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Abstract— We present a decentralized communication plan-
ning algorithm for terrain-based navigation (dec-TBN). The
proposed algorithm uses forward simulation to approximate
the value of communicating at each time step. The simulations
are used to build a constrained tree graph that can be
searched to provide a minimum cost communication schedule.
The algorithm is evaluated in simulations using a real-world
bathymetry map from Lake Nighthorse, CO and sensor model
derived from the Ocean Server Iver2 vehicle. Results show that
the algorithm finds a communication schedule that improves
robot localization by up to 27% compared to non-cooperative
terrain-based navigation.

I. INTRODUCTION

Marine robots are increasingly being used for underwater
data collection [1], [2], [3]. Electromagnetic waves quickly
attenuate in water, prohibiting the use of typical localization
sensors such as GPS, LIDAR, and cameras. Inertial sensors
are available, but they are either cost prohibitive or have
too much noise and drift for reliable localization. Acoustics
is the primary mode of ranging and communication but
similarly tends to be either cost prohibitive or provide low
information throughput. Due to these restrictions, terrain-
based navigation (TBN) has become the leading means of
self-contained underwater localization [4].

Vehicles using TBN for underwater localization are depen-
dent on terrain information to improve their state estimation.
Vehicles traveling over areas with distinctive terrain will be
able to localize better than those traveling over areas of
smooth terrain. Cooperative localization allows vehicles with
better state estimation to aid other vehicles. A vehicle with
accurate localization can transmit its location and covariance
to other vehicles via an acoustic modem. A receiving vehicle
can calculate its distance from the transmitting vehicle and
use this distance measurement with the information provided
by the transmitting robot to improve its own localization [5].

This work focuses on planning when each robot commu-
nicates its localization information which is important for
two reasons: (1) overlapping communication can cause inter-
ference, resulting in failed communication, and (2) acoustic
modem bandwidth is extremely limited and often needed to
transmit other information, such as scientific data.

This work presents a decentralized communication plan-
ning algorithm that determines an optimized communication
policy for collaborative underwater TBN localization. The
algorithm forward simulates a group of two or more robots
following predetermined paths. At each time step a scenario
in which the hosting robot communicates is considered and
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Fig. 1. AUV paths through the simulated environment of Lake Nighthorse,

CO. The blue stars are the AUVs’ waypoints. The green lines are the actual
paths of the AUVs when using decentralized terrain-based navigation (dec-
TBN), and the orange lines are the actual paths of the AUVs when using
dead reckoning. Cooperative TBN leads to more accurate path following
(closer to the waypoints) even in areas where the terrain is flat. The AUVs
travel approximately 1.5km.

then compared to scenarios in which the hosting robot has
not communicated. Each communication incurs a cost, and
scenarios that result in poor localization are discarded. The
resulting communication policy contains a minimum number
of communication while limiting the uncertainty in each
vehicle’s location. The proposed algorithm enables more
accurate localization while conserving energy and allowing
opportunities for other types of data to be transmitted. To
our knowledge, this is the first algorithm to non-myopically
plan the communication actions of underwater vehicles to
improve cooperative localization.

We test our approach using simulations leveraging real-
world data from an Ocean Server, Iver2 autonomous un-
derwater vehicle (AUV) and a bathymetry map of Lake
Nighthorse in Durango, Colorado, USA (See Figure 1).
Experimental results are presented for simulation of two
and four vehicles following paths through the map. Results
show that the communication planning algorithm schedules
communications that provide accurate localization while
requiring very low bandwidth. In the case of two AUVs,
the proposed algorithm schedules 67 communications when
1,058 are possible. The planned communication policy im-
proves localization by 15% over non-cooperative TBN. In
the case of four AUVs, 139 communications are scheduled,
when 1,048 are possible, providing a 27% improvement in
localization over non-cooperative TBN.



II. RELATED WORK
A. Terrain-Based Navigation

TBN is a technique that originated in 1980 with TER-
COM [6] where a flying object, such as a missile, would
compare its altimeter readings to a digital elevation map.
Recent implementations of TBN have been centered around
particle filters that compare a vehicle’s altimeter readings to
a bathymetry map [7], [4]. TBN can provide an accurate
vehicle location if it is in an area of significant bathymetric
features. On smooth terrain the particle filters will diverge.

