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Abstract— Robots performing mobile manipulation in un-
structured environments must identify grasp affordances
quickly and with robustness to perception noise. Yet in domains
such as underwater manipulation, where perception noise is
severe, computation is constrained, and the environment is
dynamic, existing techniques fail. They are too computationally
demanding, or too sensitive to noise to allow for closed loop
grasping or dynamic replanning, or do not consider 6-DOF
grasps. We present a novel grasp synthesis network, TSGrasp,
that uses spatio-temporal sparse convolution to process a
streaming point cloud in real time. The network generates
6-DOF grasps at greater speed and with less memory than
Contact GraspNet, a state-of-the-art algorithm based on Point-
Net++. By considering information from multiple successive
frames of depth video, TSGrasp boosts robustness to noise
or temporary self-occlusion and allows more grasps to be
rapidly identified. Our grasp synthesis system was successfully
demonstrated in an underwater environment with a Blueprint
Labs Bravo robotic arm.

I. INTRODUCTION

Robotic grasp synthesis on unseen objects is a crucial
skill that enables the application of generalized robotics
to manufacturing, home service, and scientific applications.
While state-of-the-art robotic grasping systems achieve reli-
able performance when grasping previously unseen objects
in laboratory conditions, robots deployed in real-world en-
vironments must continue to operate when visual conditions
are degraded or when environments are dynamic.

In the underwater grasping domain, visual obscurants, ad-
verse lighting, and energetic disturbances require that grasp
synthesis algorithms accommodate adverse visual conditions
and provide real-time updates suitable for closed-loop control
or dynamic replanning. Motivated by the problems of under-
water sample collection [1] and infrastructure maintenance
[2], we present a novel technique for quickly finding 6-
DOF grasp poses in streaming depth video. The proposed
system combines information from consecutive depth images
obtained from a moving depth camera, to produce a diverse
set of stable grasp poses. To do this, the algorithm uses
spatio-temporal sparse convolution, a technique for effi-
ciently processing signals by convolving across both spatial
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Fig. 1. Successful grasp of a plaster coral branch underwater in the O.H.
Hinsdale Wave Lab using the proposed real-time grasp synthesis algorithm
with spatio-temporal sparse convolution.

and temporal dimensions that has been previously applied to
point cloud classification [3], object tracking [4], and lidar
video segmentation [5].

To our knowledge, our work is the first to use infor-
mation from multiple camera frames to generate dense 6-
DOF candidate grasps at sufficient speed for closed loop
grasping. Our primary contribution is a learning formulation
for 6-DOF grasp inference from depth video using spatio-
temporal convolution. Comprehensive results indicate the
suitability of our approach for closed loop grasping, and
we provide a successful demonstration of grasping unseen
objects underwater in the O.H. Hinsdale Wave Research
Laboratory at Oregon State University, USA.

Results in simulation indicate that, by reducing the mem-
ory and computational requirements relative to PointNet++
[6], spatio-temporal convolution improves the coverage met-
ric [7], retrieving a greater proportion of the grasps in a scene
by classifying more points without sacrificing the accuracy
of the grasp hypotheses. Simulated results also suggest that
basing inference on multiple frames in a moving trajectory
can improve precision and recall of grasps. Results on real
camera sensors compare the performance of the algorithm
in two settings: on point clouds from a structured-light Intel
Realsense camera above ground, and on point clouds from a
noisier underwater stereo camera underwater called the Tri-
sect [8]. We find that our grasp classification algorithm using
spatio-temporal networks improves consistency between the
results from high- and low-quality point clouds.

II. RELATED WORK

Grasp synthesis is an important problem in robotics that
has been studied for decades. While classical methods



leverage geometric and physical principles to analytically
determine viable grasps [9]–[12], more recent approaches use
machine learning approaches to classify or generate grasps
after training on real or simulated data [13]–[15]. Like these,
our work adopts a supervised learning formulation to gener-
ate grasps from training data including labeled instances of
positive and negative grasps.

