
Squared Error Distortion Metrics for Motion
Planning in Robotic Sensor Networks

Geoffrey A. Hollinger
Mechanical, Industrial & Manufacturing Engineering

Oregon State University
Corvallis, OR 97331 USA

E-mail: geoff.hollinger@oregonstate.edu

Chiranjib Choudhuri∗, Urbashi Mitra∗ and Gaurav S. Sukhatme†
Electrical Engineering Dept.∗ and Computer Science Dept.†

University of Southern California
Los Angeles, CA 90089 USA

E-mail: {cchoudhu, ubli, gaurav}@usc.edu

Abstract—We examine the problem of planning the trajectory
of a robotic vehicle to gather data from a deployment of
stationary sensors monitoring a set of dynamic source signals.
The robotic vehicle and the sensors are equipped with wireless
modems (e.g., radio in terrestrial environments or acoustic in
underwater environments), which provide noisy communication
across limited distances. In such scenarios, the robotic vehicle can
improve its efficiency by planning an informed data gathering
trajectory. We propose a novel performance metric for data
gathering in robotic sensor networks based on the concept
of squared error distortion. We analyze the formal properties
of the distortion function, and we propose a sampling-based
motion planning algorithm for optimizing data gathering tours
for minimal distortion. The proposed algorithms are compared in
simulation, and the results show that distortion metrics provide
substantial improvements in data gathering efficiency.

I. INTRODUCTION

The accurate measurement and interpolation of large-scale
spatio-temporal processes is becoming increasingly impor-
tant for sciences such as biology, climatology, geology, and
oceanography. In terrestrial environments, phenomena of in-
terest include seismic activity, volcanic activity, and catas-
trophic weather patterns. In marine environments, harmful
algal blooms, oil spills, and other oceanographic events are
extremely challenging to monitor effectively with available
technology (e.g., satellites, drifters, and human-operated sur-
face craft). Recent advances in autonomous robotic vehicles
and sensor networks have made it feasible to study and predict
these phenomena across large spatial scales and long periods
of time, but a number of challenges still remain. For example,
many currently deployed sensors must be removed from the
field to download their data. The ability to gather sensor data
in situ would improve the cost-effectiveness and lifespan of
the sensors and would make such deployments feasible across
larger scales.

In this paper, we propose a novel metric for coordinating the
actions of a robotic vehicle collecting data from a stationary
sensor network. The objective of the robotic vehicle is to
process the collected data in order to monitor a signal from a
dynamic source. The goal is to generate a good reconstruction
of the source signal at the receiver for the purpose of mon-
itoring. This problem setting becomes inherently estimation
theoretic in nature, and hence we propose to measure the

Fig. 1. Visualization of an autonomous vehicle gathering data from a
deployment of sensors monitoring a moving source. We propose a novel metric
based on squared error distortion that optimizes the trajectory of the vehicle
to provide an accurate reconstruction of the signal emitted by the source.

fidelity of the source estimate using the squared error dis-
tortion along the trajectory of the vehicle. The squared error
distortion captures the average error over time in estimating the
stochastic source. The distortion metric is widely used in the
wireless communications literature (see [1]–[3] for details) to
study the problem of lossy reconstruction of source sequences,
but to our knowledge is unknown in the robotics literature.

The novelties of this paper include the introduction of a
principled metric for autonomous data gathering based on
squared error distortion, the formulation of motion planning
algorithms to optimize this metric efficiently, and an empirical
comparison of the proposed techniques.

II. RELATED WORK

There has been increasing interest in the robotics commu-
nity on the problem of coordinating robotic data mules for
data collection tasks [4]. Recent research has often focused on
ground robots constrained to download data from all deployed
sensors. If the network is sparse, it can be efficient to partition
the sensors into sub-networks and optimize the collection over
each sub-network [5]. For denser networks, if the communica-
tion range of the sensors can be modeled as a fixed radius, it is
possible to develop efficient motion planning methods based
on the Traveling Salesperson (TSP) with Neighborhoods [6].



Such techniques have been implemented on robots operating
in real-world environments showing the feasibility of robotic
data mules with current technology [7].

For many applications of robotic sensor networks, a fixed
communication radius is not a valid assumption due to
gradual degradation of packet error rate over distance [8].
To provide more realistic communication modeling, two-ring
communication models have been explored [9], and methods
that optimize based on expected network latency have been
proposed [10]. Similar approaches have also been applied to
improve the placement of sensors to maximize communication
efficiency [11].

