communication and battery life, and (2) the design and
implementation of a team of low-cost autonomous rotorcraft



capable of multi-robot exploration in indoor environments.
The remainder of this paper is organized as follows. We

first discuss related work in multi-robot exploration and
highlight the need for an adaptive, heterogeneous approach
(Section II). Then, we formulate the multi-robot exploration
problem (Section III) and present the proposed coordina-
tion algorithm (Section IV). Next, we present simulations
demonstrating the benefit of our proposed approach versus
a frontier-based exploration algorithm (Section V), and we
demonstrate an implementation on a team of custom-built
autonomous quadcopters (Section VI). Finally, we conclude
and discuss avenues for future work (Section VII).

II. RELATED WORK

This research in robot coordination focuses on the diffi-
culties of real-world environment mapping with autonomous
robots. There is often unreliable communication between
robots, making coordination difficult. While previous re-
search has focused on exploration algorithms [3], [4] and
maintaining mesh networks [5], [6], we focus on coordinat-
ing with unreliable communication. Additionally, power limi-
tations cause difficulty when implementing previous research
on physical systems [2]. Finite power limits the usefulness
of exploration robots in large environments. Our research ad-
dresses these limitations in developing an optimized control
algorithm.

Prior work has examined a number of algorithms for
coordinating robots to explore environments, including using
stochastic differential equation solutions [7]. Path planning
for aerial vehicles has also been considered in conjunc-
tion with state estimation [8], [9]. Coordination algorithms
have been applied to autonomous ground vehicles in real-
world environments [10]. However, these prior works do not
consider heterogeneous behaviors that allow for improved
efficiency with unreliable communication and limited battery
life. Our work bridges this gap.

The proposed algorithm is compared to a frontier-based
exploration baseline [3]. While there is extensive research
in exploration algorithms, frontier-based exploration was
chosen because it allows for fully distributed operation.
Prior work has shown that frontier-based algorithms perform
competitively with alternative approaches for indoor explo-
ration tasks [11]. We also note that our proposed algorithm
may use any exploratory algorithm, such as market-based
approaches [12], as its core baseline (see Section IV).
Previous research [3] requires each robot to return home
for collection of its map of the environment. This constraint
wastes precious energy while robots are returning through
explored areas. The key contribution of our work is the
ability to build on a core exploration algorithm by adding
heterogeneous relay and sacrifice behaviors to improve the
efficiency of operation.

III. PROBLEM FORMULATION

We are given the task of coordinating a team of robots to
navigate an unknown environment and maximize exploration
for their given battery life. We assume the robots are able

to communicate intermittently, limited by obstacles or range.
We also assume that sacrificing robots for a gain in explo-
ration is acceptable. The robots only have communication
with the base station when they are in range. To be useful,
at least one robot must return to the base station at a pre-
specified location.

More formally, we are given K robots with limited battery
life. We denote the battery life for robot k as Bk. A
robot may stop moving (land) to conserve battery. The goal
is to explore the maximal area of a bounded unknown
environment and then relay that information back to a base
station. We assume that the environment is 2.5D, in that the
area that must be mapped is 2D, but the robots may fly some
distance above the ground.

Our assumptions on the robots and environment follow
closely those described in [3]. We assume a bounded planar
workspace W ⊆ R2. The workspace is divided into free
regions Wfree and obstacle regions Wobs. The partition of
the workspace into obstacle and free is initially unknown
to the team. The areas with unknown and known partition
status to a robot k at time t are denoted asWk

unknown(t) and
Wk

known(t) respectively. The goal is to reveal the maximal
subset Wknown and relay that information back to a base
station.

Each robot is modeled as a disk of radius p, whose
configuration qk is described by its Cartesian center. The
particular kinematics of the robots are not considered in order
to focus on the coordination algorithm. Each robot is path
controllable (i.e., it can follow any path in its configuration
space with arbitrary accuracy). The robots are equipped with
an omnidirectional sensor which allows them to explore (and
map) the environment around them.

The optimization problem can be stated as follows:

P = argmax
P∈Ψ

Ar(P) s.t. |Pk| < BK ∀k, (1)

where Ψ is the space of possible team paths, Ar(P) is the
area explored and communicated back to the base station by
a set of trajectories P , and |Pk| is the battery consumed by
a trajectory Pk for robot k.

IV. COORDINATION ALGORITHM

First, we assign the robots sequential identification num-
bers. We define four possible states for an individual robot:
explore, meet, sacrifice, and relay. The current state is
dependent on the robot’s ID number, remaining battery life
β, battery required to return home B, time since the last
meeting with any other robot t, and predicted distances from
other robots.

