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Abstract— Real-time sequential decision making under un-
certainty is a challenging task for autonomous robots. Such
problems are even more challenging when making decisions
involving heterogeneous teams of robots completing multiple
tasks. Deploying autonomous taxi cabs and utilizing drones for
package delivery represent relevant examples of these types of
problems. In this paper, we present an effective solution to a
multi-robot multi-task sequential stochastic assignment prob-
lem using a simulation-based optimization algorithm (MARP).
Our algorithm employs a novel approach that uses Monte Carlo
simulation to seek the deployment with the highest probability
of being optimal. To demonstrate MARP’s performance and ro-
bustness, we performed more than 2,000 numerical experiments
in two different problem domains, evaluating MARP’s perfor-
mance against three different comparison algorithms. These
numerical studies show that MARP significantly outperforms
the comparison methods, achieving results within 5% of the
maximum possible reward.

I. INTRODUCTION

Designing robots capable of making complex real-time
decisions related to performing multiple tasks, before all
pertinent information has been revealed, poses a substantial
challenge that limits the extent of viable autonomous oper-
ation. Yet many real-world applications require addressing
these kinds of problems. Exploration and search and res-
cue under dangerous operating conditions (e.g. underwater,
underground, in space) are characterized by considerable
opportunities for preventing human injury or death associated
with these essential activities. Another relevant application
involves dispatching autonomous vehicles. Prominent exam-
ples associated with emerging technology include Amazon’s
proposed use of autonomous drones for package delivery and
fleets of autonomous taxi cabs.

In this paper, we consider a marsupial robot system
(a carrier robot with deployable heterogeneous passenger
robots) navigating through an unknown environment. At
each decision point along the sequence, the carrier must
determine the appropriate deployment action when the task
rewards/requirements surrounding all future decisions are
unknown. Its objective is to maximize the aggregate reward
obtained from completing all tasks that manifest as the car-
rier robot navigates the environment. However, the current,
irreversible, action reduces the carrier’s available options for
subsequent deployments and may decrease the possible total

*This work is funded in part by NSF award IIS-2103817.
*C. Mitchell and G. Hollinger are with the Collaborative Robotics and In-

telligent Systems (CoRIS) Institute, Oregon State University, Corvallis OR,
USA. {mitchcol,geoff.hollinger}@oregonstate.edu

*G. Best is with the School of Mechanical and Mechatronic
Engineering, University of Technology Sydney, NSW, Australia.
graeme.best@uts.edu.au

reward. Deploying a highly efficient resource too early risks
not being able to satisfy requirements or realize a larger
reward later. Deploying the same resource too late risks
realizing a lesser reward.

Previously published work relating to this problem can be
categorized into three distinct areas: (1) task completion in
environments with uncertainty [1], [2], [3], (2) homogeneous
teams of robots completing a single task at each decision
point in a stochastic decision sequence [4], [5], and (3) het-
erogeneous teams used for concurrent or collaborative task
completion [6], [7]. However, to the best of our knowledge,
none of this prior work addresses sequentially deploying
robots from a heterogeneous team to perform multiple tasks
at each decision point before all task requirements are
revealed.

To address these challenges, we developed an online algo-
rithm to maximize the probability of an optimal deployment
sequence. Our simulation-based optimization approach uti-
lizes Monte Carlo simulation to facilitate solving a complex
stochastic optimization problem characterized by multiple
sources of uncertainty (multiple task rewards/requirements
at each decision point). In multiple experiments, using both
a domain inspired by the DARPA Subterranean Challenge
and a domain using actual New York city taxi fare data,
our algorithm significantly outperformed two comparison
methods and generally yielded solutions whose aggregate
reward was within 95% of the maximum reward possible
when all tasks are revealed in advance (i.e. the maximum
possible reward under perfect information).

The contributions of this paper include: (1) introducing
a new class of the sequential stochastic assignment problem
involving multiple tasks at each decision point and multi-task
robots with defined efficiencies for each task, (2) a solution
to this new problem which utilizes Monte Carlo simulation to
address uncertainty while maximizing the probability of an
optimal aggregate reward, and (3) accommodation of fuzzy
constraints by reformulating task requirements as decision
variable terms in the objective function.

