
Compensating for Unmodeled Forces using Neural Networks in Soft
Manipulator Planning

Scott Chow1, Gina Olson2, and Geoffrey A. Hollinger1

Abstract— Soft manipulators made of deformable materials
have great promise in applications that require additional
flexibility and compliance; however, these characteristics also
make them difficult to simulate accurately and quickly. The lack
of a fast and accurate simulator prevents motion planners from
generating feasible plans, which would enable soft robots to
achieve more complex tasks, such as manipulation. In this work,
we propose combining a simplified quasistatic model with a
neural network that learns to compensate for unmodeled forces,
such as friction and loads, in order to create a fast forward
model for soft manipulators with multiple segments. We show
that the resulting neural network model reduces average end
effector position error by 62% compared to the quasistatic
model, while still being fast enough for motion planning. We
also incorporate this model into an RRT*-based planner and
demonstrate that the plans generated using our model are more
likely to be feasible when executed on hardware than plans
generated with a simulator using the quasistatic model.

I. INTRODUCTION

Currently, robotic manipulators are widely used in highly
structured environments, such as factory assembly lines, but
a recent goal has been to expand their usage into more
challenging unstructured environments, such as underwater
manipulation and human-robot cooperative assembly. Soft
robots made of deformable materials have great potential for
tasks requiring safety and flexibility such as manipulating
delicate objects. However, a motion planner with an accurate
simulator for soft robots is necessary to generate plans for
these robots to accomplish more complex tasks.

Motion planning is a critical component of robotic systems
that enables efficient navigation around obstacles. Sampling-
based motion planning is a family of planners commonly
used in robots ranging from vehicles to manipulators. How-
ever, sampling-based planners can potentially query a simu-
lator thousands of times to generate a solution; this requires
a fast model that can keep up with the planner.

Creating fast, yet accurate, models of complex systems is
difficult. Pneumatic soft robotic manipulators are particularly
challenging to model. The entire shape of the manipulator
changes as it actuates, which complicates the internal forces
within the manipulator. Chaining multiple segments together
to increase the degree of freedom of the arm also introduces
load, as segments further down the chain act as loads on base
segments. Reduced-order, closed form solutions must neglect

This work was funded in part by NSF award IIS-1734627 and ONR
award N00014-21-1-2052.

1 Collaborative Robotics and Intelligent Systems (CoRIS) Institute
at Oregon State University, Corvallis, OR 97331, USA {chows,
geoff.hollinger}@oregonstate.edu,

2Department of Mechanical Engineering at Carnegie Mellon University,
Pittsburgh, PA 15213. golson@andrew.cmu.edu

loads such as friction, which can cause large errors between
predicted and observed behavior, as seen in Figure 1.

Previous approaches have examined modeling soft ma-
nipulators using simplified kinematics models, which offers
speed at the cost of accuracy. Physics-based approaches are
significantly more realistic and accurate, but are too slow
for use in motion planning. Data-driven approaches offer a
promising middle ground between speed and accuracy.

In this work, we present a data-driven approach for mod-
eling pneumatic soft manipulators with multiple segments.
We propose using a neural network that leverages the output
of a recently developed quasistatic no load model [1] to ac-
curately model the manipulator’s behavior while maintaining
faster than real time prediction speed to prevent bottlenecking
the motion planner. This model is shown to more accurately
simulate our soft manipulator compared to the quasistatic no
load model. Using this model in a simulator for a sampling-
based planner, we show that the resulting plans are more
likely to be feasible and achieve the goal position while
avoiding obstacles more reliably than plans generated using
the no load model.

II. BACKGROUND

In this section, we review relevant work in modeling soft
arms and motion planning techniques.

1) Modeling Soft Robots: Prior work for modeling soft
robots can be viewed in two categories. Kinematic models
parameterize soft and continuum robots with a set of param-
eters that describe the robot’s shape. The most prominent of
such models is the piecewise constant curvature (PCC) model
[2], which makes the assumption that each segment can be

Fig. 1: The final state of the arm after a cycle of inflating,
then deflating all right side segments (blue). The arm does
not return to its outstretched state due to friction and load,
which are not considered by the quasistatic model (red).

parameterized by a length and curvature. The PCC model
is very fast to compute and thus can be used for motion
planning. However, the PCC assumption is often violated in
practice, especially when external forces act on the arm.