Within the set of learning-based approaches, recent ad-
vances in deep learning have enabled fast generation or
evaluation of feasible 2D or 6-DOF candidate grasps. One
body of work focuses on 2D “planar” grasp generation, in
which grasps are assumed to be executed from a top-down
direction by a robot with a two fingered gripper in a bin-
picking application. Because these grasps have few degrees
of freedom, they can be robustly learned by smaller networks
from smaller datasets, and can be inferred at a faster rate
[13], [16]. However, 2D planar grasping algorithms do
not consider grasps executed from another direction than
the focal axis. As a result, potentially suitable grasps are
overlooked. 6-DOF grasping algorithms consider the three-
dimensional shape of the object in order to reason about
grasps executed from arbitrary gripper poses in SE(3). 6-
DOF grasping algorithms have been shown to be successful
in cluttered environments [17], [18], where more collision-
free grasps can be found with additional freedom in approach
direction. In either 2D or 6-DOF grasping, algorithms may
be classified as generative–producing a dense, pixelwise
estimate of grasp quality–or discriminative, providing the
ability to evaluate arbitrary grasp hypotheses. For our grasp
synthesis algorithm, we have chosen a generative formulation
similar to [16] and [7]. However, in contrast to these works
our network uses sparse convolution to generate grasps at
greater speed.

Many robotic grasping approaches separate grasp syn-
thesis from control by executing the single most-confident
grasp without re-evaluating grasps during execution, which
can lead to failure when the best grasp is initially occluded
[19]. To address this shortcoming, recent work in closed-loop
grasping has combined visual servoing with online grasp syn-
thesis. Approaches such as [16] and [20] repeatedly generate
2D planar grasp candidates, and execute trajectories based
on the latest identified best grasp. Similarly, approaches
from reinforcement learning seek to learn behavior policies
that identify actions leading to secure grasps in closed
loop [21]. Within closed-loop grasping, recurrent Bayesian
state estimation has been shown to help identify occluded
grasps in cluttered scenes [20], [22]. These techniques have
combined 2D planar grasp hypotheses obtained from differ-
ent perspectives to determine the most likely grasp target.
However, these closed-loop grasp techniques rely on low
latency, high-frequency inferences of grasps in the scene;
our work meets this need by generating 6-DOF grasps in
real time.

In robotic grasping environments where the camera has
limited maneuverability, 2D planar grasp generation may
fail to identify viable grasps. In the context of underwater
grasping–where the environment is dynamic, visibility is

Fig. 2. Proposed multi-frame grasp synthesis system. Top: successive
frames of a depth video are recorded throughout the camera’s trajectory.
Middle: a queue of multiple frames is collated into a four-dimensional tensor
describing an occupancy map with spatial and temporal coordinates. A 4D
U-Net processes the tensor with sparse convolution to infer grasp confidence
and gripper approach direction, baseline direction, and width for each point.
Bottom: identified grasps (left) and point confidences (right, lighter color is
more confident) for example scene.

variable, and the camera is moving–the need for real-time
generation of 6-DOF grasps using images from multiple
instants in time is keenly felt. Inspired by the stated advances
in 6-DOF grasp generation and closed-loop grasping, our
algorithm generates 6-DOF grasps online from sequences of
depth images, using spatio-temporal sparse convolution to
incorporate information from multiple images. In contrast to
related work, we show that spatio-temporal convolution ac-
counts for shifting occlusions more effectively than repeated
single-view grasp generation, while providing a sufficiently
high update rate for robust closed-loop grasping in dynamic
environments.