All robots begin in the exploration state. This state uses a
frontier-based exploration strategy, as described in [3], [4],
though any algorithm could be substituted. The basic idea
is for the robots to build their own local maps and extract
“frontiers” between the explored space and the unknown
space. The heuristic of moving to the closest frontier is
used here, which has been shown to provide competitive
performance with other heuristics [11]. The robots also share
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Fig. 2: Proposed state diagram for the adaptive exploration algorithm. The
explore, meet, sacrifice, and relay states allow for heterogeneous behavior
that adjusts for limitations on communication and battery life.

their maps and merge them using existing map merging
techniques (see Section VI). If two robots move towards
frontiers that are near each other, we impose a conflict
resolution step where the robot with the higher priority ID
number takes the frontier, and the other robot chooses the
next-closest frontier. Collision avoidance is handled in a
similar manner where the robot with the lower priority stops
or lands and allows the higher priority robot to pass. This
approach allows for fully distributed operation.

After a constant time T (set as a parameter), a robot
will transition into the meet state. In this state, a robot will
attempt to travel into communication range of another robot
to transmit map information and to update its internal state
of other robots’ locations. If it is able to meet with a robot,
it will negotiate relay and sacrifice roles. The robot with the
lower ID of the two marks itself as a relay and the higher ID
robot marks itself as the sacrifice. These flags will be used
when the robots determine to enter the relay or sacrifice state.
Any meeting with another robot occurring at a later time will
overwrite these flags.

If a robot is not a relay, it will transition into the sacrifice
state when it determines it has just enough battery to make
it to the last position it sighted its relay. It will then travel
to that location in an attempt to meet with the relay. Should
it not find its relay at the predicted position, it will revert to
an exploration mode in a final attempt to locate the robot. If
a robot is a relay, it will eventually reach a point at which it
has only enough battery to travel to the base station. At this
point, the robot will land (or go into a hibernation state) to
conserve battery while it waits for its sacrificial robot to find
it. Once it is found by the other robot, it will travel back to
the base station.

These state changes are made independently of other
robots’ states, which leads to a fully distributed architecture.
Algorithm 1 gives a summary of the proposed algorithm,
and Figure 2 shows a state diagram for the explore, meet,
sacrifice, and relay states.

Algorithm 1 Exploration coordination algorithm

1: Inputs: current battery β, time between meetings T
2: t← 0
3: while β > 0 do
4: B ← battery required to go home
5: Transmit with nearby robots
6: if β ≤ B then
7: if is relay then
8: Land until sacrifice robot meets
9: else

10: Travel to last meeting location
11: end if
12: else if t ≥ T then
13: Travel to last meeting location p
14: if robot found then
15: Update relay and sacrifice flags
16: else if at p then
17: Revert to exploration
18: end if
19: t← 0
20: else
21: Explore local frontiers
22: end if
23: t← t+ 1
24: end while

V. SIMULATED RESULTS

Simulations were used to test the proposed coordination
algorithm. Simulations were run over two maps (shown in
Figure 3) with varying battery levels and starting positions.
The quadcopters are capable of moving at a speed of 1 m/s
in simulation, and the parameter T was empirically set to
one minute.

We compared the proposed algorithm to a baseline
frontier-based exploration approach [3]. The frontier-based
exploration approach is equivalent to remaining in the “ex-
plore” state and then returning to the base station once
battery is low. Thus, the simulations demonstrate the im-
provement from utilizing the meet, sacrifice, and relay be-
haviors. Figure 4 shows the results of these simulations
demonstrating that the proposed algorithm is able to explore
a greater percentage of the map than the baseline algorithm
under varying conditions. The improvement of the proposed
algorithm ranges from 5% to 18%. We note that in all cases
the proposed algorithm provides some improvement over the
frontier-based exploration baseline.

In the complex environment, the improvement from the
sacrifice, meet, and relay behavior increases as the number
of robots increases. This result is expected since increasing
team sizes means that more robots can be sacrificed for
additional exploration. We show the results for a large team
(8 robots) in the simple environment, which provides sub-
stantial benefit over the frontier-based exploration baseline.
These improvement demonstrate that the proposed algorithm
provides improvement in both cluttered environments (e.g.,



Fig. 3: Left: Simple environment map used for multi-robot exploration trials. The environment is approximately 50 m × 50 m. Right: More complex
environment map used for multi-robot exploration trials (120 m × 40 m).