II. RELATED WORK

To better understand the literature in this area, it is
useful to organize the related works into three categories.
The first category involves exploratory tasks using robot
teams. A subset of this research involves exploratory tasks
with no decision making component. Marques et al. offer
a critical survey of literature relating to marsupial robotic
teams monitoring bodies of water [1]. They specifically note
the difficulty of completing tasks in unknown environments.



Extensive research effort has been invested in working with
autonomous systems to sample data, explore, survey, and
inspect environments [6], [8], [9]. Moore and Wolfe explore
semi-autonomous search and sampling using a heterogeneous
team of robots [10]. Hansen et al. and Kalaitzakis et al.
have explored a similar search and sampling task in a marine
environment [2], [11].

Another subset of this research involves exploratory tasks
with non-complex decision making. Using a team of hetero-
geneous autonomous robots to perform application-specific
tasks has been another focus of many published works. Petris
and Khattak present a method using a team of marsupial
walking and flying robots to explore unknown areas [3]. This
combination of robots allows for general widespread explo-
ration of rough terrain areas as well as focused exploration
using aerial robots when legged locomotion is insufficient.
This is similar to the work presented by Couceiro et al., in
which swarm robots are autonomously deployed to support
previously deployed agents [12].

The second category focuses on complex decision making
involving deployments under uncertainty. Derman presents
the Sequential Stochastic Assignment Problem (SSAP)
which establishes the basis of most of this category of work
[4]. This problem is particularly challenging because deploy-
ment decisions must be made sequentially under uncertainty
and incomplete information. The algorithm presented pro-
vides an optimal solution to the deployment problem de-
scribed. Lee et al. extend the SSAP algorithm with their On-
line Passenger Deployment (OPD) algorithm which deploys
passenger robots in unknown environments where the num-
ber of decision points is greater than or equal to the number
of resources [5]. Other extensions of Derman’s problem add
additional sources of uncertainty to more closely resemble
real world scenarios. For example, Khatibi and Jacobson
tackle the SSAP problem with the added complication that
deployed resources may not successfully complete the task
[13]. Other related works consider the uncertain arrival of
resources [14], random task deadlines [15], the opportunity
to postpone deployment decisions [16], and uncertainty in
job value distributions [17].

Papers in the third category address complex decisions
more closely related to set covering problems than sequential
deployment problems. Liu et al. present work showing the
importance of team oriented coverage planning while con-
sidering cost constraints [6]. Similarly, Wu et al. explore the
impact of heterogeneity when trying to complete complex
tasks and avoid associated risks [18]. Their results show
that specific combinations of heterogeneous teams outper-
form homogeneous teams in their disaster relief scenario.
Wurm et al. present a method that combines a symbolic
planning system with path planning to facilitate coordination
of heterogeneous teams [19].

Our work is positioned at the intersection of all three
categories of related work, specifically the online sequential
deployment of multi-task capable robots for applications
involving multiple stochastic tasks. The first of the research
categories discussed above involves teams of robots oper-

ating in unknown environments, but without online deci-
sion making. The research in category two extends this
related work with sequential online decision making, but
only for single task robots. In contrast, the work outlined
in category three addresses stochastic tasks and multi-task
capable robots, but all robots in the teams are deployed
simultaneously.

III. PROBLEM FORMULATION

We consider a marsupial robot system that must make
online decisions regarding when to deploy its heterogeneous
passenger robots. At each possible deployment location,
the robot must consider whether the reward gained from
deployment is expected to be more favorable than proceeding
and deploying at a later location. If so, the carrier robot must
determine which of its passenger robots to deploy. We formu-
late this Multi-Robot Multi-Task Sequential Stochastic De-
ployment Problem (MRMT-SSDP) as a Sequential Stochastic
Assignment Problem (SSAP). Multiple deployment decisions
are made based on sequentially revealed random tasks and
their associated rewards.