III. METHOD

Our proposed spatio-temporal grasp synthesis method,
called TSGrasp, generates a dense classification of points
in a streaming depth video to identify a 6-DOF grasp pose
corresponding to each point, while optionally fusing informa-
tion from multiple consecutive depth video frames. Similar
to Contact GraspNet [7] and GGCNN [16], we separate grasp
synthesis into pointwise classification and regression of the
gripper orientation. However, unlike Contact GraspNet and
GGCNN, to generate grasps, we apply convolutional filters
to a sparse tensor whose entries are the occupancy values of
a voxel grid representing the spatial X , Y , Z, and time T
coordinates of a point cloud sequence.

A. Problem Formulation

We target the 6-DOF grasp synthesis problem, the goal
of which is to find gripper configurations within a scene,
consisting of a gripper pose g ∈ SE(3) and gripper width
w, that would stably secure an object in the jaws for
manipulation.



B. Classification and Regression Representation

To solve this problem, we apply supervised deep learning
in a manner inspired by Contact GraspNet [7], by training a
deep network to classify input points by proximity to stable
grasps and regressing the corresponding gripper orientations.
Rather than directly learning a grasp quality function f :
SE(3) → R to evaluate arbitrary poses and identify stable
grasp poses in a scene, we consider only those grasp poses
for which the gripper’s fingers contact objects within the
scene. For each input point, we infer a gripper orientation
Rg , gripper width w, and confidence value c that fully define
the pose and predicted quality of a grasp for a given point.
This learning formulation generates a dense set of candidate
grasps in a single shot without requiring optimization over a
quality function as discriminative methods do, ensuring fast
execution and broad coverage of the scene.

We represent a grasp pose g by a homogeneous matrix

g =

[
Rg tg
0 1

]
, (1)

with the grasp’s origin tg translated from a point p in the
input point cloud by a vector depending on the gripper’s
baseline direction b, approach direction a, and grasp width
w by

tg = p +
w

2
b + da. (2)

We refer the reader to [7] for an illustration of the relevant
parameters on a robotic gripper. With × denoting the cross
product, the grasp’s orientation is given by

Rg =

b a× b a

 . (3)

By directly regressing a, b, w, and inferring the class
confidence c, we avoid the costly problem of estimating
quality of all grasps in SE(3) by instead classifying points
and regressing orientations in a one-shot manner. As in [7],
the vectors a and b defining the gripper orientation are
normalized to form orthonormal columns of the rotation
matrix in Eq. (3), which is a learnable parameterization of
SO(3) [23].

C. Spatio-temporal Network

In contrast with existing methods that use PointNet++
to process point clouds from a single depth image [7],
[17], [24], [25], our network uses spatio-temporal sparse
convolution to identify grasps. This allows us to process mul-
tiple point clouds at once, fusing information from multiple
frames and potentially multiple perspectives. If the camera is
moving, combining multiple frames during inference allows
the network to consider points lying on surfaces of a scene
that are occluded from a single perspective; if the camera is
not moving, then information from multiple frames can still
boost robustness to instantaneous noise. The grasp synthesis
module is input a sequence P of N point clouds with M
points p, such that

P = {Pi} = {pi,j}, (4)

where i = 1, · · · , N and j = 1, · · · ,M . This sequence of
point clouds is obtained from consecutive frames of a depth
video (transformed into R3 via camera intrinsics), as shown
in Fig. 2. The resulting grasp predictions are based on a
sliding window of previous observations throughout the cam-
era’s trajectory. If the camera is moving, information from
different perspectives reduces the effect of self-occlusion in
the scene, potentially clarifying grasp hypotheses that had
been uncertain.