Tan et al. developed a decentralised TBN (dec-TBN)
algorithm [5] where multiple vehicles share their location
and covariance with each other. Each vehicle hosts its own
particle filter and performs regular comparisons of its altime-
ter readings to a bathymetry map. The vehicles also transmit
their particle filter’s estimated location and covariance to the
other vehicles. The receiving vehicles incorporate this in-
formation into their next TBN update. The distance between
the vehicles is calculated using the acoustic communication’s
time of flight which is used with the transmitting vehicle’s
location and covariance to update the weights of the particle
filter. In this work, the vehicles take turns communicating
one after another with no consideration given to the timing
of communication [5].

Dec-TBN forms the foundation of our work. We use a
similar dec-TBN formulation in which each vehicle hosts
a particle filter that is informed by altimeter measurements
and location data transmitted from other vehicles. Our work
builds on dec-TBN by examining communication planning
for these vehicles to see if localization accuracy can be
retained while reducing the communication overhead.

B. Communication Planning

To date, the majority of communication planning for state-
of-the-art distributed localization is focused on choosing
what data to share with other robots. One approach is to use
metadata from the robots’ pose graphs to identify individual
scan lines or camera images that may contain loop closures
[8], [9], [10]. Another approach is to design linear—quadratic
regulators to control data flow [11]. These approaches are
intended for terrestrial application where communication
bandwidth and reliability are significantly better than under-
water applications. In this case the robots are able to transfer
large data sets to each other. The bandwidth available on an
acoustic modem precluded these approaches.

A more applicable line of research is communication
planning for multi-robot coordination. These methods focus
on communicating the belief states of the robots for the
purpose of deciding what actions they should take. This is
analogous to decentralized TBN where the AUVs share their
state estimations to help each other localize more accurately.

Williamson et al. applied information theoretics to com-
munication planning for multi-robot cooperation by using
KL divergence to quantify the reward of an agent’s commu-
nication [12]. Their approach then uses this approximation
in formulating a decentralized partially observable Markov
decision process (DEC-POMDP) to remove reasoning over
the value of communication from the POMDP’s coordination
model. Using a deterministic formula to approximate the
value of each communication reduced the search space of
the POMDP [12].

Unhelkar and Shah followed the idea of assigning value to
communication and proposed a decentralized Markov deci-
sion process (DEC-MDP) with a reward function that maxi-
mized the expected reward for communication [13]. Marcotte
et al. built on the aforementioned DEC-MDP and DEC-
POMDP by factoring the planning problem so that each robot
could plan independently. This resulted in the algorithm
scaling linearly with the number of robots. Additionally,
Marcotte et al. forward-simulated the outcomes of message
passing to determine the value of each communication. This
approach has the added advantage of being able to determine
what the message content should be [14]. Similarly, Barcis et
al. developed an evaluation model that determines the value
of certain types of data. However, rather than using a Markov
decision process, Barcis et al. built their evaluation model
using domain knowledge of the application [15].

Best et al. considered planning-aware communication [16].
In this work a decentralized planning algorithm is presented
in which a group of robots is attempting to complete a task.
While the planner is evaluating which actions a robot should
perform, it tracks its uncertainty in what actions it expects the
other robots to perform. Once the uncertainty of a particular
robot exceeds a certain threshold it requests a planning
update from that robot. To minimize communication, the al-
gorithm constructs an directed acyclic graph representing the
uncertainty in the robots’ actions and communication cost.
While constructing the graph, every time a communication
was requested from a robot the uncertainty in the robot’s
actions reduced to zero. Subsequently, the base node only
had to be evaluated once. The implementation of this directed
acyclic graph provides a communication schedule that is
optimal with respect to belief and results in an algorithm with
polynomial run time complexity [16]. Additionally, finding
a communication policy is now equivalent to a longest path
search through a directed acyclic graph, which has linear
time complexity [17].

The communication planning problem presented here
builds on these works in multi-robot coordination. The
communication problem is factored so that each robot can
plan its own communication separately from the other robots.
Forward simulation is used to approximate the value of each
communication. The simulations are then used to build a
directed acyclic graph in which the robot is required to com-
municate once the uncertainty in a robot’s location exceeds a
certain threshold. The graph can then be searched for a mini-
mum cost communication policy. Unlike the aforementioned
works, which assumed that the robots have deterministic
transition functions, the proposed communication planning
applies these techniques to the inherently stochastic problem
of TBN.

III. PROBLEM FORMULATION

We are interested in the problem of scheduling commu-
nication for a group of AUVs using dec-TBN to localize.
The AUVs travel in a mapped environment taking altimeter
readings as they move. Each AUV uses the TBN algorithm
to estimate its location and the AUVs can communicate their
location and uncertainty with each other. We want to plan a
communication policy that uses minimal transmissions while
limiting the uncertainty in the AUVs’ location.



