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Abstract Autonomous surface vehicles (ASV) are becoming more widely used in
environmental monitoring applications. Due to the limited duration of these vehi-
cles, algorithms need to be developed to save energy and maximize monitoring
efficiency. This paper compares receding horizon path planning models for their
effectiveness at collecting usable data in an aquatic environment. An adaptive re-
ceding horizon approach is used to plan ASV paths to collect data. A problem that
often troubles conventional receding horizon algorithms is the path planner becom-
ing trapped at local optima. Our proposed Jumping Horizon (J-Horizon) algorithm
planner improves on the conventional receding horizon algorithm by jumping out
of local optima. We demonstrate that the J-Horizon algorithm collects usable data
more efficiently than commonly used lawnmower patterns, and we provide a proof-
of-concept field implementation on an ASV with a temperature monitoring task in
a lake.

1 Introduction

Autonomous surface vehicles (ASVs) are becoming more commonly used to collect
data in oceans and inland waterways using instruments such as: acoustic doppler
current profilers (ADCPs); conductivity, temperature, and depth sensors (CTDs);
and sidescanning sonars. These autonomous vehicles allow data collection in tight
places, such as in and around glaciers or ice, as well as in close proximity to land
(e.g., around river deltas) (Curcio et al (2005), Grasmueck et al (2006)).
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(a) Q-Boat 1800P with an integrated
ADCP.

(b) Platypus Lutra with a dissolved
oxygen and pH sensor.

Fig. 1 Two commercially-available autonomous surface vehicles for aquatic sampling.

However, commercially-available ASVs, such as the Platypus Lutra Figure 1(b),
typically execute a simple lawnmower path to cover the area to be explored Figure 2.
Such a path can provide high data yield, but at the expense of substantial fuel and
time costs (Stoker et al (1996)).

We propose a receding horizon path-planning algorithm that, given an informa-
tion or uncertainty map, generates a sampling path to maximize the information
gathered or reduce the uncertainty. We compare this algorithm against a simple
lawnmower path planner for a given transport budget and examine the effects of
various algorithm parameters on the quality of the generated path. Furthermore,
we propose a Jumping Horizon (J-Horizon) algorithm that improves on the con-
ventional receding horizon algorithm by varying the look ahead step size if desired
threshold values cannot be found within the current horizon. This allows the planner
to “jump” out of local optima if higher peaks can be found elsewhere on the map.
Finally, we validate our simulated results using an ASV to collect an initial data set.
The J-Horizon algorithm is then run over the scalar field produced from the initial
data and a qualitative analysis is given. The J-Horizon planner is able to produce
paths superior to a simple lawnmower pattern in simulation and experimentally it is
shown that the path is able to cover more area and generate a better quality scalar
field.

Fig. 2 The proprietary area search algorithm from Platypus generates a dense lawnmower pattern
that is highly energy-inefficient.
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2 Related Work

Past work has shown that a receding horizon path planner is effective at optimizing
paths in “no-fly” zone environments with hard constraints, as shown by Schouwe-
naars et al (2004), where the agent is prohibited from entering certain areas bounded
by walls. This is a useful constraint for aerial and land vehicles that must navigate
cluttered environments. However, these constraints do not apply to an ASV that
must cover a large body of water such as a lake or the open ocean.

In previous work, AUVs have played a similar role as the ASV in our project.
Binney et al (2010) describe an offline path planner for an uncertainty area. Hollinger
and Singh (2008) describe an approach for multiple agents searching for a target in
a known environment. Hitz et al (2014) discuss a path planner that can choose an
efficient path for measurement of fluorescent bacteria in the ocean using an ASV.
To reduce computational complexity, all of these authors employ a receding hori-
zon path planner. Besides on ASVs, receding horizon algorithms are widely used in
other robotics scenarios. Tisdale et al (2009) describe a receding horizon path plan-
ner for multiple unmanned aerial vehicles to search for a stationary object. However,
none of them examine the effect of the horizon length or the possibility of modifying
this horizon based on the remaining information.