The N -frame trajectories are known. While odometry
noise can accumulate during underwater operations, the
accumulation of this noise is limited because we require
only the relative odometry during the N-frame sequence, in
contrast to approaches requiring point clouds to be in a global
frame. Using the relative camera poses Tworld,cam,i, the point
clouds are transformed into the reference frame of the most
recent camera pose (at frame N ):

Platest,i = (Tworld,cam,N )−1Tworld,cam,i Pi. (5)

The sequence Platest,i is discretized into a uniform voxel
grid and represented as a sparse tensor with coordinates and
features

C =

 x1 y1 z1 t1
...

xNM yNM zNM tNM

 , F =

 f1
...

fNM

 , (6)

where each coordinate gives the voxel location and times-
tamp of a single point from the point cloud sequence, and
each feature gives the number of points in the corresponding
voxel. The timestamp coordinates are integers 0, . . . , N − 1.
We process this representation using sparse convolution with
the Minkowski Engine backend [3], which is a fast and
memory-efficient way to learn features from sparse spatio-
temporal data such as depth video. We use a Minkowski
Engine UNet14 backbone [3] to extract features from the
input points, which are then processed through separate
convolutional network heads to produce the four outputs for
each input point. The four outputs include the point class
likelihood c (a scalar), the gripper approach direction a ∈ R3,
the gripper baseline direction b ∈ R3, and the gripper width
w.

D. Data Generation and Training

We train our network using the ACRONYM dataset [26],
which consists of 8, 872 digital object meshes labeled with
the poses of 17.7M successful and unsuccessful parallel-jaw
grasps.

First, we produce cluttered tabletop scenes using the
scene generation pipeline from [7]. Then, we transform the
positive grasp poses and gripper contact points from the
dataset, which are initially expressed in the object frame, into
the camera frame at each pose along the trajectory. Then,
we render depth images of these scenes from consecutive
perspectives along random trajectories of length N . We label
input points from the depth video as successful if they are
sufficiently close to a gripper contact point from a successful
grasp.



Specifically, we generate a trajectory of N camera poses
viewing each tabletop scene. With each trajectory, the camera
orbits the center of the scene at a fixed distance d and
azimuth angle φ, while varying the yaw θ at a constant
rate ∆θ. For each example of a tabletop scene seen during
training, the distance, azimuth, and initial yaw θ0 are drawn
uniformly, while ∆θ is drawn from a normal distribution.
With the notation U(xmin, xmax) to denote a uniform distri-
bution and N (µ, σ) to denote a normal distribution, we used
the parameters

d ∼ U(1.5 m, 2.5 m), φ ∼ U(20°, 90°), (7)
θ0 ∼ U(0, 2π), ∆θ ∼ N (0°, 1°), (8)

selected to generate diverse orbital trajectories with moderate
distance and low tangential velocities (likely during visual
exploration of an underwater object by an AUV).

The generated camera poses have yaw

θi = θ0 + i∆θ, (9)

where i = 1, . . . , N . The poses are represented as homo-
geneous matrices Tcam,i. Because the ACRONYM dataset
contains the 6-DOF poses of stable grasps g ∈ SE(3) in the
frame of each object, these grasp poses are transformed into
the camera frame with

gcam,i = (Tcam,i)
−1 gobj,i, (10)

and the corresponding gripper contact points {c} are trans-
formed into the camera frame with

ccam,i = (Tcam,i)
−1 cobj,i. (11)

We denote the video sequence of N point clouds produced
by a simulated depth camera as {Pi}. Each instantaneous
point cloud has M points, such that Pi = {pi,j}, j =
1, · · · ,M . Each point is classified by its proximity to
positive gripper contact points from ground truth. For all
i = 1, . . . , N and j = 1, . . . ,M ,

si,j =

{
1 mink ‖pi,j − ci,k‖2 < r,

0 otherwise
(12)

where each vector ci,k contains the coordinates of gripper
contact points in the camera frame in image i and r ∈ R is
the threshold radius for labeling points. Thus, the points from
the depth video may be partitioned into P−

i := {pi,j |si,j =
0} and P+

i := {pi,j |si,j = 1}, depending on whether
a suitable grasp has been found near to each input point.
The ground truth point classifications, as well as the unique
nearest grasp pose corresponding to each contact point, are
passed to the network during training to assess losses.

