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Abstract— Monitoring marine ecosystems is challenging due
to the dynamic and unpredictable nature of environmental
phenomena. In this work we survey a series of techniques
used in information gathering that can be used to increase
experts’ understanding of marine ecosystems through dynamic
monitoring. To achieve this, an underwater glider simulator is
constructed, and four different path planning algorithms are
investigated: Boustrophendon paths, a gradient based approach,
a Level-Sets method, and Sequential Bayesian Optimization.
Each planner attempts to maximize the time the glider spends
in an area where ocean variables are above a threshold value
of interest. To emulate marine ecosystem sensor data, ocean
temperatures are used. The planners are simulated 50 times
each at random starting times and locations. After validation
through simulation, we show that informed decision making
improves performance, but more accurate prediction of ocean
conditions would be necessary to benefit from long horizon
lookahead planning.

I. INTRODUCTION

Marine ecosystems are complex. To gain insight into these
ecosystems, underwater gliders are employed to perform
long duration monitoring missions of physical and biological
phenomenon. One example is observing animal aggregations,
which play an important role in marine ecosystems [1] and
are not fully understood. To increase understanding, there is
a need to make underwater gliders adapt to sensor readings in
real time to maximize data collection on these aggregations.
This is an active sensing problem, where not all data are
treated equally. Paths must be planned to maximize the
information gained for specific areas of interest.

Consider the case of using an underwater glider (Fig. 1)
to find and detail biological hotspots created by episodic
upwelling. The underwater glider needs to find a hotspot
of sea-life and then constantly monitor it as it evolves over
time. To achieve this, algorithms are needed that can operate
in a spatially and temporally dynamic environment.

To examine this problem, we have constructed a glider
simulator to aid in the design, testing and verification of
algorithms for tracking physical and biological phenomenon.
Based on historic ocean data taken from the coast of Califor-
nia, our simulator models the motion and sensor readings of a
underwater glider as it travels through the water column. The
simulator is built such that 20 day missions can be simulated
in seconds, resulting in a sandbox for experimentation.

Using our simulator, a series of techniques used for in-
formation gathering are surveyed: Boustrophedon paths [2],
a gradient based approach, Sequential Bayesian Optimiza-
tion [3] and a Level Set Estimation approach [4]. A data
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Fig. 1: A Slocum glider, used for long endurance environmental monitoring
missions

driven comparison of these planning techniques is performed
using real ocean data. To our knowledge, these methods have
not been compared on a common set of real ocean data. Our
main contributions are the data driven comparison of the four
methods and a 3D glider simulator with Robot Operating
System (ROS) [5] integration for future glider path planning
algorithm development.

II. BACKGROUND AND RELATED WORK

A. Underwater Glider

Underwater gliders are a class of low power autonomous
underwater vehicles (AUV). Gliders are designed to move
through the water column using small changes in buoy-
ancy [6]. Although not as fast as traditional propeller driven
AUVs, they have significantly increased range and mission
duration, allowing them to spend months in the ocean trav-
eling thousands of kilometers. When equipped with sensors,
gliders can be used to make measurements of temperature,
conductivity, current velocity and other vital ocean phenom-
ena. The simulator detailed in this paper models the macro-
scale movement of the these gliders in the ocean.

B. Gaussian Process

In this work, we use a Gaussian Process to model the
ocean environment. A Gaussian Process (GP) is defined
as a collection of random variables with a joint Gaussian
distribution [7]. A Gaussian prior is placed over a function
and can be completely defined by its mean function µ(x)
and its covariance function k(x, x′). A noisy function f
can be represented as f(x) ∼ GP (µ(x), k(x, x′)). Given
a set of training inputs N and corresponding outputs y, a
predictive distribution of f at an unknown query location
can be computed. The needed parameters for the mean and
covariance functions can be estimated by maximizing the



marginal likelihood of the data. These predictions have been
shown to be highly effective in modeling environmental
phenomena [8]. We examine their use in modeling oceans
processes.

C. Informative Planning Problems
Previous work on informative path planning has borrowed

from the ideas of adaptive sampling and path planning
problems. This has been done through the use of heuristic
search [9], random graph search [3], or sampling based
approaches [10] [11]. The goal of these is normally to find
either a feasible path or an optimal path length.

