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Abstract— We present a navigation framework to perform
autonomous underwater docking to a wave energy converter
(WEC) under various ocean conditions by incorporating flow
state estimation into the design of model predictive control
(MPC). Existing methods lack the ability to perform dynamic
rendezvous and autonomously dock in energetic conditions. The
use of exteroceptive sensors or high performing acoustic sensors
have been previously investigated to obtain or estimate the flow
states. However, the use of such sensors increases the overall
cost of the system and expects the vehicle to navigate close to the
seafloor or other landmarks. To overcome these limitations, our
method couples an active perception framework with MPC to
estimate the flow states simultaneously while moving towards
the dock. Our simulation results demonstrate the robustness
and reliability of the proposed framework for autonomous
docking under various ocean conditions. Furthermore, we
conducted laboratory trials with a BlueROV2 docking with an
oscillating dock and achieved a greater than 70% success rate.

I. INTRODUCTION

The capabilities of marine vehicles, such as autonomous
underwater vehicles (AUVs) and remotely-operated vehicles
(ROVs), have significantly advanced to perform complicated
operations such as navigating through unexplored and dy-
namic environments, inspection of underwater structures, and
monitoring of ocean conditions in deep waters. However, the
limited energy resources of AUVs and tethered connectivity
of ROVs constrain survey lengths and subsequently increase
the operational costs. Underwater docking stations that can
recharge vehicles and transmit their data offer a potential
solution to extend the endurance of vehicles.

Motion planning for underwater docking is a difficult and
unsolved problem as it involves understanding the dynamics
of various components of the system and the environmental
factors influencing the vehicle’s motion. Offline trajectory
planning is often challenging given the dynamic nature of
an underwater environment, even though offline strategies are
effective in ideal circumstances. Ocean currents and waves
can negatively impact the AUV’s actual path, causing it to
deviate and not be able to reach the dock.

The ability to perform dynamic rendezvous and au-
tonomously dock in energetic environments is missing from
existing systems. In most prior work [1]–[12], ocean current
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Fig. 1: BlueROV2 underwater vehicle autonomously docking using the
proposed model predictive control algorithm with an oscillating docking
station.

information is either obtained through exteroceptive sensors
or is estimated using Doppler Velocity Logger (DVL) or
other acoustic sensors. This not only increases the overall
cost of the system but also restricts the operational workspace
of the vehicle by expecting it to be in close proximity to
landmarks or the seafloor. To overcome this limitation, we
formulate the docking problem using an active perception
framework and generate trajectories for a 6-DOF marine ve-
hicle using a multi-objective optimization (MOO) approach.

As a main contribution, we present a navigation framework
that couples flow state estimation with model predictive
control (MPC) to perform autonomous underwater docking
to a wave energy converter (WEC) under various ocean
conditions. The proposed method allows for robust AUV
docking and recharging in real-world conditions. Our pro-
posed method outperforms the state-of-the-art techniques
used for autonomous docking in the presence of ocean
current disturbances. Additionally, we conducted laboratory
trials with a BlueROV2 and were able to dock reliably with
a docking station actuated with heave motion (see Fig. 1).
Preliminary versions of this algorithm were presented in our
previous workshop paper [13] and poster [14].

II. RELATED WORKS

Path planning and trajectory optimization are significant
components of autonomous underwater docking. Hernandez
et al. [15] present a framework for an AUV to navigate and
reach a goal location, through unexplored environments. But
they do not consider the non-linearity of the environment or
the uncertainty of estimates of the state. Following Findeisen
et al. [16], a real-time control of an AUV, based on MPC,
is introduced in Medagoda et al. [17]. The objective is
to perform trajectory tracking in a water column using an



MPC that accounts for the water current estimates from the
ADCP-aided localization filter. In Fernandez et al. [18], an
MPC is used to achieve the station-keeping application of a
marine vehicle in ocean waves. The state estimator design
employs Linear Wave Theory (LWT) to forecast and adjust
the vehicle’s state for the wave action.