Each AUV r is equipped with an altimeter, a depth sensor,
an acoustic modem, and a digital bathymetry map of the envi-
ronment. The AUVs are also provided the starting locations
X;_,, initial covariances X}_, and paths of all the other
AUVs. The AUVs will localize with a dec-TBN algorithm.
An individual instantiation of the dec-TBN consists of a
particle filter that tracks the hosting vehicle’s location. At
each time step, the inputs to dec-TBN are the most recent
vehicle control inputs and altimeter reading. If available, X7,
Ei, and intra-vehicle range from another vehicle, i # r,
are also provided to the dec-TBN. The dec-TBN algorithm
outputs the position estimate X; and covariance X} of the
hosting vehicle.

The AUVs can communicate with each other via the
acoustic modems. If all of the vehicles have synchronized
clocks, and assuming isotropic water temperatures, the dis-
tance between the transmitting and receiving vehicles can
be calculated using the communication’s one way time
of flight (OWTF). To perform dec-TBN, the AUVs must
take turns communicating their localization statistics. The
receiving vehicles use the localization statistics and distance
measurement from the transmitting vehicle to inform the next
dec-TBN update.

The proposed decentralized planning algorithm generates
a communication policy n” = {#{, 7}, ..., 7} } that indicates
when the hosting vehicle should communicate its X; and
>} within the planning horizon 7. The variable 7" is a
binary sequence, m; = true indicates that the vehicle should
communicate at time step ¢ and 7] = false indicates that it
should not communicate. If a vehicle communicates at time
t, the transmission includes the time of the transmission,
X7 and X!. The communication is received by all the other
AUVs and informs their next dec-TBN update.

The objective of the planning algorithm is to minimize the
AUVs’ communication while maintaining a bound on local-
ization accuracy. Each communication is given a unit cost.
The cost of 7 for N robots is the sum of all communication,
ie.

Cost(m) = Z Z 1(m} = true) ()

i=1 t=1

To ensure that the AUVs maintain a certain degree of ac-
curacy, the communication planning algorithm is constrained
by the estimated accuracy o of the AUVs’ localization. For
a group of N AUVs at time step ¢, o, is defined as:

N
o = Z trace(t) (2)
i=1

The proposed planning problem is formulated as a
constraint-based optimization to find 7* that has the low-
est communication cost while maintaining ¢ under a user
defined threshold o0,,,4.:

7% = argmin Cost(m) : 04 < Opmaz VT 3)

T

IV. COMMUNICATION PLANNING ALGORITHM

The proposed communication planning method is a de-
centralized planning algorithm that is intended for vehicles
using dec-TBN. The intuition behind the algorithm is that

localization information from a vehicle with an accurate
state estimate can be used to improve the localization of
other vehicles. It may not be advantageous for vehicles with
relatively poor localization to transmit their information ei-
ther. Additionally, the dec-TBN particle filters use randomly
generated noise to disperse the particles. Modeling a particle
filter’s response to a vehicle’s path is impractical. For these
reasons the proposed communication planning algorithm
involves simulating vehicles traveling through the environ-
ments and evaluating the effects of vehicle communication
on the group’s localization.

The communication planning algorithm is a decentralized
algorithm that is run independently on each vehicle. The
algorithm builds a directed acyclic graph G. The graph nodes
N represent the o, of the AUVs and the edges represent
the communication cost between nodes. The graph is built
by forward simulating a set of vehicles as they follow
predefined paths through an environment. Each leaf node
hosts a simulated state of the vehicles instantiated as a set
of particle filters, e.g., if planning for three vehicles, each
leaf node would contain three particle filters. The leaf nodes
are expanded by forward simulating the vehicles one time
step and localizing via dec-TBN on the bathymetry map.
The leaf nodes are expanded twice, once with the hosting
vehicle communicating its X; and 3;, and once without
communicating, thereby creating two new leaf nodes. The
edges between the parent node and the new leaf nodes
are given weights of 1 and O for communicating and not
communicating respectfully.

To reduce computational demands of the algorithm, it
is assumed that the state resulting from the host vehicle
communicating is the same for all leaf nodes. This is a
similar assumption to Best et al. [16] and the resulting
structure of the graph is demonstrated in Figure 2. N
represents the state in which the host vehicle has commu-
nicated at time step t. The rest of the nodes result from
not communicating. Constructing the graph as a directed
acyclic graph provides polynomial run time with complexity
O(BNT?) where B is the number of particles used in the
particle filters. Additionally, finding a communication policy
from the directed acyclic graph can be done with linear time
complexity [17].