Adaptive sampling is the problem of deciding where to
take measurements to best monitor some variable of interest.
This is a well explored area and it has been shown that the
greedy algorithm performs well in submodular cases [12].
Informative path planning looks to combine both path plan-
ning and the sensor placement problem into a single problem.
Yilmaz [13] approached the problem using mixed integer
programming, but this requires a linear objective functions.
A recursive-greedy algorithm for submodular orienteering is
presented in [14], but this is more concerned with reaching
a destination as oppose to the path to get there. A branch
and bound technique in [15] solves for the optimal path and
show significant speedup, but requires a complete map of the
world.

III. PROBLEM FORMULATION

In this work, we model and control an underwater glider
as it explores an unknown environment performing an in-
formation gathering mission. Starting from its deployment
location, the glider must explore the environment to observe
a specific environmental variable, such as sea temperature,
salinity or chlorophyll, above a certain threshold value. These
variables are hypothesized to correlate with aggregations of
marine life [8]. The goal of the glider is to maximize a utility
function R, based on the time the glider spends observing
data above a threshold value on a long duration mission. To
measure this, the world is discretized into k grid squares that
exist for the length of the mission ttotal. The glider receives
a score for observing above threshold data for all unique
squares transversed in its most recent trajectory. Making a
second observation of the same square at any time t results
in no additional score unless the square’s value has changed
(from above to below the threshold) between observations.

R =

ttotal∑
t=0

k∑
d=0

Observed(dt), (1)

where Observed(dt) = 1 if dt is above the threshold and
observed for the first time. Observed(dt) = 0 otherwise.

The simulated world consists of a 3D continuous map
with historic data for ocean current, temperature and salinity
imported from the Jet Propulsion Laboratory’s website [16].
The glider is provided with previous day’s data to generate
an initial estimate of potential areas of interest.

To navigate the simulated world, a planner selects from the
four cardinal directions and places a waypoint for the glider

Fig. 2: Motion primitives for an ocean glider. Each Square represents .01
degree of latitude or longitude

to travel to in the chosen direction (Fig 2). Waypoints are
placed at a distance such that it takes 12 hours of travel time
to move between them. The planner selects the waypoint
that will maximze uncertainty reduction of it’s enviromental
model and/or maximize Eq. 1. As the glider travels along
its trajectory, the glider acquires data samples it can use
for future planning. After each waypoint is reached, the
planner uses its newly learned information to select the next
waypoint. This will continue for the entire duration of the
mission.

IV. SIMULATOR

To facilitate the investigation of the different informative
path planning algorithms, a glider simulator (gliderSim) is
constructed. GliderSim is built in Unity, a cross-platform
game engine. It interfaces with the planners via ROS through
the use of ROSBridge [17]. GliderSim simulates the motion
of the glider through the water column and returns sensor
data to ROS as it travels from waypoint to waypoint. All
planning algorithms were implemented in Python on Ubuntu
Linux. The Gaussian Process implementation is provided by
Scikit-learn [18].

GliderSim simulates the movement of an ocean glider as
it travels through the water column towards a GPS waypoint.
This simulation is done in continuous space and time. At the
beginning of any simulation, a time of day is specified, and
the gliders initial location and GPS waypoint is selected. A
deltaTime variable is used to select the step size for each
screen redraw. For this work, a deltaTime of 1000 seconds
was used. The gliders speed is set to 0.15 m/s with an angle
of attack at 26.5o. This is consistent with the movement of
a Slocum Glider, a glider commonly used for environmental
monitoring [6]. All data measurements are taken at 30m in
depth. Due to the nature of the underlying ocean data, this
is a reasonable simplification.

GliderSim uses depth, temperature and ocean currents data
from The Southern California Bight (SCB) ocean forecasting



Fig. 3: An example path the glider would take during an information
gathering mission.

system [16]. This data covers an area of 32.5o−34.7o latitude
and 238.8o−243.0o longitude from March 01, 2013 to March
31, 2013. The time data is discretized to three times per
day: 03:00:00, 09:00:00 and 15:00:00. The data resolution is
0.01o in both directions. This natural discretization was used
to define the grid squares used to calculate the movement,
utility and score of each glider simulation. Because the
glider simulator operates in continuous space and time, both
location and time were rounded to the nearest point existing
in the data set when requests for data were made by the
planners. All simulations are run on a single laptop with a
2.5 GHz Intel Core i7 processor with 16 GB of RAM.