Physics-based models examine the internal forces within
the arm to model soft arms. Previous approaches have
used the Discrete Cosserat Model [3] and Euler-Bernoulli
Beam Theory [4]. Additionally, finite element analysis-based
approaches have also been applied to model soft robots
[5]. While these models tend to be accurate, they are also
relatively slow to compute, requiring minutes to solve for a
second of simulation [3]. This slow computation time makes
these models unsuitable for use with motion planners.

Recently, data-driven approaches have been used for mod-
eling soft robots. For example, deep networks have been used
to learn a mapping of data from piezoresistive sensors to
arm shape to enable better proprioception [6]. Other works
have used a hybrid of kinematic or physics-based models and
neural networks to compute the forward and inverse kinemat-
ics of soft [7] and continuum arms [8]. These approaches
offer fast simulation while providing reasonably accurate
predictions; however, they are primarily used in controllers
and for modeling arms with two or fewer segments.

To address the limitations of previous data-driven ap-
proaches, we draw inspiration from faster than real-time soft
material simulation in computer graphics. One promising ap-
proach [9] uses a combination of a linear least squares model
and a neural network model to predict how a deformable
object reacts to forces in real time. Our work combines a
simplified physics-based model for a single segment under
no load with a neural network that learns to account for
unmodeled forces to accurately simulate a multi-segment arm
while maintaining fast computation speed.

2) Planning for Soft Manipulators: Previous approaches
to soft manipulator planning have examined using genetic
algorithms and trajectory optimization. Xiao et al. [10] pro-
posed the Real-time Adaptive Motion Planner that uses a ge-
netic algorithm for online planning for a tendon-driven con-
tinuum manipulator modeled using the Piecewise-Constant
Curvature model. While genetic algorithms allows for online
planning in dynamic environments, the resulting trajectories
have few guarantees and many suboptimal actions. Marchese
et al. [11] takes a trajectory optimization-based approach to
move their soft arm through a sequence of human-specified
waypoints through the maze. Unlike our approach, they do
not address the generation of these waypoints.

3) Sampling-Based Motion Planning: Sampling-based
motion planning utilizes samples of the robot’s configuration
space to generate a plan. Rapidly-exploring Random Trees
(RRTs) are a common formulation of sampling-based motion
planners [12] that involves repeatedly sampling the arm
configuration space to find a path from the start to goal.
RRT* is an asympotically optimal variant of RRT that takes
into account path cost in plan formulation [13] in order to
find the lowest cost path to the goal.

In prior work, RRTs were used to generate plans for
soft manipulators by planning in curvature space using the

constant curvature model [4]. However, one of the primary
challenges with that approach was finding consistent map-
pings between curvatures and actuation pressures. In this
work, we adapt the RRT* algorithm for use with our neural
network model to generate plans for our soft manipulator.
Not only do we now consider path cost in planning, but we
also plan in pressure space using the neural network model,
which improves the feasibility of our plan.

III. PROBLEM FORMULATION

This section details the forward simulation problem and
the motion planning problem for an n segment soft arm.

A. Forward Simulation Problem

In order for a sampling-based motion planner to generate
plans, it is critical to have the ability to quickly forward
simulate how the shape of the arm changes given some
change in pressures. For our pneumatically driven arm, the
configuration space at time t is given by the pressures of
the actuators for each segment qt = [p0, . . . , pn], where
positive/negative pressures denote pressurizing the right/left
sides of the arm respectively. We make the assumption that
only one side of the arm will be pressurized at once.

The shape of the arm in the workspace is defined by the
poses x = [x, y, θ] of m points along the backbone of the
arm. Thus, the backbone of the arm at time step t is Bt =
[x1,t,x2,t, . . . ,xm,t]. The end effector pose is defined as the
pose of the distal-most point of the arm, xm.