Frolov et al (2014) compare lawnmower paths to other planning algorithms using
fleets of research vehicles. They come to the conclusion that lawnmower paths are
only marginally worse than adaptive algorithms. They also conclude that graph-
based search algorithms are actually worse than lawnmower patterns since they are
unable to adapt to prior uncertainty they cannot maximize their performance. Our
J-Horizon algorithm adapts to the environment and removes these limitations to
provide improved performance.

Gotovos et al (2013) propose a Level Set Estimation (LSE) algorithm that uses
Gaussian Processes to estimate level sets of measured quantities and generate sam-
pling points that reduce uncertainty around a certain threshold level. In a different
context, Hollinger and Sukhatme (2013) describe an incremental sampling-based
motion planning algorithm. Instead of reducing the uncertainty, they try to optimize
the information gathering, depreciating the information value of sampled points.

A key limitation of existing research in receding horizon planning is that none of
the aforementioned works discusses the role of parameters in the receding horizon
algorithm. In addition, prior research has not focused on a single ASV performing
data collection over large areas. In this paper, we address this gap in research in
the aforementioned papers through the presentation of the J-Horizon algorithm. We
present the application of our proposed method over different scalar fields both in
simulation and in field experiments. The algorithm’s performance is experimentally
demonstrated to outperform existing lawnmower and receding horizon methods.
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3 Problem Setup

3.1 Objective Function

Often when sampling in an aquatic environment, scientists plan paths that follow a
basic lawnmower pattern or spiral pattern. Previous work has looked at the differ-
ence between sampling in a lawnmower and a spiral pattern (Mora et al (2013)).
This prior study takes into account the energy consumed by the autonomous vehicle
and shows that a systematic spiral pattern collects more informative data and uses
less energy than a lawnmower pattern.

In this paper, the J-Horizon planner addresses the following maximization prob-
lem:

p∗ = argmax
p∈ψ

R(p) s.t. c(p)≤ B, (1)

where ψ is the space of possible trajectories for the ASV, B is the initial bud-
get (e.g., time, fuel), and I is a function that represents the reward of information
gathered or uncertainty reduced along the path p. In order for the algorithm to plan
over a scalar field, a small amount of pilot data is required. This data can than be
modeled or expanded, and then the algorithm can be run over an estimated scalar
filed to produce paths.

3.2 Experiment Setup

We first present a simulation setup that uses generated scalar fields to compare per-
formance between J-Horizon, conventional receding horizon, and lawnmower plan-
ning algorithms. We also use a real-world dataset acquired from Lake Haviland
outside of Durango, CO to generate a path maximizing gathered information for a
given transport budget.

3.2.1 Simulation

The J-Horizon algorithm is most effective when there is a prior dataset that can be
used to generate an information map. The reward function is then specified by the
maximum amount of new information that could be gathered at a map location. Fur-
thermore, the algorithm improves upon the conventional receding horizon algorithm
by seeking out areas of high reward when the local map area has been exhausted of
new information, resulting in its “jumping” behavior.

A MATLAB script was used to generate 2960 different scalar fields with vary-
ing numbers and distributions of reward peaks. Between 5 and 50 such peaks were
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randomly generated on each map with a reward value that decays as a function of
distance from the peak center. One such field is visualized in Figures 4 and 5 as
contour maps.

The total reward accumulated along a path generated by J-Horizon for a given
fuel budget was averaged for these scalar fields. This performance was compared
with that of a lawnmower exploration pattern on the same datasets and fuel budget.

3.2.2 Hardware

The Platypus Lutra was used to take physical samples from Lake Haviland. It is
a fan-powered ASV, maneuverable and capable of sampling data in lakes or other
small bodies of water. The ASV is small and is an ideal choice on which to test our
algorithm with limited sensing capabilities in a relatively large body of water. The
ASV samples temperature, conductivity, pH, and DO, and includes a side scanning
sonar. This allows it to map the bottom of the lake and measure depth.