Max Uncertainty

Fig. 2. Communication planning graph. The node N,, represents the n‘/
node in G. Each node holds the value of o of a simulation state. The dotted
edges represent forward simulation without communication. The solid edges
represent forward simulation with communication.

In practice, the planning algorithm holds the simulations
for each leaf node 7 in a queue @;. At each time step
the algorithm cycles through the queue and progresses each



simulation one step forward. The simulations move the
robots R along a path P using a motion model M. Then, they
update the dec-TBN algorithm using the simulated vehicles’
locations on the bathymetry map to provide depth readings.
If communication is indicated, the X; and ; of the hosting
vehicle’s simulated state is provided to the other simulated
vehicles” dec-TBN updates.

At each time step all of the simulations in () are forward
simulated without communication. If o, of the resulting
simulation state is less than 0,4, then the resulting state is
added to Q and a new node is appended to G with the value
of o,. This node is connected to the leaf node representing
the state that was just updated with an edge weight of 0. Qg
holds the simulation for Ny o in which the hosting vehicle
has just communicated. The last update performed at each
time step is to forward simulate )y with communication.
The resulting state is added to ) as the next Qg and a
corresponding node is added to G with the simulation’s value
of o;. This node is connected to all of the leaf nodes with
an edge weight of 1. Due to dec-TBN’s reliance on terrain
information to improve localization, a static threshold value
for 0,42 18 difficult to determine. Instead, the threshold value
is a product of 0,4, and oy of Qg. See Algorithm 1.

Algorithm 1 Communication Planning Algorithm
Input: [Xo, X0, M, P]",Vr € R, T, Omax

Output: 7 > Robot Communication Policy
1: > Particle filter for each robot
2: Qo.sims «<PF(([Xo, X0, M, P))",Vr € R > Queue
3: Qqg.parent < 0
4: G.nodesy + 0 > Cost Graph
5:m=0
6: for t =1to T do
7: P = Q.parent > List of current leaf nodes
8: > Update ); without communication a
9: for i = |Q| to 1 do

10: 1 < PF _Update(Q;,a = false)

11: if n.0 < Qo.0 X Oppqs then

12: m=m-+1

13: p = Q;.parent

14: Qiy1-5iMS <1

15: Qiy1.-parent < m

16: G.nodes, < 1.0

17: G.edgesy m < 0

18: > Update (); with communication

19: m=m-+1

20: Qo.sitm <—PF_UPDATE(Ng :_1,a = true)”",Vr € R

21: Qo.parent < m

22: G.nodes,, <+ Qq.0

23: G.edgesp p, + 1

24: 7w <+~ LOWESTCOSTPATH(G) > Search over Graph

V. DECENTRALIZED TBN ALGORITHM

Most modern TBN algorithms use particle filters to
track the vehicle’s position on a digital elevation map or
bathymetry map in the case of marine environments [18],
[19]. The dec-TBN algorithm used here utilizes an update
step that incorporates range measurements to another vehicle

with that vehicle’s localization information. First, a vehicle
transmits its X; and X; to the other vehicles via an acoustic
modem. A receiving vehicle calculates a range measurement
D from the transmitting vehicle via the acoustic commu-
nication’s OWTF. D provides a measurement that adds
information to the particle filter and is used with the location
information from the transmitting vehicle in the next particle
filter update.

The modified particle filter update propagates the particles
via the vehicle’s speed S, heading 6, and motion model M.
Then it calculates the probability of each particle’s location
given a depth measurement z from an altimeter. A probability
density function pdf,;; using the altimeter’s mean and stan-
dard deviation is used to compare the depth measurement to
the expected depths Z from the bathymetry map. The proba-
bility of each particle’s location is also calculated by creating
a multivariate normal distribution pdf,,.,,s using the location
and covariance received from the other vehicle. The locations
of the particles are then shifted towards the transmitting
vehicle’s location by the distance calculated from the acous-
tic modem’s time of flight. The resulting particle locations
are used to sample the aforementioned normal distribution.
The probabilities resulting from the bathymetry measurement
and the communication measurement are multiplied together
with the previous particle weights to create the new particle
weights. This process is illustrated in Algorithm 2.