(a) Complex Environment, 2 robots (b) Complex Environment, 2 robots

(c) Complex Environment, 4 robots (d) Complex Environment, 4 robots

(e) Simple Environment, 8 robots (f) Simple Environment, 8 robots

Fig. 4: Simulated algorithm performance. Each data point is an average of 200 simulation runs with random starting points. Error bars are one standard
error of the mean.



office buildings) and more open environments (e.g., caves).

VI. EXPERIMENTS ON AUTONOMOUS
QUADCOPTERS

The proposed algorithm was demonstrated in an office
environment using two autonomous quadcopters. The system
used to test our robot coordination algorithm is described
below. Design requirements are identified as follows. All
processing must be performed onboard the system, and the
system must be capable of full autonomy once in the air.
Each robot must be able to communicate and coordinate with
additional robots. We also design for low cost (less than
$1,500 per robot). Existing robots are either substantially
more expensive or require an instrumented environment [2].

The system must have sufficient computing power to run
vision and planning algorithms in real-time. A Gigabyte
Brix i7-4500 was chosen to meet our power, weight, and
computational performance requirements. A PX4FMU is
used for flight stabilization, and a PX4Flow camera provides
optical flow measurements. An Asus Xtion acts as the main
onboard camera, and is capable of providing RGB and depth
images.

A. Software Architecture

The software architecture is split into two systems: the
high-level processing running on the onboard computer
and the low-level flight stabilization on the flight control
board. The onboard computer runs Robot Operating System
(ROS) [13] on top of Ubuntu 13.10. The OpenNI ROS
package interfaces directly with the Xtion camera to publish
RGB and depth information, which is processed by the
RGBDSLAMv2 package. The latter package localizes the
vehicle in its environment and produces a point cloud map
of the area. To improve the usability of this map, the point
cloud is passed to the OctoMap package to produce a 3D
probabilistic occupancy tree. We then use the ROS navigation
stack for 2D path planning and frontier exploration.

The flight control board accepts local velocity commands
from the onboard computer over the MAVLink protocol.
It then interprets these commands based on its internal
velocity estimate provided by the flow camera and inertial
measurement unit. Beyond this point, we treat the flight
control software as a black box.

B. Experiments

We successfully demonstrated the key components of
our proposed algorithm on a team of two quadcopters. A
sacrifice-relay handoff was implemented using one sacrificial
quadcopter (denoted as SQ) to perform frontier based explo-
ration in a new room while a relay quadcopter (denoted as
RQ) traveled to a meeting location and then returned with
data of the explored room. A colored OctoMap of the passage
that RQ mapped is shown on the left in Figure 6, and the
additional explored area mapped by SQ is shown on the right.

The experiment proceeded as follows: (1) both RQ and
SQ started at the same home base location; (2) SQ and RQ
were both moved manually (due to safety considerations in

the experiment space) to the entrance of the unexplored area
where RQ landed as a relay; (3) SQ was flown to a stable
altitude and switched to autonomous frontier-based explo-
ration until it registered that it was nearly out of battery; (4)
SQ landed and transmitted its map data to RQ, (5) RQ was
returned to the home base with the gained map information
from both SQ and RQ. This proof-of-concept demonstration
shows successful exploration and mapping capabilities on
the quadcopter hardware as well as a successful handoff of
information between UAVs acting in the relay and sacrifice
roles. Additional hardware experiments are also shown in
this paper’s supplemental video attachment.

VII. CONCLUSIONS

This paper has demonstrated coordinated exploration us-
ing a multi-UAV team with unreliable communication and
limited battery life. Our results show that the proposed
algorithm, which leverages meeting, sacrificing, and relay-
ing behavior, increases the percentage of the environment
explored. By capitalizing on relay behavior, the mapped
environment returned to the base station was shown to be
more complete than a baseline frontier-based exploration
strategy. We have also demonstrated our approach on a team
of two autonomous quadcopters, which were designed to be
low-cost, fully autonomous, and capable of operating without
pre-installed infrastructure.

It is important to note that the mapping capabilities of
the quadcopters use off-the-shelf algorithms available in the
ROS package. It may be beneficial to improve the mapping
capabilities using more sophisticated distributed smoothing
and mapping approaches [14]. Additional future work lies in
examining the effect of parameter selection in various types
of environments (e.g., tunnels, caves, mines, etc.). Finally,
we plan to scale up this approach to larger teams to achieve
exploration in larger-scale environments.
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