The network is trained using separate loss terms for the
point class, gripper pose, and width. We refer the reader to
[7] for formal definitions of the loss terms lbce,k, ladd−s, and
lwidth, which refer to the binary cross entropy classification
loss, gripper pose loss, and binned width. The total loss is l =
αlbce,k+βladd−s+γlwidth, with α = 1, β = 10, γ = 1 (same
values as [7]). During training, the average loss is computed
for points at all time coordinates. We used trajectory lengths

Fig. 3. Precision-recall curves on the test partition of the ACRONYM
dataset after labeling input points by proximity to the points at which the
gripper contacted objects in the scene for ground truth grasps with a 0.005
m threshold. Precision is the proportion of positively classified points that
had positive labels. Recall is the proportion of positively labeled points that
were positively classified. The acceptance threshold was varied from 0 to 1
to produce these curves.

Fig. 4. Success-coverage curve on the test partition of the ACRONYM
dataset after labeling input points as in Fig. 3. Success is the proportion
of positively classified points that had positive labels. Coverage is the
proportion of ground-truth contact points that had positively classified-input
points within 0.005 m. The acceptance threshold was varied from 0 to 1 to
produce these curves.

of N = 1 and N = 4, using success radius r = 0.005 m
(from [7]), and a spatial discretization bin width of 0.005
m. Networks were trained for 100 epochs using the Adam
optimizer with a learning rate of 0.00025 and exponential
learning rate decay of 0.99.

IV. RESULTS

The grasp synthesis algorithm was tested in on the sim-
ulated ACRONYM dataset and validated during underwater
grasp executions at the O.H. Hinsdale Wave Research Lab-
oratory at Oregon State University using a Blueprint Labs
Bravo 7 robotics arm and a Trisect underwater stereo camera.

A. Simulation Results

Inference performance was evaluated on the test parti-
tion of the ACRONYM dataset. 2, 000 cluttered tabletop
scenes were generated containing different objects than were



Fig. 5. Inference time for Contact GraspNet versus proposed algorithm
(TSGrasp) using 1 frame and 4 frames.

present in the training set, using the same randomly allo-
cated test/train object partitions from [7]. On each scene,
trajectories were generated using Eq. (9). Depth videos were
rendered along each trajectory, and the corresponding ground
truth annotations were transformed into the camera frame as
described in Eqs. (11) and (10). Ground truth labels were
generated for each point in the depth video using Eq. (12).

For each video sequence, the performance of three net-
works was compared: the first was TSGrasp trained on
trajectories of length N = 4, referred to as TSGrasp (4
Frames). During test inference, a sliding-window queue of
four frames was input into TSGrasp (4 Frames). This as-
sesses the effectiveness of multi-frame inference. The second
network was TSGrasp trained on single frames (trajectories
of length N = 1). To process the test videos, each video
frame was passed in consecutively rather than four at a
time. Compared to Contact GraspNet, this assesses the
effectiveness of the sparse convolution backbone. Contact
Graspnet, without object segmentation, was also tested on
single frames from the video sequence.

The precision and recall of point classification were com-
puted for different confidence thresholds, and the resulting
precision-recall curve is shown in Fig. 3. TSGrasp (1 Frame)
exhibits a higher area under the curve than Contact Graspnet.
TSGrasp is based on a Minkowski Engine sparse convolu-
tional backbone that has been shown to outperform Point-
Net++ in certain classification tasks [3], so the improved
classification performance may be partially attributed to the
greater expressiveness of the learned backbone features.
However, improved precision may also be attributed to the
greater number of points that can be efficiently processed
by sparse convolution; because the points are discretized
into a sparse tensor, TSGrasp is able to retain 45,000 input
points in its initial layers compared to 2,048 in Contact
GraspNet which is based on PointNet++. Additional input
points may better capture local geometry than the more
severely downsampled input.