The application of MPC to underwater robotics is a
promising approach as it requires minimal tuning of the
controller. The MPC-based 3D trajectory tracking strategy
designed in Zhang et al. [19] translates the system’s state
constraints into input constraints and transforms the opti-
mization problem into quadratic programming (QP). Wallen
et al. [20] present a finite horizon MPC to verify the concept
of docking to a dynamic platform whose motion pattern
is very similar to that of an offshore WEC. Although the
methods presented in Yan et al. [21] and Cao et al. [22]
account for external disturbances while designing the MPC,
they do not utilize the complete model of vehicle dynamics.
This limitation is addressed in our previous workshop paper
[13], which complements Wallen et al. [20] by seeking
a more comprehensive numerical framework further con-
necting the environmental disturbances experienced by the
docking station to the robotic motion planning problem. A
common assumption made in [13], [20]–[22] is that they have
the true characteristics of ocean currents. However, perfect
ocean current information is unavailable.

The likelihood that autonomous docking would succeed
can be increased by acquiring the ability to estimate unknown
current disturbances and adjust the docking maneuvers. In
most prior work, it is demonstrated that underwater naviga-
tion is supported by reasonable estimation of ocean currents,
in the presence of DVL or other acoustic sensors [1]–[12].
However, such sensors provide useful information only if
the vehicle is in close proximity to the sea floor or other
landmarks. They are expensive and may require transponders
to be attached to surface vessels or on submerged structures,
which subsequently increases operational costs. In more
recent work, Chang et al. [23] present an active perception
framework that improves flow state estimation and vehicle
navigation without using any exteroceptive sensors, such as
DVLs, USBLs, and other acoustic sensors.

In this paper, we present a navigation framework that
incorporates flow state estimation [23] into the design of
MPC [13], [14] for robust and reliable autonomous docking.

III. PRELIMINARIES

A. Vehicle Motion Model

In this paper, we use a six degrees-of-freedom vehicle
motion model to design vehicle control in the presence of
ocean disturbances. The model uses two reference frames:
The inertial frame (earth-fixed) {n}, coincidental with the
North-East-Down (NED) coordinate system, and the body-
fixed frame {b}. Let us denote the position and orientation
of the vehicle in {n} by η1 = [x, y, z]T ∈ R3 and
η2 = [ϕ, θ, ψ]T ∈ R3, respectively. Together, the pose of
the vehicle is defined by η = [ηT1 , η

T
2 ]

T ∈ R6. With the
vehicle linear and angular velocity denoted in {b} by ν1 =

[u, v, w]T ∈ R3 and ν2 = [p, q, r]T ∈ R3, respectively, the
velocity of the vehicle is represented by ν = [νT1 , ν

T
2 ]

T ∈ R6.
Then, vehicle motion can be described by

η̇ = J(Θ)ν (1)
MRB ν̇ +MAν̇r + CRB(ν)ν + CA(νr)νr +D(νr)νr

+ g(η) = τ, (2)

where νr = [νTr1 , ν
T
r2 ]

T = ν−νc ∈ R6 represents the vehicle
velocity relative to ocean flow velocity νc = [νTc1 , ν

T
c2 ]

T ∈
R6; J(Θ) is a transformation matrix from {b} to {n} with
respect to vehicle orientation Θ; MRB ∈ R6×6 and MA ∈
R6×6 are the rigid body and added masses; CRB ∈ R6×6

and CA ∈ R6×6 are Coriolis and centripetal terms due to
the rigid body and added masses, respectively; D ∈ R6×6

and g(η) ∈ R6 represent the hydrodynamic damping and
the hydrostatic restoring forces, respectively; and τ ∈ R6

represents the forces and moments acting on the vehicle.
Eqs. (1) and (2) represent the vehicle kinematics and dy-

namics, respectively. For brevity, we refer the readers to [24]
for details about the model. Let us define vehicle state vector
x = [ηT , νT ]T ∈ R12 and control input u ∈ R8 for our
testbed vehicle that satisfies τ = Bu, where B is the thruster
allocation matrix. In this paper, we assume irrotational flow
velocity (i.e., ˙νc2 = 0). With this assumption, a discretized
vehicle motion model is given by

x(k + 1) = f(x(k),u(k)), (3)

where f represents the discretized vehicle motion derived
from (1) and (2). Details of the model is presented in the
next section.