The Platypus Lutra ASV has non-holonomic constraints that limit its ability to
execute some of the sharper turns produced by the J-Horizon algorithm. Thus, due
to hardware limitations, it is necessary to modify the path produced by J-Horizon.
These modifications allow the ASV to follow the planned path. Due to the limited
locomotion of the Platypus Lutra as well as a need to simplify data collection, some
assumptions have to be made:

1. The ASV is limited in its motion and has non-holonomic turning constraints.
2. That sampled scalar fields were not dramatically changing over time.
3. Distance traveled equates to using a linear and constant amount of energy.
4. Additional data sampling points at a given location correlates to better quality

data.

4 Algorithm Design

We seek to maximize the reward function for a given transport budget. In reality,
this budget is a combination of fuel expenditure, time, and distance, each of which
are specific to the vehicle and data collection scheme in use. For simplicity, we
assume these factors are linearly related and that acceleration (e.g., due to turning,
data collection) has zero cost.

In addition, we enhance the conventional receding horizon algorithm by increas-
ing the lookahead step size if none of the predicted future states satisfy a reward
threshold, allowing the planner to “jump” out of low-information areas. This makes
J-Horizon especially effective when the input scalar field has high local variability.

The sequence of potential future steps, as well as the final generated path, are
stored in a tree wherein each node stores the state of the ASV, which consists of
the cumulative reward value of the path, remaining budget, and the location of the
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ASV. Each lookahead step recursively generates a number of possible future states.
Of these, the best branch is chosen, and the rest are pruned. The sequence of nodes
remaining after the remaining budget reaches zero is considered the optimal path.

The lawnmower and J-Horizon algorithms share the same functions to calculate
the information available at a map location and to depreciate the available informa-
tion after sampling that location.

The following sections describe the J-Horizon implementation shown in Algo-
rithms 1, 2, and 3 by line number.

4.1 Algorithm 1 - Main

Path planning begins with the specified transport budget B and loops over the fol-
lowing four steps until either the budget is expended or the planner becomes stuck:

6: From the current state σ , take L lookahead steps with LOOKAHEAD. This updates
the path tree with possible future states L levels below the current node.

7: Find the location of the “best” adjacent node that will achieve the highest reward
at the end of L steps through that node.

8: Prune the path tree of all descendants under the current node.
9: Add sample point nodes between current and best locations and update the cur-

rent node to the latest node.

4.2 Algorithm 2 - Lookahead

Given an initial state σ and maximum recursion depth d, we recursively generate
and add possible future states to the path tree. Each step is taken with a new, tempo-
rary copy of all data. During each call, it performs the following:

1: Generate set of future states S f from σ .
3: Remove a fraction R∼U([0,1)) of the states (but not all) in S f .
7: Recurse on each descendant node.

4.3 Algorithm 3 - J-Horizon

Given a state σ and an information threshold t, probe outwards from the given lo-
cation and update the map:

2: Start with a sample interval of D.
3: Calculate number of future states to generate b per some factor F .
4: While S f is empty, perform the following:
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5: Generate b equally spaced points around a circle of radius D around σ .
6: For each such point, if the quality of the map at that point exceeds t, then add

the point to S f .
8-9: Increment δ by D and update b.

10: Update the information map.