TSGrasp (4 Frames) further outperforms TSGrasp (1
Frame) and Contact GraspNet, exhibiting higher area under
the PR curve. During inference, four consecutive frames of
an orbital trajectory (Eq. (9)) are processed. The additional

perspectives from different angles tend to capture a greater
proportion of the scene’s surfaces than is possible from a
single perspective. Consequently, classification performance
is improved as grasp hypotheses which may erroneously be
labeled as positive based on an partial point cloud can be
more effectively eliminated; inference is based on a more
complete object model without requiring a slow and costly
explicit reconstruction of the object.

As seen in Fig. 4, performance on the test set also
demonstrates that temporal convolution with multiple frames
can improve the success and coverage of grasp classifica-
tion, metrics adapted from [17]. Here, coverage refers to
the proportion of positively-labeled contact points from the
ground truth data set with a positively-inferred point near
them (within 0.005 m). Success refers to the proportion of
positively-inferred contact points with a positively-labeled
contact point near it. Coverage has a theoretical upper bound
because, in a given scene, some of the ground-truth contact
points will have no points from the input depth image near
them due to self-occlusion within the scene. Both TSGrasp
(1 Frame) and TSGrasp (4 Frame) exceed the maximum
coverage possible with a single pass of Contact GraspNet
without object segmentation. This is because many more
points from the input point cloud are classified, resulting in
a greater proportion of ground truth positive contact points
being “covered”. Still, processing additional frames with a
moving camera perspective improves success and coverage
of the point cloud as the confidence threshold is varied.

Inference time on the test set (N=2,000) with a desktop
computer with an RTX 2060 graphics card and Ryzen 5
3600 CPU was faster with sparse convolution in the single-
frame case than with the PointNet++ based Contact Graspnet.
The version of TSGrasp inferring grasps within a single
frame performed inference much faster (0.089±0.005 s)
than Contact Graspnet (0.253±0.010 s), with the version of
TSGrasp processing a queue of four frames approximately
linearly increasing inference time relative to single-frame
(0.266±0.060 s). The inference time of TSGrasp is domi-
nated by the time taken to discretize and hash the input point
cloud into a sparse tensor for processing on the GPU, while
for Contact GraspNet most time is spent within the feature
propagation and set abstraction layers of the PointNet++
backbone [6]. Increasing the number of frames used for
inference may increase the standard deviation of inference
time due to increased variety in the number of discrete 4D
bins requiring hashing under different camera trajectories.
The dramatic speedup afforded by sparse convolution enables
many more points to be processed at a faster speed, or for
multiple frames to be processed at approximately the same
speed as a PointNet++ based backbone. Minimal inference
time is essential for dynamic replanning and closed-loop
control in energetic environments such as underwater.

B. Real-World Results on Underwater Testbed

We deployed the grasp synthesis system on a real robotic
gantry testbed in an indoor pool environment at the O.H.
Hinsdale Wave Research Laboratory. Modern RGB-D cam-



TABLE I
CONSISTENCY IN LAB AND UNDERWATER GRASP CLASSIFICATION

TSGrasp (4 Frames) TSGrasp (1 Frame) Contact GraspNet

RMSE 0.055 0.076 0.092

Fig. 6. Input image (left) and inferred grasps (right) from grasp synthesis on
the Intel Realsense D435i camera in laboratory setting. Grasps are colored
by confidence: purple low, yellow high.