In this work, a BlueROV2 Heavy is used as the testbed
vehicle for simulations. The rigid body and hydrodynamics
coefficients of the vehicle are obtained from [25]. BlueROV2
Heavy is controllable in 6 DOF by a combination of eight
thrusters. While the proposed framework is demonstrated
using a BlueROV2 Heavy, we note that the framework can
be implemented on similarly actuated underwater vehicles
whose system parameters can be identified.

B. Flow Motion Model
Let us express ocean flow velocity νc with its linear and

angular components defined as νc1 = [uc, vc, wc]
T ∈ R3

and νc2 = [pc, qc, rc]
T ∈ R3, respectively. In this work, we

represent the ocean flow by assuming an irrotational flow
field, a widely used assumption in the literature [24], as the
vehicle does not stay at a fixed position.

˙νc1 = −S(ν2)νc1 = −S(νr2)νc1 (4)
˙νc2 = 0, (5)

where S is a skew symmetric matrix. Flow estimation is
constructed based on the above model but aims to estimate
time-varying flow. We evaluate the performance of the pre-
sented controller on ocean flow varying in space and time
such as double-gyre flow.

For an irrotational flow velocity, Eq. (2) can be simplified
to describe vehicle motion relative to the ocean flow as

Mν̇r + C(νr)νr +D(νr)νr + g(η) = τ. (6)



C. Wave Energy Converter (WEC) Motion Model

To analyze the feasibility of the proposed strategy for
docking, the simulated WEC is limited to only translatory
heave motion with sinusoidal oscillations. This represents
the predominant motion typically seen by docks in ocean
waves [26]. Let us define WEC state vector xW ∈ R12 whose
vertical motion is described by

żW = ωAcos(ωt), (7)

where ω and A are the frequency and amplitude of oscilla-
tion, respectively.

IV. PROBLEM FORMULATION

A closed-loop MPC is coupled with flow state estimation
to present a navigation framework for autonomous underwa-
ter docking.

Assumption 1: True vehicle state is available during the
entire docking operation (e.g. using an acoustic positioning
system or other localization methods).

Assumption 2: The location of the WEC relative to the
vehicle is available during the entire docking operation.

A. Flow State Estimation

Unknown background flow can cause perturbations to
an underwater vehicle’s motion, leading to an unsuccessful
attempt at docking. In this paper, we integrate the approach
presented in [23], which considers the coupling between
vehicle motion and ocean currents to facilitate flow state
estimation, for reliable docking with fewer failures.

Uniform complete observability of the flow state, along
the vehicle trajectory, is maintained by obtaining a control
input that minimizes the maximum variance of the flow state
estimation. To facilitate this, F is defined as the information
metric, that corresponds to the observability and performance
of the flow state estimation, and can be described as

F = λmin(Gνc1
cg (−∞, k + 1)), (8)

where νc1 ∈ R3 represents the linear component of the flow
velocity, λmin(.) denotes the smallest eigenvalue of (.) and
Gνc1
cg represents the constructability gramian of the linearly

time-varying ocean flow system.
The control law pertaining to flow state estimation can be

defined as

τ⋆k = argmax
τk

F (9)

subject to (6), τmin ≤ τk ≤ τmax,

where τ⋆k is the active perception control input.
A Kalman filter is specifically designed for the purpose of

predicting and estimating ocean currents. The Kalman filter
for flow state estimation uses inertial sensor measurement
as observation and we provide that given a perfectly known
vehicle state with noise. For details on the design of the
Kalman filter, we refer the readers to [23].