We assume that an environment contains a sequence of
decision points (DPs) which represent sites where tasks
performed by passenger robots may be warranted. At any
given DP, there are M tasks that a passenger robot may
perform (e.g. sampling, camera feed, communication relay,
etc.). The carrier robot houses R passenger robots with
efficiencies ei = (ei,1, ..., ei,M ),∀i ∈ {1, ..., R} relative
to the tasks that need to be performed. At each DP, the
carrier robot must make an irreversible decision to deploy
or not to deploy a passenger robot. If a decision is made to
deploy, the carrier must also decide which of its passengers
to deploy. There are assumed to be a total of N ≥ R
decision points, where N is known to the carrier robot.
Along the sequence of decision points, the independent
observations of the rewards associated with the tasks are
denoted (X1, ...,XN ), where Xj = (Xj,1, ..., Xj,M ) and
Xj,k, a random variable, represents the reward associated
with completing the kth task at DP j. Furthermore, the
algorithm relies on knowing the prior distributions of random
variables Xj,k, denoted as fj,k(x). By the end of the decision
sequence, all robots must be deployed.

At stage j ∈ {1, ..., N}, the carrier robot reaches a
decision point, and the outcomes of all random variables
(Xj,1, ..., Xj,M ), denoted xj = (xj,1, ..., xj,M ), are known
to the robot. If the carrier robot decides to deploy, it assigns
one passenger robot, i, to the deployment location and
realizes reward π(xj , ei), where π(x, e) calculates the total
reward based on the individual task rewards and the assigned
robot’s efficiencies. If the carrier robot decides to continue,
no reward is claimed at this stage. This process continues
for the N stages. All passenger robots must be deployed by
stage N , with the constraint of at most one deployment per
stage.

We define the set of deployments as D = {d1, ..., dR},
where dr = (i, j) represents a robot-task pair assigning
robot i to decision point j. The goal of the carrier robot



is to maximize the sum of the rewards associated with the
deployment pairs; i.e., find the optimal deployment sequence:

D∗ = argmax
D

∑
(i,j)∈D

π(xj , ei). (1)

IV. ALGORITHM TO MAXIMIZE AGGREGATE
REWARD PROBABILITY

To address all of the points listed above, we introduce the
Maximize Aggregate Reward Probability (MARP) algorithm
which employs a simulation based optimization approach to
maximize the probability of an optimal deployment at every
decision point along the decision sequence. This approach is
shown empirically to achieve results comparable to an Oracle
(with respect to aggregate reward). Additionally, it allows us
to fully incorporate the task probability distributions as well
as consider the deployment constraints on each resource. In
the following sections, we begin by defining the proposed
algorithm in a general setting, then provide a domain specific
implementation for each of our example problems.

A. General Algorithm

Our algorithm requires four inputs to make a deployment
decision at a decision point: (1) revealed task values for
the current decision point, (2) probability distributions to
model each task, (3) the remaining number of decision
points, and (4) the number of simulated trials to use in
constructing the optimal deployment probability distribution.
For simplification, we assume the carrier knows exactly how
many decision points there are in the decision sequence.
Using these inputs, MARP executes the following steps at
each decision point:

1) Using simulated future DP task values and the currently
revealed task values, generate a matrix whose elements
are the reward, π(xj, ei), for all combinations of task
values and resources.

2) Determine the optimal deployment sequence1 for trial
t, D′

t = {dj , dj+1, ..., dN}, through the final decision
point, using the reward matrix generated in step 1.

3) Repeat steps 1 and 2 for T trials per decision point.
4) Using the current DP deployment from all D′ ∈

{D′
1, ..., D

′
T }, construct the optimal deployment prob-

ability mass function, m(d), for the current decision
point.

5) Deploy resource with the maximum probability of being
the optimal deployment, d∗j = argmaxd m(d).

MARP repeats these steps, in sequence, until one of
two termination conditions occurs: (1) the algorithm runs
out of resources to deploy, or (2) the carrier is at the
end of the decision sequence and no more decisions must
be made. Fig. 1 illustrates the use of simulated trials in
determining a deployment with the highest probability of
being optimal. To simplify the implementation, we add N−R
dummy resources with zero efficiencies. We therefore deploy

1We used an implementation of the Hungarian algorithm, O(n3) com-
plexity, but any appropriate combinatorial optimization algorithm could be
used.

a resource at all N decision points. However, N−R of these
deployments are dummy resources, effectively representing
decisions to not deploy.

B. Domain Specific Implementations

1) Known Distributions: We first consider a general envi-
ronment with randomly generated task values using multiple
combinations of task distributions, for example a mine,
cave, or urban environment (similar to those used in the
2021 DARPA Subterranean Challenge2). We use known
distributions to generate our task values for every decision
point in the decision sequence; we use the same distributions
for MARP’s simulations at each decision point.