The forward simulation problem can be given as fol-
lows: given the arm’s previous configuration qt−1, previous
backbone pose Bt−1, and the arm’s change in configuration
∆q = qt− qt−1, we want to find the backbone at the current
time step Bt. That is, we want to find a forward simulation
function F such that:

Bt = F (qt−1,∆q,Bt−1) (1)

B. Motion Planning Problem

Next, let us define the motion planning problem for the
soft arm. Let B denote the set of possible backbone positions,
and Bfree ⊆ B denote the subset of backbones in which the
arm is not in collision with obstacles in the workspace. Let X
denote the space of possible end effector poses. Let the path,
P = (∆q1, . . . ,∆qT), be a set of pressure changes similar
to the action space representation used in [14]. The motion
planning problem is defined as follows: given an initial arm
pressure configuration q0, initial backbone pose B0, and a
goal end effector pose region Xgoal ⊆ X , find the optimal
path P ∗ that satisfies the following:

P ∗ = arg min
P∈P

Π(P) s.t.

∀Bi ∈ Ψ(P,B0, q0), Bi ∈ Bfree
xm,t ∈ Xgoal

where P is the set of all possible paths, Π is the cost function
defined in Equation 2, and Ψ(P,B0, P0) is a function that
recursively maps F onto the vector of pressure changes P
beginning from the initial backbone pose B0 and initial

pressure q0, yielding the set of backbone poses for each
timestep t ∈ 1 . . . T .

Our cost function is defined to be the absolute sum of
change in pressures across all segments in the plan:

Π(P) =
∑

∆q∈P

∑
∆p∈∆q

|∆p| (2)

IV. METHODS

In this section, we present the quasistatic no load model
that is leveraged in our approach, our neural network model,
and a RRT*-based planning algorithm for soft manipulators.

A. Quasistatic No Load Model

The quasistatic no load model is derived by first charac-
terizing the actuator by mapping the pressure of an inflated
actuator to its strain via a fourth order polynomial fit. Olson
et al. derived a quasistatic bending model using an Euler-
Bernoulli formulation [1]. For a planar segment composed
of McKibben actuators under no load, the curvature of a
segment is related to the strain of the actuator by:

κ =

(
− t
ε
− t

2

)−1

(3)

and the length of segment is related to the strain by:

l = (1 + 0.5ε)l0 (4)

where ε is the strain, t is the width of the segment, κ is the
curvature of the segment, l0 is the length of the segment
when unpressurized, and l is the shortened length of the
segment. Using our polynomial fit, we can find curvature and
segment length given pressure. Under the piecewise constant
curvature assumption, we can then compute the backbone of
the segment using these parameters.

This quasistatic no load model makes the simplifying
assumption that the segments are frictionless and under no
load, which are violated with real-world arms. First, the
quasistatic assumption is violated since our arm is continu-
ously actuated without stopping. Second, there are frictional
forces between the planar arm and the work surface. Finally,
all segments of the arm are subject to loads because distal
segments in the arm act as additional mass that must moved
by proximal segments. Thus, we use our neural network to
adjust for these violated assumptions.

B. Neural Network Model

To address the forward simulation problem, we propose
a neural network-based approach (shown in Figure 2) for
finding how the backbone changes as segments are inflated
and deflated. The inputs to the network are the previous and
current arm configuration pressures qt−1 and qt, the previous
backbone of the arm Bt−1, and the predicted output of the
no load quasistatic model B̃t = F̃ (qt). The output of the
network is a compensation vector that encodes the deviation
of the no load model from reality due to friction and other
load forces that have been ignored in the no load model. We
train a multi-layer feedforward neural network Φ such that:

Bt = Φ(qt−1, qt, Bt−1, B̃t) + B̃t (5)

Because the physics of the internal forces of the arm are
complex, it is difficult to train a network to predict the
backbone purely from collected data. Thus, our approach
uses the neural network to learn to predict the difference
between the backbone predicted by the fast, but less accurate,
simplified quasistatic model, F̃ , and the true backbone.

Because the sequential queries of a sampling-based plan-
ner are often not related to each other, it is critical that the the
output of the network to one query must only be dependent
on the current input into the network. To account for this,
we instead embed limited recurrence indirectly by allowing
the network to take the pressure configuration and backbone
at the previous time step as input. This backbone is either
known at t = 0 or is the previous output of network.