V. METHODS

Four motion planning algorithms for environmental moni-
toring have been selected for comparison in this work. Each
method has been adapted to fit the problem formation.

A. Boustrophedon Path

A Boustrophedon Path moves the glider back and forth
across the region of interest in parallel, evenly spaced tra-
jectories [2]. This is a common movement pattern used by
glider operators for environmental monitoring and will serve
as a baseline for our results [19].

B. Gradient based approach

The gradient based approach is a greedy algorithm that
uses known information about the environment to exploit
it. It starts by constructing a GP model M of the world
using three days of previous environmental data D. Previous
environmental data is available through in-situ sensors or
satellites, depending on the environmental variable. Provid-
ing M with a latitude (lat), longitude (lon) and time returns
an estimate of the environmental variables at that location
and time. After constructing M , the gradient based approach
looks at the four possible paths p the glider might traverse
and calculates which discretized squares s the glider will
path through as it travels p (Fig 2). For each s, it uses M ,
given lat, lon and estimated time of arriving at s, to estimate
the value of the environmental variable of interest at location

s. By summing each s for each location in p, the planner can
get an estimate of the value of traveling along each p. By
selecting the p with the largest summed path, the gradient
based approach will travel greedily along the path likely to
return the largest short term gain.

1) Expectation: An alternative to the simple summing of
estimated values seen in the gradient based approach is to
incorporate both the mean u(x) and variance σ(x) provided
by the GP to calculate the likelihood of any particular
location s being above the threshold value h. The expectation
uses

Pt(s) =
ut(s) + σt(s)− h

[h− ut(s)− σt(s)] + [ut(s) + σt(s)− h]
(2)

to calculate the percent chance that location s will be above
or below h. These percentages can then be summed, and the
largest total path percentage can be used to determine the p
which will be traversed next.

C. Level Set Method

The Level-Sets Method adapts an approach found in [4]
to estimate the exploratory value of each p. This technique is
designed to maximize the exploration of the glider, navigat-
ing solely for the purpose of building a better model M by
traveling to areas of high uncertainty. Based on the Level Set
Estimation Algorithm (LSE) [4], this Level-Sets method uses
a GP’s inferred mean u(x) and variance σ(x) to construct a
confidence interval Qt(s) for any point x ∈ D.

Qt(s) = [ut(s)± β1/2σt(s)] (3)

This captures the uncertainty of our GP estimate given the
previously provided data. β is a scaling factor, and is set to
1 in this work. This confidence interval can then be used to
determine if a point can be classified as above or below the
threshold value of interest or if more information is needed
to make that determination.

The Level-Sets Estimate planner looks to take the path that
will decrease the uncertainty of M the most. To accomplish
this, the confidence interval is calculated for each s ∈ p.
s that are classifiable are given a value of 0. s determined
to need more information are examined further. For each
unclassified point suc the ambiguity is calculated as:

at(x) = min {max(Qt(x))− h, h−min(Qt(x))} (4)

Ambiguity qualifies the uncertainty about the suc classifi-
cation. The higher the ambiguity, the larger classification
uncertainty; thus we would expect to gain more information
by traveling there. The sum of ambiguities for each s ∈ p
is calculated, and the p with the largest ambiguity sum is
traversed next.

D. Sequential Bayesian Optimization

Bayesian Optimization (BO) is a global optimization tech-
nique useful in finding the maximum of partially observable
objective functions that are difficult to solve efficiently.
Marchant et al. [3] introduce Sequential Bayesian Optimiza-
tion (SBO), an extension of BO for sequential decision mak-
ing that can formulate the problem as a Partially Observable



Markov Decision Process (POMDP). To solve the POMDP
efficiently, a Monte-Carlo tree search is employed to provide
an estimated near-optimal solution. Just like the gradient
based approach, a GP will be used to model the data in the
environment, with an SBO solving the planning problem.
SBO builds on the previous techniques by performing a
multi-step look ahead of potential paths.

We adapt SBO for this problem by implementing a Monte-
Carlo tree search that uses our gradient based approach as an
evaluation metric for each look ahead step. The tree is built
incrementally, starting from an initial node n0. n0 represents
where the glider is currently and its belief representation
for f . Nodes are expanded by simulating the outcome of
traveling along all possible next paths p. The maximum
likelihood observation is used to update the GP for each of
the leaf nodes. The leaves are updated with their new current
location and their belief representation for f given the newly
acquired observations. Selecting a leaf node for expansion is
done using a softmax citesoftmax proportionally weighted
selection.