For this experiment, we assume any available resource
may be deployed at any decision point. We evaluate the
reward obtained by any resource at a decision point as the
dot product of the efficiency vector and the task vector. In
other words for robot i at decision point j:

π(xj , ei) = xj · ei =
M∑
t=1

xj,tei,t (2)

2) N.Y. Taxi Data: Our next domain demonstrates the
flexibility of MARP by applying it to dispatch available
autonomous taxi cabs. For these experiments we used New
York City yellow and pink taxi cab fare data34 obtained
from Kaggle (an open source data repository). Conceptually,
passengers request a cab and specify three requirements as
well as their pick-up and drop-off locations. Specific data
used from the Kaggle repository includes:

• Passenger count: Number of passengers for the fare,
treated as the minimum vehicle passenger capacity
requirement.

• Payment type: Credit or cash payment, treated as a
requirement to accept cash or handle either.

• Rate code: Used to identify an airport destination or
pick-up, treated as a requirement for larger luggage
capacity.

• Distance: Distance of the trip in miles, used to calculate
the fare profit

The depot in this example assumes the role of the carrier
robot and the taxis (assumed to be autonomous) assume the
passenger role. We use all four of the fare attributes outlined
above for scoring an assignment by first evaluating whether
or not the taxi meets all three requirements, then use the
vehicle’s profit per mile value and the distance task value
to calculate the reward (in this case profit) obtained by the
taxi-task pairing.

We treat the three requirements as fuzzy constraints; the
objective function is modified to assess a penalty if one
or more of the constraints is unmet. This penalty is equal
to the negative of the reward value associated with the
fare. However, when calculating the aggregate reward after

2https://www.subtchallenge.com/
3https://www.kaggle.com/datasets/neilclack/nyc-taxi-trip-data-google-

public-data
4https://www.kaggle.com/datasets/pavandas/city-taxi-trip-pricing-and-

distances



Fig. 1: Illustration of the MARP algorithm: (left) showing the algorithm at decision point (DP) 1 with the first DP revealed and subsequent
DPs simulated. (right) shows the currently revealed DP (4), a single subsequent simulated DP (5), and past DPs (1-3) no longer relevant
for the current decision. Reward maximizing deployments depicted represent optimal deployments for the trials; the actual deployment
for the current DP will be the deployment that occurs with the highest probability.

all assignments are made, a zero reward value is realized
for any deployment with one or more unmet requirements.
Because fare distance is the only task value not representing
a requirement, the reward calculation simplifies to:

π(xj , ei) = xj,kd
· ei,kd

(3)

where kd is the index of the distance task such that xj,kd

is the distance for ride request j, and ei,kd
is the profit per

mile for taxi i.
The profit per mile efficiency depends on the type of

vehicle used. Statistically, the need for a van in New York
City is far less than for a traditional sedan. Due to the low van
usage frequency, we assume higher van usage cost (e.g. lower
gas mileage, parking, purchase/financing costs) as compared
to sedans. This was observed in the profit per mile data
obtained and is reflected in the taxi pools used for our testing.

For this domain, we generated probability distributions
using the data obtained from Kaggle to model the fare
distance and requirements. Our experiments utilized two
different methods for generating distributions:

• Using the entire data set - use all of the data to fit the
distributions and use them to generate random fares for
testing.

• Using training and testing subsets of the data set - select
a random subset of the data to fit the distributions, then
use remaining data to represent fares for testing.

Finally, we fit distributions to model the task values in two
ways: 1) utilizing the full N.Y.C. fare data set (complete)
and 2) using separate randomly sampled subsets for fitting
task distributions and testing algorithm performance (subset).
For complete experiments, test tasks are randomly generated
using the resulting distributions.

V. RESULTS AND ANALYSIS

A. Comparison methods

To evaluate MARP’s effectiveness, we ran5 two types of
experiments, as discussed in section IV-B, one with randomly
generated tasks using a variety of known distributions, and

5All experiments performed on a standard desktop computer with Win-
dows 10 using AMD Ryzen 5 3600X 6-core processor (3.8GHz) and 32
GB ram.

the other with New York City taxi data. Furthermore, we
evaluate MARP’s performance against multiple baselines
produced using two comparison methods described below;
due to the novelty of our problem, we cannot directly turn to
the literature for existing comparison methods. Additionally,
we used an earlier heuristic method (see Future-Current
Heuristic below) we developed for the MRMT-SSDP.