Algorithm 1: MAIN Main function to run
1 loc← (0,0)
2 reward← 0
3 budget← B
4 σ ←{loc,reward,budget}
5 while σ .budget > 0 do
6 Lookahead(σ ,L)
7 lb← FindBest(σ)
8 Prune(σ )
9 σ ← AddSamples(σ .loc, lb)

10 return

Algorithm 2: LOOKAHEAD Recursively look several steps ahead
Input: State σ , recursion depth d
Output: Number of future states from location

1 S f = JHorizon(σ ,T )
2 for i← 1 to

⌊
R · |S f |

⌋
do

3 RemoveRandom(S f )

4 n← 0
5 foreach {σ f ∈ S f } do
6 if R > 1 then
7 n← n+1+Lookahead(σ f ,d−1)

8 return n

5 Results

In this section, we present the results of application of the J-Horizon algorithm on
simulated data, as well as data collected during a field trial.
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Algorithm 3: JHORIZON Generate frontier locations
Input: State σ , threshold t
Output: Set of possible future states to explore

1 S f ← /0
2 δ ← D
3 b← F

√
δ

4 while |S f |= 0 do
5 for σm ∈ GenerateNew(σ ,δ ,b) do
6 if GetInfo(σm)> t then
7 S f ← S f ∪{σm}

8 δ ← δ +D
9 b← F

√
δ

10 Depreciate(σ )
11 return S f

5.1 Simulation Results

2960 simulated scalar fields were generated for testing and validation of the J-
Horizon path planner. We compare the quality of the paths generated by the J-
Horizon planner to that of a simple lawnmower pattern with the same transport
budget. The quality metric is the sum of the data collected over the course of the
path. For the purpose of comparison, the information gathered was arbitrarily se-
lected to correspond to the deviation from a particular target value of the quantity
of interest (as seen in Figure 3). By identifying pertinent or interesting data, the
algorithm is able to successfully maximize data collection for a given deployment
region. Such quantities could represent the uncertainty in temperature or any other
data set that can be approximated by a scalar field.

The simulated vector field seen in Figure-3 is representative of many types of
scalar data. One of the benefits of the J-Horizon algorithm is that it can plan across
any type of scalar field: temperature, humidity, pressure, any kind of data that can be
represented as a scalar field. The point being that the user may specify the data being
looked for and J-Horizon will attempt to maximize the data collection. Figure 3
is an example of J-Horizon planning in high areas, whether those areas are high
temperature, pressure, etc.

Figures 4, 5(a), and 5(b) show a typical lawnmower, receding horizon, and J-
Horizon path, respectively, planned over a simulated scalar field. The same transport
budget was used for all three paths, yet the quality of the paths were 132, 189,
and 420, respectively. The J-Horizon planner outperforms lawnmower by a factor
of 3.18. Lawnmower required 3.51 times the transport budget to achieve the same
reward on the same map and still fails to bring the maximum uncertainty below the
threshold of 0.1.

Figure 6(a) compares the information gathering ability of the three algorithms
with increasing budget. J-Horizon gathers information most rapidly. When the bud-



Jumping Horizon Planning for Marine Monitoring 9

(a) Dense path planned over reward
field.

(b) Field reward level map. Red indicates high re-
ward.

Fig. 3 J-Horizon path planned over simulated scalar field

get is large enough, the information gathered by the receding horizon planner is
nearly equivalent to that of the J-Horizon planner.

Figure 6(b) shows the information gathering ability of the J-Horizon planner
against a lawnmower pattern as we decrease the fraction of generated future states.
For example, JH80% indicates the algorithm generates 80% of the usual number
of future states. Even at JH20%, J-Horizon significantly outperforms a lawnmower
path. This suggests it is possible to drastically reduce computational complexity
with only a minor performance penalty.

One of the most advantageous qualities of this planner is that it is not limited to
any particular search space. It is capable of planning paths over anything that can be
estimated by a scalar field.