B. Optimal Control

We present a navigation framework that incorporates flow
state estimation into the MPC formulation for a more reli-
able and robust docking approach. This is accomplished by
modifying the objective function to include the information
metric, defined in (8).

At time k = κ, the optimal control problem seeks to find
a sequence of N + 1 optimal control inputs U⋆ = {u⋆(0),
· · · ,u⋆(N)} by minimizing the objective function J such
that

U⋆ = argmin
{u(0),··· ,u(N)}

J =

t+N−1∑
k=κ

[
∥x(k)− xW (k)∥2Q

+∥u(k + 1)− u(k)∥2R − αF
]
+∥x(N)− xW (N)∥2P (10)

subject to (3), x(0) = x0, xmin ≤ x(k) ≤ xmax,

umin ≤ u(k) ≤ umax,

where xW ∈ R12 represents the WEC state vector, N
is the prediction horizon, α is a scalarization factor and
P , Q, and R are the weight matrices for terminal error
cost, accumulated error cost, and control discontinuity cost,
respectively.

The key significance of the proposed approach is that
it enables the vehicle to counter the influence of unknown
flow disturbances while simultaneously moving closer to the
docking station, in an optimal manner.

V. METHODS

In this section, we present the overview of the proposed
navigation frameworks for autonomous docking. As de-
scribed above, motion planning for underwater environments
is difficult due to multiple factors, such as the effect of
waves and currents on the vehicle’s motion, poor vehicle
localization, sensor limitations, among others. Our work
focuses particularly on simultaneously estimating the ocean
currents and compensating its influence while performing
autonomous docking. To demonstrate this, we formulate the
navigation framework in the following two ways:

• Combined optimization of flow state estimation and
docking trajectory (Optimized FSE-MPC)

• Sequential optimization of flow state estimation and
docking trajectory (Sequential FSE-MPC)

A. Optimized FSE-MPC

In this method, we use a weighted-sum scalarization ap-
proach to approximate the MOO problem of simultaneously
estimating the flow state and planning the AUV’s docking
trajectory. The α term in (10) is the weight associated with
the information metric for flow state estimation. Given the
vehicle’s current state and target state, we obtain a sequence
of N +1 optimal control inputs U⋆ = {u⋆(0), · · · ,u⋆(N)}
by solving the optimization defined in (10). In our implemen-
tation, only the first control action u⋆(0) in U⋆ is executed.
While the vehicle is in motion, we generate inertial sensor
measurements based on the vehicle’s state and use them as
a measurement for correcting the Kalman filter. Following



which, the flow states are predicted for the next time step.
This process is repeated until the vehicle successfully docks.

B. Sequential FSE-MPC

Due to the computational requirement for MOO, Opti-
mized FSE-MPC is computationally expensive. To overcome
this, we designed an alternate strategy that solves the objec-
tives sequentially, one after the other. At each time step,
the active perception control input is obtained by solving
the control law defined in (9). It is then added to the
MPC optimization variable U, to maintain uniform complete
observability of the flow state along the docking trajectory.
Before solving for the optimal control input, we define
α = 0 to disable MOO. Following this step, the algorithm
adheres to the same procedure as Optimized FSE-MPC and
is repeated until successful docking is achieved.

C. Baseline Methods

Three baseline approaches are implemented, and their
performance is evaluated in various ocean conditions. All
of them utilize the same cost function J defined in (10)
with α = 0, to disable MOO. The key difference between
the methods is the formulation of kinematic and dynamic
models of the vehicle.

Assumption 3: True flow state is measured using extero-
ceptive sensors and is available during the entire docking
operation for the Kinematic MPC and Oracle MPC.

1) Naive MPC: This controller does not consider the
effect of ocean currents in the vehicle motion model. Sub-
stituting νc = 0 into (1), it becomes

η̇ = J(Θ)νr. (11)

The simplified vehicle motion model follows (11) and (6).
2) Kinematic MPC (K-MPC): In this method, the effect of

ocean currents is only considered in the kinematic equation
(1). To understand the performance of the controller purely
with respect to the kinematics of the vehicle, a simplified
dynamic model (6) is utilized.