The ideal evaluation requires comparing an algorithm’s
aggregate reward performance, Πη =

∑
(i,j)∈D π(xj , ei)

calculated for method η, with respect to a truly optimal
policy (i.e. when all task values are known in advance)
representing the exact upper bound in our solution space
determined using a completely revealed decision sequence.
We refer to this solution as the Oracle. Similar to MARP,
the Oracle implementation uses the Hungarian algorithm to
find the optimal deployment sequence to maximize the total
reward.

We calculate the percentage difference from Oracle, for
MARP and the two comparison methods, to provide directly
comparable performance metrics:

%diff =
ΠO −Πη

ΠO

where ΠO represents the maximum possible aggregate re-
ward produced by Oracle. This allows us to establish
MARP’s absolute performance compared to the optimal, as
well as its performance with respect to the two comparison
methods:

• Vectorized SSAP: In Lee’s [5] original implemen-
tation, the carrier robot holds a team of passenger
robots, each of which has a different efficiency for
the same task. This allows resources to be ranked by
their efficiencies and deployment decisions are made
using a threshold table of deployment reward expected
values in a manner similar to Derman [4]. However, this
approach cannot be directly used to solve the MRMT-
SSDP problem because multiple tasks and heteroge-
neous passengers preclude any meaningful ranking of
the resources.
Generating the OPD threshold table requires a single
task value probability distribution. To adapt the OPD
algorithm to the MRMT-SSDP problem, we must com-



(a) Comparisons using Normal and Uniform task distributions with
means and coefficients of variation held constant for all tasks.

(b) Comparisons using Normal tasks distributions held constant for
different decision sequence lengths.

Fig. 2: Comparison of percent difference from optimal aggregate reward using MARP (proposed algorithm), FCH, and Vectorized SSAP.
In both cases, MARP significantly outperforms both of the comparison methods. (a) MARP performs consistently for both Normal and
Uniform distributions; MARP’s percentage differences from optimal aggregate reward are more than 50% less than those produced by
the second best method (FCH). (b) MARP’s performance is consistent for all decisions lengths tested; FCH and Vectorized SSAP show
declining performance for decision sequences of increasing lengths. Error bars for both plots are one SEM.

bine multiple task distributions into the single task value
distribution required by ODP. Creating such a convo-
lution for table generation could be difficult. While
it doesn’t strictly apply, we use a heuristic based on
the Central Limit Theorem to combine the distributions
into one; we assume the resulting distribution is nor-
mally distributed with mean µ =

∑
k µk and variance

σ2 =
∑

k σ
2
k, where µk and σk represent the mean and

variance of task distribution k. Similarly, it is necessary
to combine the passenger robots efficiencies, which are
stated in reward units per unit of task value; we calculate
the aggregate efficiency as the sum of the individual task
efficiencies.
Because Vectorized SSAP makes no provision for eval-
uating the constraints we are unable to use it as a
comparison method in the N.Y. taxi data experiments;
the algorithm does not consider individual resources
when generating the threshold table.

• Future-Current Heuristic: This heuristic algorithm
is based on the concept of Derman’s SSAP algorithm
[4] discussed above. Rewards are calculated using Eqn.
2 and “future” rewards are calculated using expected
values. At each decision point:

1) Calculate current reward ρC,i for available passengers
using revealed task values

2) Calculate expected reward ρE,i for available passen-
gers using task distributions

3) Deploy the passenger with maximum ρC,i − ρE,i

B. Known Distribution Results
We tested our algorithm on a set of resources, each with

different efficiencies, by changing the following parameters:
• Number of simulations per decision point
• Combinations of task probability distributions
• Decision sequence length
In all of our experiments to date, MARP outperformed

both Vectorized SSAP and FCH when using various com-
binations of Normal, Uniform, Exponential, and Poisson
distributions.

We found that in this domain, the number of trials per
decision point had a relatively minor effect on the aggregate

reward performance; the range of average percent differences
is only 0.02% when varying the number of trials per DP from
100 to 10,000. (see Fig. 3).