C. Network Training

One of the difficulties of training this network is the
implicit recurrence due to the network taking in the output
at a previous time step as input. The traditional training
process of iterating through minibatches of the dataset results
in instabilities in both training and execution, as a single
misprediction would result in divergence from the training
set. In previous works [9], it has been shown that training
across windows of time and backpropagating the average
error of the entire trajectory leads to more stable training.

Thus, to train the network, we split our dataset into
windows of time. For each window, we use our network
to predict the backbone of the arm repeatedly across the
entire window. The error for a particular frame is calculated
as the sum of L1 errors between the expected pose and the
predicted pose along the entire length of the backbone of
the arm. The overall error across a window is the average of
the frame errors. This window error is then backpropagated
using stochastic gradient descent. Using this approach, we
are able to reduce instability caused by using our network
output as input for a subsequent step during training.

D. Pressure Space RRT*

Now that we have a forward model for our simulator, we
can now utilize sampling-based planners to generate plans
for our arm. In this work, we modify the traditional RRT*
algorithm to account for using our compensation network.

Fig. 2: A diagram of the proposed neural network model. q
is the current set of pressures, B̃ is the prediction of the no
load model, ∆B is the compensation to the no load model
backbone computed by the neural network, and B is the
adjusted backbone configuration of the arm.

The main adjustment that must be made is that every state
on the tree must account for both the configuration q as well
as the backbone B. This is because it is possible for the same
set of pressures to result in different backbones because of
how that set of pressures was reached.

This leads to two adjustments to the RRT* algorithm.
First, when choosing a parent node to grow towards the
sampled state, we instead expand all the parent nodes towards
the sampled state without collision checking and sort the
resulting potential new nodes by cost. Then from lowest to
highest cost, we check for collisions and choose the lowest
cost state that is collision-free to keep in our tree. Second,
when rewiring, we must check that it is possible to get to
not just the same pressure configuration, but also the same
backbone configuration before allowing rewiring to occur.

E. Goal Biasing

Goal biasing is a common technique in which a set of
potential goal configurations are used to bias the search and
reduce planning time [15]. In order to compute potential goal
configurations for goal biasing, we cannot use our trained
network as it is not invertible. We instead invert the no load
model to generate potential goal solutions to bias our search.

The process for generating goal solutions is as follows:
we first compute the spatial Jacobian matrix that relates
change in curvature to change in end effector position. We
derived the general form of the Jacobian for a piecewise-
constant curvature arm by following a similar process as
[16]. However, for our arm, segment length is related to
curvature through strain. To address this, we find the re-
lationship between change in length and change in curvature
by combining equations (3) and (4) and taking the derivative
with respect to time:

l̇ = Dκ̇ =

{
−2l0t

4 κ̇, κ = 0
−2l0tκ

|κ|(t|κ|+2)2 κ̇, else
(6)

Accounting for this relationship, the generalized form of our
spatial Jacobian for a single segment is:

[
v
ω

]
= Jj

[
κ̇

∆φ̇

]
=

0 1

−(l + κD) sin ∆φ 0
(l + kD) cos ∆φ 0
D + sinκl−κl

κ2 η 0
1−cosκl
κ2 η cos ∆φ 0

1−cosκl
κ2 η sin ∆φ 0

[
κ̇

∆φ̇

]
(7)

where v, w are the linear velocity and angular velocity of the
end effector respectively, η = −κ̇l2 and D is the coefficient
term defined in (6). ∆φ and ∆φ̇ which correspond to the
change in bend plane angle and its velocity are both 0 in the
planar case. As discussed in [16], we can find the Jacobian
for an n-segment arm by stacking the Jacobians:

J = [J0|AdT0
J1|...|AdTn−1

Jn] (8)

where Jj is the jth segment Jacobian and AdTi
is the adjoint

of the transform from the base to the end of segment i.
Once the Jacobian has been computed, we use the Newton-

Rhapson method [17] to solve the inverse kinematics prob-
lem. The result is a set of curvatures that would result in the

end effector at the goal according to the piece-wise constant
curvature model. We then invert the polynomial mapping
from the quasistatic no load model and solve the resulting
linear system of equations to obtain a set of pressures
that represent a potential goal configuration. We repeat this
process multiple times in order to sample the goal region to
generate a set of approximate goal solutions to bias towards.