eras such as the Intel Realsense [27] often use structured
light sensors to produce high-quality point cloud; in the
underwater environment, structured light sensors have not
been developed. Our deployment scenario involved a novel
underwater stereo camera under development at the Applied
Research Laboratory at the University of Washington, called
the Trisect [8]. As shown in Fig. 1, a Blueprint Labs Bravo
7 robotic arm [28] and the stereo camera were mounted on
a moveable aluminum gantry. Objects could be placed in
front of the camera. A limited number of repeatable trials
were possible due to the time and cost constraints associated
with testing in this facility. We were able to achieve an 80%
success rate (4/5 successful grasps) on our main test object,
an artificial coral shown in Figure 1. We also achieved several
successful grasps on other objects, including a metal corner
bracket and a gas can with handle. Successful grasps for
all three objects are shown in the accompanying video. The
main source of grasp failure stemmed from inconsistent point
clouds generated by the Trisect camera, which motivates
additional research on filtering and point cloud generation
for the underwater camera. Examples of grasps failing in
this way are provided in the accompanying video.
Robustness to Underwater Noise in Point Cloud: The
point cloud from the underwater camera was subject to both
spatial and temporal noise. Spatial noise includes artifacts at
the boundaries of objects where the stereo disparity algorithm
misidentifies outlier points that should be empty space, and
warping of the point cloud attributed to miscalibration of the
individual monocular cameras in the stereo system. Temporal
noise is attributed to motion in the scene affecting the
environment, such as rippling reflections causing areas of
light and dark on the floor of the pool. These can lead
to inconsistent estimates of the depth of pixels within the
depth image, or a momentary loss of correspondence in the
disparity map that produces the depth image.

Due to the difficulty of creating ground truth data in un-
derwater scenarios, we cannot evaluate measures of accuracy
on the underwater data. We propose to instead measure the
consistency of the grasp synthesis algorithms w.r.t. the same
scene captured with the high-quality Realsense compared
to the noisier underwater stereo camera. Realsense point

cloud quality is more similar to the synthetic data in which
TSGrasp shows significant improvement over prior work,
hence consistency w.r.t. results on the Realsense camera
should indirectly indicate the robustness and accuracy of the
algorithm. We reproduce the underwater scene in a laboratory
setting, producing a similar point cloud with nearly identical
positioning (position uncertainty ≈0.005 m, rotation uncer-
tainty ≈2°). We compared the grasp classifications generated
from the RealSense camera with the grasps generated from
the Trisect stereo camera. We partitioned the grasp poses into
discretized bins of width 0.03 m based on position, obtained
the arithmetic mean of the confidence of each bin, and
determined the RMSE of all the bin confidences between the
RealSense grasps and the Trisect grasps for each algorithm.
Table I gives this comparison metric.

TSGrasp (4 Frames) has lower RMS error than TSGrasp
(1 Frame) or Contact GraspNet, indicating that results were
more consistent between the laboratory environment and the
underwater camera, which may indicate greater robustness
to noise, potentially due to learned filtering from temporal
convolution enforcing temporal consistency to overcome
noise [3]. TSGrasp (1 Frame) has lower RMS than Contact
GraspNet, which may be due to sparse convolution being
less sensitive to noise out of the training distribution than
PointNet++. These results indicate that temporal convolution
may boost robustness to time-varying noise.

V. CONCLUSION

We presented a novel technique for 6-DOF grasp synthesis
that can produce grasp estimates in real time while process-
ing multiple frames at a time. We demonstrated that sparse
convolution can achieve state-of-the-art grasp classification
results while improving inference efficiency. Alternatively,
by increasing the number of frames being processed, grasp
classification performance can be boosted at the cost of
greater inference time. We successfully implemented our
technique on a robotic arm in an underwater environment,
which successfully grasped three diverse objects.

These outcomes are particularly useful in the context of
mobile manipulation, where operation in unstructured envi-
ronments such as energetic underwater scenes motivates the
need for visual servoing, closed loop grasping, and dynamic
replanning. By fusing information from multiple frames
without requiring explicit object reconstruction, we avoid
CPU-intensive reconstruction. The resulting speed improve-
ments could be used to improve reactive mobile manipulation
in dynamic environments. Additional investigation of the
tradeoffs encountered when increasing the number of frames
used for inference would aid this effort. Furthermore, active
grasp exploration, where the agent intentionally maneuvers
to perceive the environment from a different perspective
to improve grasp success rate [29], [30], may particularly
benefit from the multi-frame fusion afforded by spatio-
temporal convolution.
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