Varying distributions did not appear to significantly affect
aggregate reward performance relative to oracle (see Fig. 2a).
Moreover, when testing with uniform distributions to model
all tasks, MARP still performed well with respect to the
oracle’s average optimal score.

Similarly, altering the resource efficiencies, while affecting
the aggregate reward values, did not affect MARP aggregate
reward with respect to oracle. Additionally, we observe that
MARP’s performance is relatively unaffected by the number
of decision points, whereas FCH demonstrated pronounced
deterioration as the number of decision points increases; Vec-
torized SSAP also shows deterioration, but less pronounced
than was observed for FCH (see Fig. 2b).

Fig. 3: Effect of number of trials per decision point on average
percent difference from the optimal aggregate reward. Independent
identically distributed (IID) tasks normally distributed with µ =
100 and σ = 60. Percentage difference is stable even with smaller
numbers of trials. Error bars are one SEM.

C. N.Y. Taxi Data Results
For this problem domain we ran multiple tests altering the

following parameters:
• Number of trials per decision point
• Task probability distributions (entire dataset vs. a ran-

domly sampled subset)
• Decision sequence length
MARP performed very well in the New York City taxi

assignment domain even when using relatively few simulated



(a) Effect of decision sequence length on MARP’s aggregate reward
performance.

(b) Effect of trial count on MARP’s aggregate reward performance.

(c) Comparison of MARP and FCH for a single test with 1000
trials per decision point.

(d) Effect of distribution fitting sample size on MARP’s aggregate
reward performance.

Fig. 4: N.Y.C. Taxi testing results using two different distribution fitting methods. Complete experiments fit task distributions using the
entire data set. Subset experiments fit task distributions used randomly sampled observations. (a) MARP generally performs well for all
decision sequence lengths. Additionally, performance advantages observed in complete experiments effectively disappear for sequences
of 30, or more, DPs. (b) In this domain, MARP performs well very small trial count. The aggregate reward distributions in (c) clearly
demonstrate MARP’s significantly performance gains over FCH. (d) shows that distribution fitting sample size has relatively little impact
on aggregate reward performance. (a), (b), and (c) used 20,000 observations for distribution fitting. Error bars for plots (a), (b), and (d)
are one SEM.

trials (see Fig. 4b) and small training data sets. This is a
direct result of the nature of the probability distributions
in the problem domain. For example, the probability of
a passenger requirement exceeding eight people is very
small (1% or less). Failing to realize such an outlier in a
small number of simulated trials does not affect the results
significantly. Similarly, while failing to include such unlikely
outliers in a small training data set, the resulting truncated
distribution still effectively represents the population and
does not materially impact MARP’s performance.

We found that varying the number of observations between
100 and 75,000 yielded generally acceptable results with rel-
atively small performance penalties associated with sample
sizes that are too small or too large (see Fig. 4d). There are
obvious runtime benefits associated with using smaller train-
ing data sets and fewer trials. The ideal training data set size
and simulated trial count will be domain specific, depending
on the nature of the tasks and requirements. Additionally,
with small decision sequences there is a clear advantage
to using larger sample sizes. However, with longer decision
sequences, there appears to be no compelling evidence that
large samples outperform smaller ones (see Fig. 4a).

To better understand MARP’s performance, we looked at
the distribution of reward percent differences for MARP and
FCH (see Fig. 4c). MARP’s percent differences are fairly
tightly clustered around a much smaller mean than observed
for FCH. This significantly smaller average and reduced

variability suggests that MARP will produce consistently
effective solutions.

VI. CONCLUSION

In this work, we formulated the Multi-Robot-Multi-Task
Stochastic Sequential Deployment Problem in which a carrier
robot must decide which, if any, of its passenger robots to
deploy at each decision point along the decision sequence.
We introduced our simulation-based optimization method,
MARP, which maximizes the probability of making an
optimal deployment at each decision point. This in turn
seeks to maximize the probability that we will obtain the
optimal aggregate reward. We then presented the results
from two sets of experiments, for different problem domains,
which showed that MARP scored close to Oracle and per-
forms better than previously developed algorithms. Execution
benchmarks show that MARP consistently averages 200 ms
per decision point, a very reasonable computation time for
likely application areas (e.g. exploration, search and rescue,
data collection).
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