V. EXPERIMENTAL SETUP

In this section, we describe the three segment arm used
in our experiments, the training and validation data set
collection process, and the parameters of our neural network.

1) Three Segment Soft Manipulator: In this work, we
apply our neural network forward prediction model and pres-
sure space RRT* to the planar three segment pneumatically
driven soft manipulator shown in Figure 3. Each segment
consists of 4 McKibben contracting actuators, two along the
left side of the segment and two along the right. The actuators
are composed of air bladders made from EcoFlex 00-30 and
wrapped with expandable polyester sheathing. To construct
a manipulator using these actuators, we utilize 3D-printed
PLA support plates along the backbone of arm. Actuators are
secured onto the left and right side of the support plates. Our
three segment arm features 16 support plates. By tracking the
pose of these plates using Optitrack markers, we compute the
points along the backbone of the arm. More details on the
fabrication and assembly of the arm can be found in [4].

Each segment is 235 mm long. The three segment arm has
a staged configuration with decreasing widths. The widths
of each segment from base to end are 50, 30, and 17.2 mm
respectively. In order to move the arm, actuators on one side
of a segment are inflated, causing them to contract and the
segment to bend towards the corresponding side. Thus the
resulting planar arm has 3 controllable degrees of freedom.
Each segment is inflated and deflated using a series of pumps
and inflation/deflation valves that are controlled by a PD
controller with hand-tuned gains to hold a set point pressure.

2) Data Set Collection: To collect a dataset for training
and validation of our compensation network, we placed our
soft manipulator into an Optitrack motion capture system
collecting backbone pose data at 20 Hz. Each segment can
have either the left actuator fully inflated, the right actuator
fully inflated, or have neither actuator inflated. This results
in 27 different sets of pressure configurations. From these
27 configurations, there are 729 ways to transition from one
configuration to another. For our training set, we executed
each of these transitions on our arm and recorded actuator
pressure and backbone points. For our test set, we generated
100 random goal arm configurations and executed them
sequentially on hardware.

Fig. 3: Three segment soft manipulator used in experiments.

Fig. 4: The neural network model achieves lower position and orientation end effector error across the test set compared to
the no load model.

3) Network Parameters and Training: For our compensa-
tion network, we instantiated a 3 hidden layer feedforward
neural network with 100 hidden units each layer that uses
the ReLU activation function. To prepare our training data,
we normalized our data between 0 and 1. Then we split
our training set into windows of 32 frames to train across
windows of time as described in Section IV-C. The windows
are grouped into batches of 128, which are then fed into the
network for training using stochastic gradient descent with
a learning rate of 10−4. The network was trained until the
test error converged after 6000 epochs.

VI. MODEL VALIDATION RESULTS

To validate our model, we applied both the no load
model and the neural network model on the test set created
by executing 100 random arm configurations. We compare
the pose of the end effector predicted by the models to
the actual pose from ground truth data collected from the
Optitrack for the arm in Figure 3. The results are provided in
Figure 4. The no load model has an average positional error
of 16.2±8.8 cm and an average orientation end effector error
of 0.61 ± 0.48 radians. In comparison, the neural network
model had an average positional error of 5.8 ± 4.7 cm and
an average orientation error of 0.16 ± 0.13 radians. This
corresponds to a 62% decrease in positional error and a 73%
decrease in orientation error. This suggests that the neural
network model is able to more accurately predict the pose
of the end effector compared to the no load model.

We benchmarked both models by querying each model
106 times and measuring the speed at which the models
responded. The no load model ran at 978 queries per second
while the neural network model ran at 510 queries per
second. Even though the neural network is slower, it is still
operating at faster than real time simulation speeds and is
fast enough for motion planning.

These experiments demonstrate that our data-driven ap-
proach significantly improves the accuracy of the model
while maintaining fast query speeds necessary for planning.