5.2 Experimental Results

Here, we present results from field trials for the implementation of the J-Horizon
planner over a scalar field of surface temperature in a small lake in Colorado1.
Specifically, the goal presented to the ASV is to sample at low-temperature re-
gions, which corresponds to information reward in this case. We use the Platypus
Lutra ASV, as shown in Figure 1(b), to conduct an initial survey and then use the
J-Horizon planner to compute a new path with the objective to minimize the uncer-
tainty and maximize information gain on the underlying scalar field. The initial path
for representative data collection is presented in Figure 7(a), with the scalar field
generated from these data and the path planned by the J-Horizon planner shown in

1 The specific location of the field trials is Lake Haviland, outside of Durango, CO, located at 37◦

31’ 55” N 107◦ 48’ 27” W.
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Fig. 4 Lawnmower path on generated scalar field. Reward of 132.

(a) Path generated by receding horizon plan-
ner. Note the path lingers in the high-reward
area at the lower left for a long time before
moving on to more worthwhile areas. Reward
of 189.

(b) Path generated by J-Horizon planner with
threshold of 0.1. Once the peak at the lower-
left has been exhausted of potential reward, the
planner quickly moves on to other points of in-
terest. Reward of 420.

Fig. 5 Effect of reward threshold on J-Horizon jumping behavior
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(a) Information gathered with increasing bud-
get.

(b) The information gathering ability of the J-
Horizon planner against a lawnmower pattern
as we decrease the fraction of generated future
states.

Fig. 6 Performance comparison between lawnmower, receding horizon, and J-Horizon algorithms

Figure 7(b). The ASV executed the path prescribed by the J-Horizon planner, and
results are shown in Figure 8.

(a) The ASV’s initial path on Lake Haviland
outside Durango, CO.

(b) J-Horizon path generated on ASV path
shown in Fig. 7(a).

Fig. 7 Paths executed by the ASV to test and demonstrate the J-Horizon planner.

As seen in Figure 7(b), the J-Horizon gathers data in areas of low data yield from
the initial data collection. For instance, the lower left hand corner of Figure 7(b) is
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Fig. 8 The initial, data collection path (upper, blue) and the J-Horizon path (lower left, red) exe-
cuted by the ASV on Lake Haviland.

an area that was not covered in the initial survey and requires more data collection to
accurately represent the underlying field. This is the area of focus for our execution
of the J-Horizon planner path, as more than half of entire length of the planned path
lies within this region. The portion of the planned path that was executed is shown
in Figure 8 by the red path.

6 Conclusion

Improved algorithm design for autonomous vehicles operating on water has a
promising future in robotics. Collecting higher quality data that can be better uti-
lized by scientists, as well as reducing costs of the data collection, is a key goal
in making autonomous monitoring a reality. In this paper, we presented a receding
horizon algorithm that attempts to find an optimized path to perform costly, and
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sometimes difficult or dangerous, data collection in oceans or other large bodies of
water. In conclusion, we have presented a novel approach to better collect data over
scalar fields. Simulation results show a 14.53% gain in reward of information col-
lection compared to a lawnmower pattern while in simulation. The J-Horizon plan-
ner shows a 23.85% increase in information gathered in a simple experimental trial
compared to a lawnmower pattern. Both of these results show quality gains com-
pared to a lawnmower path of equivalent length. These optimized sampling paths
allow scientists to more easily collect pertinent data in the field.

7 Future Work

Extended hardware trials would verify that the simplifying assumptions made in the
algorithm design are realistic. Additional performance improvements could be made
by running the planning algorithm on the ASV to update the error of the scalar field
and re-plan in realtime. This would serve to allow the ASV to run autonomously in
highly dynamic environments for longer periods of time without having to transmit
data to the shore for processing.

The obvious extension of this work is the application to Autonomous Underwa-
ter Vehicles, and sampling in three dimensions. After further testing and validation
on 2-D scalar fields, we are planning to investigate problems that exist for both
underwater and aerial applications.

Finally, we are investigating an extension to the J-Horizon planner that includes
applications for frontier searching, enabling a robotic platform to explore areas with
unknown data quality. Such an algorithm will aim to balance explore vs. exploit in
missions, searching new areas while also collecting data in areas that are deemed
interesting or have low data density.
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