Selection and expansion of new leafs is done until a
maximum depth is reached. The utility acquired at each step
is then run back up the tree, updating the scores of each
leaf node evaluated on the way down. If at any point the
score being updated is less then the parent node’s current
score, the update is stopped. This means the current path is
less desirable then a previously evaluated path on the same
branch. When all scores are updated, the whole process is
repeated until the maximum iterations is reached. At this
point, the best action is determined by evaluating the leaf
nodes under n0 and selecting the leaf with the highest score.
Algorithm 1 shows the full procedure.

VI. SIMULATIONS AND EXPERIMENTS

We now discuss the simulations and experiments run to
compare the proposed techniques. For these experiments,
ocean temperature is the variable of interest with a threshold
value of 13.2o. The value 13.2o was selected because it gen-
erated a compelling environment for the glider to navigate.
Trials with ocean currents affecting and not affecting the
glider as it moves through the water were conducted.

A. Building the GP model

To construct the Gaussian process model, the SCB data
was downsampled to a resolution of 0.2o. The downsampling
was done to reduce the data set down to a manageable
size for GP construction. At each waypoint, a GP model is
constructed using downsampled SCB data for the previous 3
days plus every grid square the glider has traversed to that
point. The hyperparameters are learned the first time a GP
model is constructed, and then the same hyperparameters are
used for all following GP models.

B. Running a Simulation

Starting at a random location between 32.80o − 33.45o

Latitude and 241.32o − 242.18o Longitude and between
March 4-9, 2013, the glider traverses the ocean on a 20 day

Algorithm 1 Monte Carlo Tree Search for SBO

1: procedure MCTS(b(f), p, depthmax) . Inputs: belief
b(f), path p, max depth depthmax

2: no ← NewNode(b(f), p, rewardmin)
3: i← 0
4: while i < MaxIterations do
5: TreeDescent(no, depthmax)

6: procedure TREEDESCENT(nparent, depthmax)
7: i← 0
8: while i < depthmax do
9: children← GenerateChildren(nparent)

10: nparent ← selectChild(children)

11: i← 0
12: while i < depthmax do
13: nparent.Score← nparent.Utility
14: if nparent.Parent.Score <

nparent.parent.Utility + nparent.Score then
15: nparent.Parent.Score ←

nparent.parent.Utility + nparent.Score
16: else
17: Break
18: procedure GENERATECHILDREN(n))
19: if n.Children = empty then
20: Create nodes for next possible waypoints
21: Calculate Utility for each Node
22: else
23: Break
24: procedure SELECTCHILD(children))
25: if a Children.score = 0 then
26: Randomly select Child with score = 0
27: Return Child
28: else
29: Use Softmax to select a proportionally weighted

random child
30: Return Child

data collection mission. The glider operates by choosing a
GPS waypoint to navigate to and then travels in a straight line
(using dead reckoning) until it reaches it. Once a waypoint
is reached, the glider simulator pauses simulation time to
allow the planner time to calculate the next waypoint. The
simulator operates at a rate of roughly 12 hours of simulated
time per 10 seconds of actual time, so pausing the simulator
to allow calculation time is important to keep a realistic
simulation of operation in the real world. Additionally,
we note that these algorithms are computationally efficient
enough to be run in real time onboard a glider. Once the
next waypoint has been selected by the planner, the simulator
unpauses and simulates travel to the next waypoint.

C. Experiments

Each of the five planners described above was run a total
of 50 times at random times and starting locations. The
same random starting time and location was used for each
planner. The scores for each simulation were recorded and
averaged to produce an mean performance for each planning



Fig. 4: The average score for a 20 day exploration mission given no ocean
currents affected the motion of the glider. Score is defined as the number
of data observations above the threshold value. GP estimation outperforms
other techniques. Error in SEM.

Fig. 5: The average score for a 20 day exploration mission given ocean
currents affected the motion of the glider. Score is defined as the number
of data observations above the threshold value.

technique.
1) SBO: Sequential Bayesian Optimization is a planning

technique that is an extension of the others. The other four
techniques only use a single-step lookahead while SBO uses
a multi-step look ahead utilizing one of the original four’s
utility function for path evaluations. In this way, when SBO’s
lookahead depth is set to one, it performs exactly the same
as its as its extended planner. Because of this, we evaluate
SBO separate from the other planning techniques.