VII. PLANNING RESULTS

1) Simulation Plan Generation: First, we demonstrate
that we are able to utilize our neural network to generate

motion plans. We constructed eight environments shown
in Figure 5. These environments were chosen to illustrate
situations where the additional accuracy of the neural net-
work model is crucial. For each environment, we using two
simulators, one that uses the no load model, and one that
uses our proposed neural network model.

Next we used the pressure space RRT* method to generate
plans. For each simulator, we ran our planner ten times
per environment, recording whether the plan generation was
successful within the allotted planning time of 10 minutes,
the time it took to generate the plan, as well as the cost of
the path generated as defined in Equation 2. The results of
these experiments are given in Table I under the Planning
in Simulation column. We report the number of successful
plans generated, average time to generate a successful plan,
and average plan cost with standard errors out of 20 trials.

The plan generation success rate for the two planners is
similar. Across the eight environments, the neural network
model has a higher success rate on three of the environment,
a lower rate on four, and an equivalent rate on one.

While the no load model produces paths with lower
cost, these paths may not be realizable, since they require
traversing states that are not actually reachable according to
our neural network model. Since our neural network model
has a more accurate model of the true transition function, it
must expand more states to avoid the falsely-feasible states
used by the no load model. The expansion of these additional
states is also reflected in the higher planning times for the
planner using the neural network model simulator.

2) Hardware Plan Execution: Next, to evaluate the feasi-
bility of the plans, we took a successfully generated plan
for each simulator, environment pair and executed it on
hardware. The results of these hardware trials are provided in
Table I under the Execution in Hardware column. We report
whether a collision occurred as well as how much the end
effector pose deviates from the goal in terms of position and
orientation at the end of plan execution. The final backbone
from executing the plans are visualized in Figure 5.

We observe that the plans generated using the neural
network-based simulator enable the end effector to reach
closer to the goal while avoiding obstacles. In one case

TABLE I: Using the neural network model increases planning time and path cost; however, the resulting plans are more
feasible and get the end effector closer to the goal without collisions.

Planning in Simulation Plan Execution in Hardware

Environment Model Used
Successfully
Generated Plans
(out of 20)

Successful
Plan Time (s)

Successful
Plan Cost (psi)

Collision
Occurred

Distance
to Goal (cm)

Orientation
to Goal (rad)

1 No Load 20 51.2± 17.9 19.4± 0.9 No 3.26 0.28
Neural Network 20 126.1± 34.3 26.8± 0.9 No 4.09 0.86

2 No Load 20 70.1± 15.7 27.6± 1.2 No 5.07 0.64
Neural Network 17 249.8± 36.4 40.7± 1.3 No 4.62 0.41

3 No Load 17 212.7± 42.2 30.3± 1.6 No 5.35 0.42
Neural Network 20 155.7± 16.4 40.0± 1.0 No 0.96 0.02

4 No Load 18 215.5± 43.7 23.1± 1.4 No 14.86 0.35
Neural Network 19 115.1± 38.8 30.4± 1.2 No 3.93 0.71

5 No Load 20 70.5± 19.9 24.5± 1.0 No 10.43 0.96
Neural Network 17 221.2± 39.8 41.1± 1.5 No 1.69 0.57

6 No Load 17 184.8± 42.1 42.1± 2.0 No 7.98 0.31
Neural Network 13 246.3± 49.5 52.8± 2.3 No 2.15 0.52

7 No Load 17 144.5± 24.2 42.5± 1.5 Yes N/A N/A
Neural Network 10 229.8± 31.3 52.7± 4.5 No 6.39 0.5

8 No Load 18 156.6± 39.8 43.7± 2.1 No 13.05 1.08
Neural Network 20 184.1± 16.5 57.4± 2.0 No 3.11 0.27

Fig. 5: The eight environments used for planning and hardware trials using the three segment arm shown in Figure 3. The
goal location is indicated by the green star. The final backbone from executing plans using the no load model simulator
(red) and the neural network simulator (blue) during hardware trials are provided.