Robotic data collection from sensor networks has also
been applied to applications in underwater domains. In such
domains, communication is limited to long-range and low-
bandwidth acoustic communication [12] or shorter-range and
higher-bandwidth optical communication [13]. In our prior
work, we integrated robotic motion planning techniques with
realistic acoustic communication modeling for the problems
of station-keeping [14] and underwater search [15]. In recent
work, we explored the problem of robotic data collection
in underwater sensor networks, and we proposed motion
planning algorithms that optimize assuming a probabilistic
communication model [16]. In the current paper, we introduce
a new metric for such tasks that measures the integrity of
sensed information that is communicated over a channel.

III. PROBLEM FORMULATION

In this section, we formulate the problem of mobile data
collection from stationary sensors using an autonomous vehi-
cle. We consider a pre-deployed network of K sensors located
in Rd with d ∈ {2, 3}, which yields the 2D and 3D problems
respectively. We assume that the location ls(k) ∈ Rd is given
for each sensor k ∈ [1 : K], where K is the total number of
deployed sensors.

In the context of gathering data from pre-deployed sensor
fields, the motion planning optimization problem is to generate
a trajectory for an autonomous vehicle that retrieves data
from the sensors and minimizes the traversal cost of the
trajectory. The autonomous vehicle moves along a trajectory
P = [lv(1), · · · , lv(T )] (a trajectory is represented as a
collection of points in Rd) to gather data.

The moving vehicle can be thought of as a receiver that
processes the received output from the sensors. The location
lv ∈ Rd of the vehicle is assumed to be known with reasonable
fidelity (e.g., using an onboard localization system). The
movement of the vehicle is controlled and may be subject
to constraints, such as obstacles or vehicle kinematics. Based
on these constraints, a traversal cost C(l1, l2) is defined for
all pairs of points l1, l2 ∈ Rd.

The mobile data collection path planning problem requires
the optimization of a data quality objective function given
constraints on budget (e.g., time, fuel, or energy). We propose
a novel objective function that minimizes the squared error
distortion of a set of dynamic source signals. This metric

will be applicable across a wide range of robotic monitoring
domains.

A. Distortion Metrics

We examine the scenario where a robotic vehicle must
gather data from a deployment of stationary sensors to estimate
a set of correlated dynamic sources. The dynamic sources
{S(m)}Mm=1 are assumed to be located at l(m) ∈ Rd, ∀ 1 ≤
m ≤ M . The sources can be modeled as a discrete time
stochastic process {S(m)

i }i≥1, ∀ 1 ≤ m ≤M . The stochastic
process {S(m)

i }i≥1 for each m ∈ [1 : M ] is assumed to be
i.i.d. over time, whereas the different sources at any instant of
time i can be arbitrarily correlated to each other, or in other
words, {S(m)

i }Mm=1 are jointly distributed random variables
with joint density function fM (s

(1)
i , · · · , s(M)

i ) for each i ≥ 1.
For the purpose of this work, we will assume that {S(m)

i }Mm=1

is a zero mean jointly Gaussian random variable with a given
covariance matrix, i.e., (S

(1)
i , · · · , S(M)

i )T ∼ N(0,ΣS). Note
that when the covariance matrix ΣS is diagonal, then the
sources are independent of each other.

Each sensor observes the sources through a noisy broadcast
channel p(s1, . . . , sK |s). The observation of each sensor k,
which we refer to as the state of the sensor k, can be modeled
as a discrete time stochastic process {Ski}i≥1. The stochastic
process {Ski}i≥1 for each k ∈ [1 :K] is assumed to be i.i.d.
over time, whereas the state of different sensors at any instant
of time i can be arbitrarily correlated to each other, or in
other words, {Ski}Kk=1 are jointly distributed random variables
with joint density function fK(s1i, · · · , sKi) for each i ≥ 1.
For the purpose of this work, we will assume that {Ski}Kk=1

is a zero mean jointly Gaussian random variable with a
given covariance matrix, i.e., (S1i, · · · , SKi)

T ∼ N(0,Σ). The
covariance matrix can be evaluated by assuming an additive
white Gaussian noise channel between the source and each of
the sensors, which is given by

Ski =

M∑
m=1

hm(L(l(m), ls(k)))S
(m)
i + Zki, ∀ 1 ≤ k ≤ K,

(1)

where the receiver noise at the k-th sensor is Zki ∼ N(0, 1),
and hm(·) is channel coefficient, which is some deterministic
function of the distance L(·) between the source m and the
sensor k. Note that the covariance matrix is time invariant
since the process is i.i.d.