3) Oracle MPC: Following Assumption (3), access to
ocean current information allows this method to utilize the
complete vehicle motion model as defined in (3). The key
difference between this and the proposed algorithms is that
it does not estimate the flow states. We note that it is not
feasible to implement this algorithm in real-time without
perfect information on ocean currents.

VI. ALGORITHM LAYOUT

Algorithm 1 shows the procedure for the proposed frame-
works (Optimized and Sequential FSE-MPC). The algorithm
requires two inputs, namely the current state of the vehicle
and its target state. Once all inputs are passed through, the
designed Kalman filter is initialized with a rough estimate of
the flow state. Following which, the MPC is initialized. Then,
until the vehicle reaches the dock successfully, MPC obtains
a sequence of optimal control input U⋆ based on the type
of framework used, executes the first control action u⋆(0)
from the sequence and performs Kalman filter correction and

prediction of the flow states, at the end of each iteration.
If the chosen framework is the multi-objective Optimized
FSE-MPC, α is set to 10−15 to appropriately scale F with
respect to the objective function mentioned in (10). Then
the controller minimizes (10) to obtain the optimal control
input. Otherwise, if the chosen framework is Sequential FSE-
MPC, α is set to 0 to disable MOO. Then the optimal control
associated with active perception τ⋆k is separately obtained
and added to the MPC optimization variable U prior to
minimizing (10) for the optimal control input.

Algorithm 1 Navigation Framework for Autonomous Un-
derwater Docking

Input: Current state, Target state
1: Initialize Kalman filter with an estimate of flow state
2: Initialize MPC
3: repeat
4: if Optimized FSE-MPC then
5: α = 10−15 ▷ Enable MOO
6: else
7: if Sequential FSE-MPC then
8: α = 0 ▷ Disable MOO
9: τ⋆k = argmaxτk F

10: Add τ⋆k to the MPC optimization variable U
11: end if
12: end if
13: U⋆ = {u⋆(0), · · · ,u⋆(N)} ← (10) ▷ Optimization
14: u⋆ ← u⋆(0)
15: Propagate the vehicle using u⋆

16: Kalman filter correction for flow state
17: Kalman filter prediction for flow state
18: until AUV reaches dock successfully

Algorithm 2 shows the procedure for Oracle MPC. The
algorithm requires two inputs, namely the current state of
the vehicle and its target state. Once all inputs are passed
through, α is set to 0 and the MPC is initialized. Then,
until the cessation criteria are satisfied, periodically update
the flow states based on the known data, obtain the optimal
control sequence U⋆ and execute the first control action
u⋆(0) from the sequence.

Algorithm 2 Oracle MPC
Input: Current state, Target state

1: α = 0 ▷ Disable MOO
2: Initialize MPC
3: repeat
4: Update flow state based on the known data
5: U⋆ = {u⋆(0), · · · ,u⋆(N)} ← (10) ▷ Optimization
6: u⋆ ← u⋆(0)
7: Propagate the vehicle using u⋆

8: until AUV reaches dock successfully

VII. SIMULATIONS

The methods described in Section V were implemented in
Python using the Casadi optimization library [27] and was
run on a laptop with an Intel i7-10870H CPU.



Fig. 2: Vehicle docking trajectories from different algorithms under various
ocean conditions. Optimized and Sequential FSE-MPC converge to the dock
in all cases, similarly to the Oracle. However, K-MPC and Naive-MPC do
not.