D. Results

Fig. 4 shows the results of the four planners when ocean
currents are not considered. The Boustrophedon path sets a
baseline result with an average score of 69 (meaning the
glider passed through 69 grid squares that were above the
13.2o during its 20 day mission). The Level-Sets method
performed slightly worse than the lawnMower pattern with a
score of 63. This is somewhat expected because of the nature
of the Level-Sets method. Level-Sets has no interest in maxi-
mizing the glider’s time spent in areas of high temperature; it

Fig. 6: The average score for a 20 day exploration mission given no ocean
currents affect the motion of the glider. These results use actual data values
instead of GP estimates for path utility calculation. Score is defined as the
number of data observations above the threshold value.

is simply interested in maximizing its internal model of the
world. This strict exploration based approach is especially
difficult due to the fact the world is constantly changing,
meaning the glider’s model of the world is constantly being
put out of date.

There is a great deal of variance in score between indi-
vidual simulated trials of each planner. This is due to the
random starting location and time. Some starting locations
are naturally located in high temperature areas, meaning a
high score will be achieved no matter the planner. Some
planners will be perform better, but all planners by default
will navigate to warm water. Other starting locations are
in extremely cold locations in the data and no matter the
decision making, wouldn’t achieve a large score.

Using the GP to estimate temperatures and traveling to the
hottest area performed best, with an average score of 96.5.
This makes sense as ocean temperatures are relatively smooth
gradients and traveling up these gradients should result in
the glider navigating to warmer waters. The expectation,
which uses the GP estimates mean and variance to perform a
hybrid exploration and exploitation of the region performed
nearly as well with a score of 90.2. Fig 6 shows the
result of performing the same experiments with the true
temperature values replacing the estimates of the GP. These
scores represent the best score possible given a perfect GP
estimate. With scores of 115 and 116, we can see that the
GP isn’t a perfect model of ocean temperatures, but does
provide enough of an estimate to out perform a non-adaptive
technique (Boustrophedon path).

Fig. 5 shows the results for the planners while ocean
currents are affecting their paths. Here we see a similar
story, with the Boustrophedon path and Level-Sets method
performing comparably while the expectation and gradient
based approach perform experimentally better. The standout
difference between the two is the nearly 20 percent increase
in all scores. This difference can be attributed to the increased



Fig. 7: The average score for a 20 day exploration mission using the
SBO method. Trials with 1, 3 and 5 day lookahead. Planner performance
decreased with increased lookahead distance. Score is defined as the number
of data observations above the threshold value.

distance traveled by the glider due to the currents. Because
the glider is able to cover more ground while on its 20 day
mission, the scores are naturally larger than trials without
ocean currents.

1) SBO: For Sequential Bayesian Optimization, three
different tree depths were tried; 1, 3 and 5 depth. Our SBO
planner used the expectation as its evaluation metric and was
run over the same 50 location and times as other planners.
The results, seen in Fig. 7, show that the average score
decreases as the SBO explores farther out into the future
while planning each move. These results seem to suggest
that the GP isn’t providing a good model for future data.
The farther out the GP attempts to estimate, the further
its estimates get from the true value. Because all future
paths down the MCTS tree are weighted the same, a place
that seems promising in the distant future can dramatically
influence the next decision.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a survey of techniques used
for information gathering. We have shown empirically that
using a GP to model ocean data for planning future paths out-
performs current methods. These techniques were validated
in simulation using real ocean data. These improvements in
planning can increase the efficiency and robustness of future
glider missions as they study the dynamics of the oceans.

The results in this paper open up a number of interesting
areas for future work. This work does not attempt to address
the problem of ocean currents affecting the path of the glider,
or the planning problems that occur when ocean currents
are introduced. Due to the slow nature of ocean gliders,
ocean currents can dramatically affect the paths of gliders.
Incorporating these currents into the planning process is
essential to make these planners practical for use in actual
ocean environments.

While using the GP to model ocean data showed im-
provements on current methods, its ability to forecast ocean
changes into the future showed limitations. Future work will

also include looking at other modeling techniques, such as
deep learning networks, to replace the GP model.
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