Each of the stationary sensors k is capable of transmitting
a function of its observation Xki = f(Si

k) (note that Xki is a
causal function of the sensor state Sk) to the vehicle through
a communication channel, which is not only influenced by the
receiver noise, but also by the presence of the stochastic source
in the medium. We assume an expected average transmission
power constraint at the sensors such that

n∑
i=1

E(x2
ki(S

i
k)) ≤ nPk, ∀ 1 ≤ k ≤ K, (2)



where the expectation is over the random source sequence
S(m). The communication channel between the sensors and
the vehicle is modeled as a noisy state dependent Gaussian
multiple access channel pt(y|s1, . . . , sK) and its ouput is given
by

Yi =

K∑
k=1

hk(L(lv(t+ 1), ls(k)))Xki(S
i
k)

+

M∑
m=1

S
(m)
i + Zi, (3)

where the receiver noise Zi ∼ N(0, 1) and {hk}Kk=1 are
channel coefficients, which are again functions of the distance
between the vehicle and corresponding sensor. Fading coeffi-
cients have been omitted from the second term to simplify the
following equations.

The vehicle’s goal is to move along a trajectory collecting
data from the sensors to estimate the underlying sensor field
with maximum fidelity. The fidelity of a source estimate for
each of the sources at a particular location is measured by the
expected distortion

D(lv)(m) = E(d(S(m)n, Ŝ(m)n))

=
1

n

n∑
i=1

E(d(S
(m)
i , Ŝ

(m)
i (Y m))), ∀ 1 ≤ m ≤ N,

(4)

where d : S × Ŝ → [0,∞) is a distortion measure between a
state symbol s ∈ S and a reconstruction symbol ŝ ∈ Ŝ, which
is a function of the observation yn at a particular location lv . In
this work, we will consider squared error distortion d(s, ŝ) =
(s − ŝ)2. The aim of the autonomous vehicle is to estimate
the underlying m-th source S(m)n in minimum mean squared
error (MMSE), i.e.,

D(lv)(m) = min
ft(·),Ŝ(m)

t (·)

1

n

n∑
i=1

E(S
(m)
i − Ŝ(m)

i (Y n))2, (5)

where ft(·) is the encoding function at the sensors. The
estimate is made at each location and updated along the
trajectory as the vehicle gathers information.

As the vehicle receives more information from the sensors
along its trajectory of travel, it updates the effective distortion
De(Pt+1)(m) in the estimation of each of the underlying
sources m, which is given by

De(Pt+1)(m) =
tDe(Pt)(m) +D(lv(t+ 1))(m)

t+ 1
, (6)

where De(P1)(m) = D(lv(1))(m), and D(lv(t))(m) is given
by (4). In some scenarios, it may be desirable to give recent
distortion values additional weight in the total effective dis-
tortion. This can be achieved by adjusting the weighting of
De(Pt)(m) versus D(lv(t+ 1))(m) in (6).

By using the function De(·) as the measure of data quality,
we now have a fully defined robotic data collection problem.

Problem 1: Given a trajectory cost function C(P), and a
set of possible trajectories P ∈ ψ, find

P∗ = argmin
P∈Ψ

M∑
m=1

βmD(P)(m)

s.t. βm ≥ 0,

M∑
m=1

βm = 1 and C(P) ≤ B, (7)

where D(P)(m) is the distortion function, βm are pre-
established weights that signify the relative importance of
the different sources, T is the index of the last point on
the trajectory and B is a budget threshold on the cost of
the trajectory (e.g., maximum mission time, battery life, or
remaining fuel).

B. Communication Strategy
In this subsection, we propose an encoding strategy at the

sensors and a decoding strategy at the vehicle that minimizes
the one-step distortion D(lv(t+1))(m) in estimating the source
m for a particular vehicle location lv(t+ 1) at time t+ 1. We
assume that the stationary sensors have limited capabilities,
and hence we choose the encoding function XKi = f(Si

k) =
αkSKi, where αk =

√
Pk/Σ(k, k) is a constant chosen to

satisfy the input power constraint of Pk at sensor k. This
simple amplification strategy at the sensors may be suboptimal,
but with the practical constraint of limited processing power
at the sensors, amplify-and-forward is the most natural coding
strategy to consider and offers good performance as seen in
the sequel.