A. Simulation Setup
1) Ocean Flow Models: Ocean flow models can be

broadly categorized as constant and time-varying flow fields.
In this work, we simulate six different environmental flow
conditions to evaluate the robustness and reliability of using
the proposed navigation framework for autonomous docking.
Simulated constant flow conditions can be defined as: uc =
vc = 0 m/s, uc = vc = 0.5 m/s, uc = −1 m/s and vc =
2 m/s. Recall that uc, vc are the linear flow velocities along
the surge and sway axes, respectively. A two-dimensional
(2D) double-gyre pattern [28], is simulated to evaluate the
performance of the proposed navigation framework under
time-varying flow field conditions. Here, we use A = 0.1/π
as the magnitude of flow velocity, ω = 2π/T as the
frequency of oscillation, and T = 12h as the total time
period. The AUV’s operational domain is translated to [-
7.5 km, 12.5 km] x [-7.5 km, 2.5 km]. Furthermore, we use
A = 0.5 and T = 6h to simulate a larger and frequently
changing double-gyre pattern.

Assumption 4: A uniform flow field exists along the z-axis
i.e., w = 0.

We extend the flow field to three-dimensional (3D) space
following Assumption 4 in all of the above-listed cases.

2) MPC Design Parameters: We empirically chose a time
step dt = 0.05 s, a prediction horizon window N = 10,
and a convergence tolerance for docking with a precision of
0.05 units. For simulations, the vehicle starts at (x, y, z) =
(0, 0, 5) facing true North 0◦and navigates until it meets the
dock oscillating at (xW , yW ) = (2, 3) in the z axis with the
target heading of 0◦.

B. Results and Discussion
Fig. 2 illustrates the comparison of optimized paths from

different algorithms under various ocean conditions. Across
all cases, Oracle MPC, Sequential and Optimized FSE-MPC
are able to reach the docking station successfully. However,
Naive MPC and K-MPC only perform successful homing
under still water or calm conditions (Cases: 1, 5). In stronger
flow conditions (Cases: 2-4, 6), Navie MPC and K-MPC are

Fig. 3: Travel time of vehicle using different algorithms under various ocean
conditions.

Fig. 4: Length of path traversed by the vehicle using different algorithms
under various ocean conditions.

unable to counter the effect of ocean currents. Irrespective
of the controller used, the vehicle first moves to the top
position of the vertical trajectory of the dock. Since the
WEC is constantly moving, the vehicle follows the dock and
achieves docking at the position of the trajectory where the
convergence tolerance for docking is satisfied.

Fig. 3 demonstrates the comparison of the time taken by
the vehicle to reach the docking station using the discussed
methods under various ocean conditions. As stated earlier,
in strong ocean conditions (Cases 2-4, 6), Naive MPC and
K-MPC fail to reach the desired location and eventually
the planners get timed out at 75 s. On the other hand,
under similar flow conditions (Cases 2-4, 6), it can be noted
that Oracle MPC, Sequential, and Optimized FSE-MPC are
successful. The key observation is that our proposed methods
(Sequential and Optimized FSE-MPC) take longer than the
Oracle MPC as the vehicle needs to explore the environment
in order to maintain uniform complete observability of the
flow states along the docking trajectory. The vehicle takes
the longest time with Optimized FSE-MPC, under all flow
conditions, because the optimization of the two objectives,
namely flow state estimation and generation of optimal
docking trajectory, are tightly coupled and the controller
tries to find the Pareto optimal solution. On the contrary,
controlling the vehicle using Sequential FSE-MPC results in
shorter travel time as the controller prioritizes generating an
optimal trajectory over estimating flow states.

We also evaluate the length of the path traversed (see Fig.
4) and the performance of flow state estimation (see Fig.
5) under various flow conditions. Since Naive MPC and



Fig. 5: Performance comparison of flow state estimation. Optimized FSE-
MPC provides better estimation of flow states, but at a significantly higher
computational cost.