(environment 7), the no load model plan actually resulted
in a collision with an obstacle. In the remaining trials where
there were no collisions, using our neural network model
reduced the final positional error of the end effector by an
average of 5.7 cm while achieving similar average orientation
error to the no load model. These experiments demonstrate
that plans from the neural network model simulator reflect
the real world behavior of the arm more accurately and are
thus more likely to be feasible compared to plans from the
no load model.

VIII. DISCUSSION

In this paper, we combine a simplified quasistatic, no load
model with a neural network that learns to compensate for
unmodeled forces such as friction and loads. This network
is used to model a three segment soft manipulator. Our

neural network model is shown to be more accurate than
the quasistatic model, while still being fast enough for
motion planning. The RRT* algorithm was adapted to plan
in pressure space using our model. The resulting plans from
using the neural network-based simulator were shown to be
more likely to be successfully executed, and generally bring
the end effector closer to the goal than plans generated using
the no load model.

An avenue for future work is to adapt our approach
to forward simulate interactions with the environment. In
order to properly take advantage of soft robots’ ability to
safely interact with the world, an accurate simulation of
the resulting deformations is necessary. By creating more
accurate but fast models for soft arms, we can generate
feasible plans that will enable soft robotics to perform more
complex tasks in a greater range of environments.

REFERENCES

[1] G. Olson, R. L. Hatton, J. A. Adams, and Y. Mengüç, “An euler-
bernoulli beam model for soft robot arms bent through self-stress and
external loads,” International Journal of Solids and Structures, vol.
207, pp. 113–131, 2020.

[2] R. J. Webster III and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[3] F. Renda, F. Boyer, J. Dias, and L. Seneviratne, “Discrete cosserat
approach for multisection soft manipulator dynamics,” IEEE Transac-
tions on Robotics, vol. 34, no. 6, pp. 1518–1533, 2018.

[4] G. Olson, S. Chow, A. Nicolai, C. Branyan, G. Hollinger, and
Y. Mengüç, “A generalizable equilibrium model for bending soft arms
with longitudinal actuators,” The International Journal of Robotics
Research, vol. OnlineFirst, 2019.

[5] F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt,
and C. Duriez, “Real-time control of soft-robots using asynchronous
finite element modeling,” in Proc. IEEE International Conference on
Robotics and Automation, 2015, pp. 2550–2555.

[6] R. L. Truby, C. Della Santina, and D. Rus, “Distributed proprioception
of 3d configuration in soft, sensorized robots via deep learning,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3299–3306, 2020.

[7] A. Nicolai, G. Olson, Y. Mengüç, and G. A. Hollinger, “Learning to
control reconfigurable staged soft arms,” in Proc. IEEE International
Conference on Robotics and Automation, 2020, pp. 5618–5624.

[8] O. Lakhal, A. Melingui, and R. Merzouki, “Hybrid approach for
modeling and solving of kinematics of a compact bionic handling
assistant manipulator,” IEEE/ASME Transactions on Mechatronics,
vol. 21, no. 3, pp. 1326–1335, 2015.

[9] D. Holden, B. C. Duong, S. Datta, and D. Nowrouzezahrai, “Subspace
neural physics: Fast data-driven interactive simulation,” in Proc. of the
18th annual ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2019, pp. 1–12.

[10] J. Xiao and R. Vatcha, “Real-time adaptive motion planning for a
continuum manipulator,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010, pp. 5919–5926.

[11] A. D. Marchese, R. K. Katzschmann, and D. Rus, “Whole arm
planning for a soft and highly compliant 2d robotic manipulator,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2014, pp. 554–560.

[12] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, 2001.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[14] D. Jones, G. A. Hollinger, M. J. Kuhlman, D. A. Sofge, and S. K.
Gupta, “Stochastic optimization for autonomous vehicles with limited
control authority,” in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2018, pp. 2395–2401.

[15] S. M. LaValle, Planning algorithms. Cambridge University Press,
2006.

[16] R. J. Webster III, J. P. Swensen, J. M. Romano, and N. J. Cowan,
“Closed-form differential kinematics for concentric-tube continuum
robots with application to visual servoing,” in Experimental Robotics.
Springer, 2009, pp. 485–494.

[17] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