Let us compute the one-step distortion D(lv(t + 1))(m)

in estimating the m-th source for the proposed encoder and
decoder as the data gathering vehicle moves from position
lv(t) to lv(t + 1). We assume that when the vehicle is at
location lv(t), the effective distortion in estimating the source
m till time t is given by De(Pt)(m). To compute the one-step
distortion, let us look at the the received output at the moving
vehicle, when it is at location lv(t+ 1). It is given by

Yi =

K∑
k=1

hk(L(lv(t+ 1), ls(k)))αkSki +

M∑
m=1

S
(m)
i + Zi

(8)

= [ S1i . . . SKi ]h+ [ S
(1)
i . . . S

(M)
i

]1 + Zi,

(9)

where h and 1 are respectively Kand M dimensional col-
umn vectors with their j-th component given by hj =
hj(L(lv (t+ 1) , ls (1)))αj and 1j = 1. We choose

Ŝ
(m)
i (yi) = E(S

(m)
i |Yi = yi) = E(S(m)Y )

E(Y 2) yi. The expected
distortion in estimating the m-th source at the vehicle, when
it is at location lv(t+ 1) is

D(lv(t+ 1))(m) = σ2 − E(S(m)Y )2

E(Y 2)
, (10)

where
E(S(m)Y )2

E(Y 2)
=

(Σc(m, :)h+ ΣS(m, :)1)2

hT Σh+ 2hT ΣT
c 1 + 1T ΣS1 + 1

. (11)



Here Σc is the M ×K cross-correlation matrix between the
sources and the sensor observations defined earlier. The one-
step distortion D(lv(t + 1))(m) is a function of the distance
between the source and the sensors, the sensors and the vehi-
cle, and the covariance matrix of the source ΣS . So to calculate
this distortion function, the vehicle requires the knowledge of
these parameters. We will relax these assumptions in the next
section.

IV. MOVING SOURCES

So far in our discussion, we have assumed full channel state
information at the sensors and the vehicle, i.e., knowledge of
{hm}Mm=1 in (1) and {hk}Kk=1 in (3). This assumption may
not be realistic when the dynamic source is not fixed at a
particular location. In this section, we extend our framework
to include the scenario of monitoring a moving source.

The sensors and the vehicle attempt to estimate the exact
location of the source at each instant of time. We assume the
vehicle knows the position of the source within an uncertainty
region S (the position of the source is distributed according
to p(l), l ∈ S) at each instant of time. Such an estimate
could be achieved through an extended Kalman filter (EKF)
or other tracking method. We also assume that in the moving
source case, the uncertainty region moves across the sensor
field according to the dynamics of the source motion (see
Figure 1).

We use encoding and decoding strategy outlined below for
the moving source case. Suppose that the exact location of the
source at any instant of time is l ∈ S. The sensors observe the
source through a noisy communication channel, the output of
which at sensor k is given by (1) with M = 1. The sensors
again send a amplified version of their observations to the
vehicle to satisfy the transmission power constraint of (2). The
amplification factor

α(k) =

√
Pk

Σ(k, k)
=

√
Pk

h2(L(l, ls(k)))σ2 + 1
(12)

is a function of the channel coefficient, which in turn depends
on the exact location of the source l ∈ Rd. Since the input
power constraint has to be met for all possible locations of the
source inside the sphere S, for a fixed Pk, each sensor finds
a location on or within the source cloud which is the solution
of the following optimization problem

l̂ = argmax
l∈S

E(Sk)2 ≡ argmax
l∈S

h2(L(l, ls(k))). (13)

The modified amplification factor at sensor k is determined by
calculating α(k) assuming that the source is at l̂. The value
of α(k) derived in this fashion will always satisfy the input
power constraint since for any source position l ∈ S

E(Xk)2 = E(αkSk)2 (14)

=
Pk(h2(L(l, ls(k)))σ2 + 1)

h2(L(l̂, ls(k)))σ2 + 1
≤ Pk. (15)