Algorithm 2 Particle Filter Update with a Received Com-
munication
1: function PF_UPDATE(X(, T, 5,0,2, D, X", ¥")
2: particles < Xg > Initialize particles
3 w < 1/|particles| > Initialize particle weights
4 for t =0to T do
5: particles <~ MOVE_PARTICLES(S, 6,t, M)
6: Z < BATHYMETRYMAP(particles)
7
8
9

Whathy PDFqi(z — 2, paits Calt)
Weomms < PDFeoms(particles + D, X", X"))
: W = W X Wpathy X Weomms
10: w < w/ > (w)
11: X < > (weights x particles)
12: Y « Covariance(particles)
return X, X

VI. RESULTS

To evaluate the proposed communication planning algo-
rithm, simulations were run to determine how well AUVs
using dec-TBN could localize given the communication pol-
icy produced by the algorithm. The simulations leverage real-
world data by using a bathymetry map of Lake Nighthorse
near Durango, Colorado, USA. The map was created from
an extensive survey of the reservoir. Depth readings from
the survey were corrected for temporal changes in the height
of the reservoir. Then, the depths were combined into a
digital elevation model via a sliding window Kalman filter
(See Figure 1). The depth readings from this survey were
also used to build a sensor model of the altimeter on an
Ocean Server Iver2 AUV that was used for part of the data
collection. This sensor model was used in the simulator to
provide depth readings to the simulated vehicles.



Each simulation involved two or more AUVs following
predefined paths across the bathymetry map. Each AUV was
given the initial locations of all the vehicles with a corre-
sponding uncertainty of three meters. The AUVs were also
given paths that each vehicle would follow. The AUVs per-
formed the communication planning algorithm independently
before departing on their paths. Once underway, the AUVs
attempted to follow the prescribed paths by using dec-TBN.
The AUVs communicated their locations and covariances at
the time steps indicated by the communication policy. The
AUVs did not share their communication policies, so it was
possible that communications would overlap. In this case, the
communications were assumed to interfere with each other
and were not received by any of the vehicles.

Each AUV used its dec-TBN state estimate to compute
control inputs. Gaussian white noise was introduced into the
vehicle’s true movements to emulate the navigational errors
that occur in real underwater vehicles. The sensor model
derived from the Iver2’s altimeter was used to introduce
noise into the depth readings used for the AUVs’ dec-TBN.
Figure 1 shows the simulated paths of four AUVs. The blue
stars are waypoints that the AUVs followed. The green lines
are the actual paths that the AUVs traveled when using dec-
TBN. The orange lines are the actual paths that the AUVs
traveled when using dead reckoning. The AUVs traveled a
little more than 1.5 km in these simulations.

The AUVs’ localization accuracy in the simulation is
evaluated by comparing the AUVs’ state estimations to their
true locations. The error §; for AUV r at time step ¢ is
calculated as & = || X — X}||. In this case, X is the true
location of the AUV and X is the TBN estimate. The joint
error A; of all N AUVs is:

i=N
Ay=> "6 “)
=1

The particle filter in the dec-TBN algorithm uses stochas-
tically generated noise when moving the particles. Addition-
ally, the simulations add Gaussian white noise to the ground
truth movements of the vehicles and the vehicles’ sensor
measurements. To determine the relative average joint error,
every simulation was run 100 times.

To the authors’ knowledge, previous dec-TBN works only
use a full communication scheme where the AUVs take turns
communicating at each time step. The planning algorithm
results are compared to simulations with full communica-
tion and communication that happens on an incremented
schedule. The comparison schedules varied the amount of
bandwidth used. Lower bandwidth schedules involved the
vehicles communicating in evenly spaced blocks. Each block
of communication involved all of the vehicles taking a turn
to communicate. The blocks were spaced so that the total
number of communications used equaled a percentage of the
full communication. The bandwidths are listed in the left
columns of Table I and II with the communication policy
generated by the planning algorithm. The center columns
list the corresponding number of communications. The right
columns shows the total error for each communication
scheme. The total error is calculated as the area under the
curve of the relative average joint errors which can be seen
in Figures 3, 4, 5 and 6. Note that dead reckoning error is

not present on the figures because it is much greater than the
errors being shown.