K-MPC do not converge under strong flow fields (Cases
2-4, 6) the corresponding path lengths are significantly
longer than the other algorithms. Although Oracle MPC has
perfect knowledge of the flow states based on Assumption
3, the vehicle reaches the docking station in a relatively
shorter path when controlled with Sequential FSE-MPC,
for Cases 3 and 4. This can be substantiated by the high
root mean squared error (RMSE) of Sequential FSE-MPC
as seen in Fig. 5. Since it is biased toward generating an
optimal docking trajectory, it restricts the exploration of
states in the environment for better flow state estimation.
As a result, the optimal control input from Sequential FSE-
MPC drives the vehicle into states that are closer to the dock
than Oracle MPC. On the other hand, Optimized FSE-MPC
produces lower values of RMSE, and longer paths compared
to Sequential FSE-MPC. Additionally, it was found that the
average computational time for Optimized FSE-MPC was
5014.83 s when compared to 203.08 s for Sequential FSE-
MPC across all the cases. From Fig. 5, it can be inferred that
the performance of both algorithms is relatively the same for
cases 1, 5, and 6. But for stronger constant ocean currents
(Cases 2, 4), Sequential FSE-MPC has a higher RMSE than
the Optimized FSE-MPC due to the restricted exploration.

VIII. EXPERIMENTS

A. Experimental Setup

For experimental validation, we performed docking trials
using a BlueROV2 and an actuated dock in the OH Hinsdale
Wave basin in Corvallis, OR. To obtain the relative posi-
tioning of the BlueROV2 with respect to the dock, we im-
plemented visual servoing using fiducial markers. Different-
sized markers were attached to the back panel of the dock
to enable persistent visual detection at all times, during the
docking operation. The front-facing camera of the BlueROV2
was calibrated using a checkerboard, to obtain the camera
properties. The dock was heave-actuated with a sinusoidal
oscillation that had the following properties:

• Amplitude = 6.35 cm/s; Frequency = 0.6 Hz
• Amplitude = 7.62 cm/s; Frequency = 0.8 Hz

The initial position of the vehicle was approximately 2 m in
front of the dock. Note that for these experiments, we only
validated the performance of Oracle MPC with zero flow
since it is not possible to generate currents in the facility.

(a) t = 0 s (b) t = 5 s

(c) t = 10 s (d) t = 20 s

Fig. 6: Successful attempt at docking autonomously with an oscillating
docking station, using fiducial markers. The sequence of images illustrates
the approach and docking phase of the vehicle. The dock is actuated along
the heave axis, causing it to move up and down.

B. Results and Discussion

We were able to reliably and repeatedly dock au-
tonomously in 8 out of 11 attempts with different heave
motions of the dock, using fiducial markers. Fig. 6 illustrates
one such successful attempt at autonomous docking with an
oscillating dock. Failures typically occurred due to the loss of
fiducial tracking or the inability to avoid collisions. While the
trials were performed in still conditions, these results indicate
the robustness and reliability of the proposed algorithm for
autonomous underwater docking in real conditions with an
oscillating dock.

IX. CONCLUSION AND FUTURE WORK

Autonomous docking is a key aspect of underwater ex-
ploration with marine vehicles as it provides power, data
transmission, reduces operational costs, and increases the
endurance of the vehicle. Generally, it is difficult to perform
dynamic rendezvous and autonomously dock in energetic
environments. To overcome this limitation, we proposed a
navigation framework that couples flow state estimation into
the MPC framework for optimal control of the vehicle. The
simulation results demonstrate the vehicle successfully ap-
proaching the docking station while countering the influence
of ocean currents along its path. The results demonstrated
that both our frameworks, namely Sequential and Optimized
FSE-MPC, are robust and reliable strategies for autonomous
docking. Additionally, Sequential FSE-MPC was found to be
computationally less expensive than Optimized FSE-MPC.
Furthermore, we conducted field trials on a BlueROV2 with
a dock oscillating along the heave direction and achieved a
greater than 70% success rate.

Future work includes conducting field trials in energetic
environmental conditions with complex dock motion. Fur-
thermore, we intend to incorporate the effect of waves into
the navigation framework presented in this paper. We also
plan to look into wave-current interactions and the use of a
sonar imaging sensor for improved vehicle localization and
3D reconstruction of the docking station.
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