With this encoding strategy, the vehicle performs path
planning by evaluating the one-step distortion in estimating the

source based on an MMSE estimator discussed in the previous
sections. However, since the one-step distortion is a function
of the exact location of the source (which is not known to the
vehicle), the objective of the vehicle is to determine a value
for the one-step distortion D(lv), such that it is close to the
one-step distortion value with the true location of the source.
Suppose that the one-step distortion function if the vehicle
knows the exact location of the source is given by Dl(lv),
then without the knowledge of the source location, the vehicle
chooses a one-step distortion function D(lv) which is equal
to the

D(lv) =

∫
S
Dl(lv)p(l)dS = E(Dl(lv)), (16)

where p(l)dS is the probability of the source being in an
infinitesimal volume around l ∈ S . To calculate E(Dl(lv)),
the vehicle randomly selects n points l(j), 1 ≤ j ≤ n from
on or within the region S i.i.d. according to the distribution
p(·). The one-step distortion D(lv) is then given by

D(lv) =
1

n

n∑
j=1

Dl(j)(lv). (17)

This empirical mean of the distortion value converges to
E(Dl(lv)) in the limit as the number of sample points n→∞
by the law of large numbers. It is easy to see that the decoding
strategy employed is optimal with respect to the amplify-
and-forward sensor strategy since the channel coefficient is
averaged over all possible realizations inside the uncertainty
cloud.

V. PROPERTIES OF THE DISTORTION METRIC

In this section, we show that the distortion metric defined
in the previous section is neither monotonic nor submodular,
two properties often associated with information optimization
objectives [17]. These formal properties will provide insight
into the design of motion planning algorithms suitable for
optimizing data gathering trajectories that minimize distortion.

Definition 1: Let Ω be the set of grid points of the sensor
field. A function f : 2Ω → R defined on the subsets of Ω, is
said to be monotonically decreasing if for every T ⊆ S ⊆ Ω,
we have that f(T ) ≥ f(S).

Definition 2: A function f(·) defined above, is said to be
submodular iff for every X ⊆ Y ⊆ Ω and x ∈ Ω\Y we have
that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

It is easy to see that the effective distortion function De(·) is
not monotonically decreasing since it is inversely proportional
to the channel qualities between the vehicle and the sensors
(and thus proportional to the Euclidean distance between the
sensors and the vehicle according to our channel model).
Hence, along an arbitrarily chosen trajectory P , the effective
distortion may increase or decrease depending on the varying
channel qualities along the trajectory.

The effective distortion metric De(·) is also not submodular.
To see this, let us consider a trajectory P1 ⊆ P2 and consider
a new point {x} ∈ Ω \ P2. The effective distortions along the



trajectory are given by:

De(P1 ∪ {x})−De(P1) =
D(x)−De(P1)

|P1|+ 1
(18)

De(P2 ∪ {x})−De(P2) =
D(x)−De(P2)

|P2|+ 1
, (19)

where D(x) is the one-step distortion of the source observation
Si at location x ∈ Ω. Since the effective distortion of the
source observations De(·) is not monotonic (varies randomly
along a trajectory depending on the variation of channel
quality along the path), there is no definite ordering between
De(P1∪{x})−De(P1) and De(P2∪{x})−De(P2) for any
selected paths in the sensor field. Thus the effective distortion
metric De(·) is also not submodular.

VI. MOTION PLANNING ALGORITHMS

We now discuss a sampling-based motion planning algo-
rithm that efficiently generates trajectories to minimize the
distortion metric while also maintaining the cost budget con-
straints. As discussed above, the distortion metric is neither
monotone nor submodular, which excludes motion planning
algorithms that rely on these assumptions [18], [19]. The
distortion metric is also not convex, and it often contains a
number of local minima. Thus, gradient-based methods are
likely to perform poorly (see the simulations in the following
section).

Our approach extends the RRT* [20] and Information-
Rich RRT [21] algorithms to provide optimized distortion
minimization. The key idea is to sample the configuration
space of the vehicle (i.e., locations where the vehicle may visit)
and to build up a tree of possible trajectories by incrementally
extending candidate trajectories towards the sampled points.
The main challenges presented by the distortion metric are
(1) calculating the distortion at each node on the tree in an
efficient manner, and (2) focusing the tree generation such that
candidate paths satisfy the budget requirements. We employ
the Rapidly-exploring Information Gathering (RIG) algorithm
proposed in our prior work, which is designed to address these
challenges [22].