TABLE I
COMMUNICATION BANDWIDTH AND TOTAL JOINT ERROR FOR 2 AUVS

Communication Number of | Total Error
Bandwidth Communications [m - s]
Policy (Proposed) 67 11,004
Dead Reckoning 0 73,644
TBN - No Comms. 0 12,911
Full (100%) 1058 19,694
80% 816 17,645
60% 612 16,523
40% 408 15,088
20% 204 12,853
10% 102 12,044
5% 50 11,669
2.5% 26 11,782
TABLE 11

COMMUNICATION BANDWIDTH AND TOTAL JOINT ERROR FOR 4 AUVS

Communication Number of | Total Error
Bandwidth Communications [m - s]
Policy (Proposed) 139 8,929
Dead Reckoning 0 73,514
TBN - No Comms. 0 12,180
Full (100%) 1048 18,227
80% 840 15,489
60% 621 13,052
40% 416 11,066
20% 208 9,730
10% 108 9,341
5% 52 9,820
2.5% 28 10,607

Figures 3 and 5 show an overview of the joint errors for
some of the communication policies evaluated in simulations
with two and four AUVs respectively. The presented policies
include the policy produced by the planning algorithm,
the full communication policy, some of the proportional
communication policies, and non-cooperative TBN. Figures
4 and 6 provide closer looks at the joint errors for the planned
communication and lower bandwidth communication poli-
cies for simulations with two and four AUVs. Note that
the 5% communication policy is present on all graphs for
continuity.

Figures 3, 4, 5 and 6 show that the proposed algorithm
finds a communication schedule that provides more accurate
localization. In all graphs the joint error experienced by the
planned communication policy is less than the other com-
munication policies. For the simulations with two AUVs the
planning algorithm schedules a total of 67 communications
which is similar to low bandwidth policies of 5% and 2.5%
which use 50 and 26 communications respectively. For the
simulations with four AUVs the algorithm schedules 139
communications which is similar to the 10% bandwidth
policy. This is nearly twice as many communications as
prescribed by the planning algorithm for the two AUV
simulations and achieves notably more accurate localization.
This is due to the greater amount of information that is
available from the two additional AUVs.

The lower bandwidth communication schemes perform
better in general because they reduce the number of noisy
measurements being transmitted. Additionally, the higher
communication schemes can cause the TBN particle filters
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Fig. 3.  Overview of simulation results for 2 AUVs using varying
communication bandwidths. Error bars show standard error of the
mean.

Joint AUV Error vs Time for 4 AUVs

90 -
— Policy (Proposed)
80 TBN No Communication / 1
—— Full (100%) /
70T coenee 60% / 7
——-20% -
60r 506 b
E50F 4 1
S - -
Lsﬂ 40 ~ 'x ‘f..v L i
30} i et 1
A T A
o f\; ,;,/ ==z =4 i
o

200 300 400 500 600
Time [s]

Fig. 5. Overview of simulation results for 4 AUVs using varying
communication bandwidths. Error bars show standard error of the
mean.

to become overly confident in their state estimate. This over
confidence can result in the filter diverging, especially in
these scenarios where at least one AUV is traveling through
an area with minimal terrain features.

VII. CONCLUSION AND FUTURE WORK

We have proposed a communication planning algorithm
for AUVs using dec-TBN. The algorithm uses forward
simulation to estimate the accuracy of each vehicle’s state
estimation at a given time step and, subsequently, the value
of that vehicle communicating. By using the simulations to
build a communication tree graph, a policy can be deter-
mined that will provide accurate localization with minimal
communication. We present results showing that the planned
communication policies provide more accurate localization
than non-cooperative TBN and regularly incremented com-
munication policies.

20 Joint AUV Error vs Time for 2 AUVs
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Fig. 4. Simulation results for 2 AUVs using the planned policy,

TBN without communication, and low bandwidth communication
policies. Error bars show standard error of the mean.
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Fig. 6. Simulation results for 4 AUVs using the planned policy,
TBN without communication, and low bandwidth communication
policies. Error bars show standard error of the mean.

Future work for this algorithm includes adding an acoustic
modem model and field trials. An acoustic modem model
will provide an effective range for acoustic communication.
This will enable the algorithm to account for vehicles being
out of communication range. In this case a vehicle transmit-
ting its localization statistics may not be as effective since
it won’t help vehicles that are out of range. At the same
time, overlapping communications may not interfere with
each other if the transmitting vehicles are out of range.

Field trials will provide an empirical evaluation of the
planning algorithm. Ideally the field trials will be held in
areas with varying bathymetric features. This will allow for
the algorithm to be evaluated in areas where rich terrain
features are available, as well as flat areas where TBN
tends to fail. Aside from validating the performance of
the algorithm, such trials would give insight into how the
number of communications scale depending on the amount
of information that is available from the environment.
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