One desirable property of the distortion metric is that the
distortion at time t + 1 is fully defined by the next segment
of the vehicle’s trajectory, the locations of the sensors, the
location of the information source, and the source distortions
De(Pt)(m) at time t along that trajectory. It is straightforward
to build trajectories in an incremental fashion by storing the
trajectory segments and the matrix De(Pt)(m) at each node.
In the case of an unknown source, it is sufficient to store
an estimate of the distortion and then propagate that estimate
forward. Through this incremental path generation, we can
extend the RIG algorithm to the budget constrained distortion
minimization problem. We will refer to the extended algorithm
as the BCDM-RRT.

VII. SIMULATIONS

We now provide simulations to test the proposed motion
planning techniques and their effectiveness in minimizing the

distortion metric. The simulations were performed in C++ on
an Ubuntu Linux desktop with a 3.2 GHz Intel i7 processor
with 9 GB of RAM. We first examine the performance of
the proposed BCDM-RRT sampling-based motion planner
in a 10 km × 10 km 2D environment with 10 randomly
placed sensors and a randomly placed source. The vehicle is
capable of unconstrained motion with a maximum speed of 1
km/hr. The environment contains a varying number of circular
obstacles generated with random radii up to 5 km. In these
simulations, the cost constraint considered is the mission time,
which represents the time that vehicle may remain deployed.

We compare the BDM-RRT method to a gradient-based
approach. Gradient-based optimization methods have previ-
ously been used in mobile sensor networks to optimize for
localization accuracy [23]. We also compare to a heuristic that
moves directly to the source, which has been applied in prior
work for robotic data muling [7].

A. Stationary Sources

Figure 2 shows the results from data gathering tours using
1000 random deployments with an increasing number of
obstacles for two mission times. Examples are shown for
the case of a single source and for the case of multiple
(five) sources. In all cases, the BCDM-RRT outperforms the
gradient-based method due to its ability to escape local-
minima in the distortion function and find a more globally
optimal path. The advantage of the BCDM-RRT is greater
with increasing mission times and with fewer obstacles (due
to fewer constraints on the vehicle’s motion). The BCDM-RRT
was run with 100,000 samples, which took approximately 10
seconds per deployment.

The benefit of BCDM-RRT over the gradient-based method
is also significant in the multi-source case where there is
increased variation of the objective function caused by the
presence of multiple sources. We also compare to two heuris-
tics that are unaware of the underlying distortion: a random
walk and a strategy that moves directly to the information
source. The BCDM-RRT and gradient-based methods both
outperform these heuristics, which demonstrates the impor-
tance of considering distortion in the trajectory optimization.

B. Moving Sources

We also examine the benefit of utilizing the distortion
metrics for the case of a single moving source. Figure 2 shows
results from simulations using a source that moves on a fixed
trajectory. The trajectory of the source is known to the vehicle,
but the exact location is only known within 1 km (i.e., the
uncertainty region is a sphere with radius 1 km).

In these simulations, since the location of the source is
not known exactly, the heuristic strategy moves to the center
of the uncertainty region. Similar to the case of stationary
sources, the BCDM-RRT method (with 10,000 samples) and
the distortion gradient method outperform the heuristic meth-
ods. The gradient-based method is more competitive here
because the necessity of estimating the position of the source
negates some of the benefit of long-term planning. Even in this
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Fig. 2. Comparison of the BCDM-RRT sampling-based motion planning algorithm to a gradient-based approach and two heuristic strategies in a 10 km× 10 km
environment with obstacles. The simulated vehicle is capable of unconstrained motion at a maximum speed of 1 km/hr. Results are shown for a single source
and for five sources. The proposed method provides improved estimation of the source signal for a given trajectory length. Each data point is averaged over
1000 random sensor deployments, and error bars are one SEM.

challenging scenario, the BCMD-RRT still provides improved
performance.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have examined the problem of cost-
constrained motion planning of a robotic vehicle to gather
data from a network of stationary sensors tracking a dynamic
source. Since the underlying objective of path planning is
to collect data from the sensors to estimate a stochastic
source sequence, we proposed a performance metric based
on the concept of minimizing the squared error distortion in
the sensed signal. We analyzed the formal properties of the
distortion function, proposed a communication strategy, and
evaluated the distortion metric for this communication strategy.
In addition, we extended our results to moving sources,
which is of immense practical importance for many spatio-
temporal monitoring applications. We introduced a sampling-
based motion planning algorithm for optimizing data gathering
tours for minimal distortion, and we showed that planning
using distortion metrics provides significant improvements in
data gathering efficiency versus naive methods.
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