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Abstract— Persistent operation of Autonomous Underwater
Vehicles (AUVs) without manual interruption for recharging
saves time and total cost for offshore monitoring and data
collection applications. In order to facilitate AUVs for long
mission durations without ship support, they can be equipped
with docking capabilities to recharge in situ at Wave Energy
Converter (WEC) with dock recharging stations. However, the
power generated at the recharging stations may be constrained
depending on the sea conditions. Therefore, a robust mission
planning framework is proposed using a centralized Evolu-
tionary Algorithm (EA) and a decentralized Monte Carlo Tree
Search (MCTS) method. Both methods incorporate the charge
availability constraint at the recharging station in addition to
the maximum charge capacity of each AUV. The planner utilizes
a time-varying power profile of irregular waves incident at
WECs for dock charging and generates efficient mission plans
for AUVs by optimizing their time to visit the dock based on
the imposed constraint. The effects of increasing the number
of AUVs, increasing the number of points of interest in the
mission area, and varying sea state on the mission duration are
also analyzed.

I. INTRODUCTION

Multiple Autonomous Underwater Vehicles (AUVs) have
the ability to navigate autonomously for prolonged peri-
ods in potentially hazardous environments by utilizing in
situ recharging strategies. These environments are otherwise
unsafe or time-consuming for human divers. Continuous
operation of AUVs is essential for missions to carry out
data collection, exploration, or monitoring in underwater
environments. However, such AUVs typically require ship
support, which is both costly and requires a trained human
crew to be present during operation. Hence, AUV’s can
be equipped with docking capabilities that allow them to
recharge at a docking station, and resume their mission
without manual intervention.

Some missions allow tethered charging where AUVs are
connected to an external power source using a tether cable.
However, tethers can impose physical limitations on the
maximum range covered by the AUV based on the cable
length. On the other hand, docking stations can allow higher
flexibility for AUV as these docking stations are often
positioned at one or more fixed locations in the mission
area allowing the AUVs to dock, recharge their batteries, and
resume their mission. The power available at the docking sta-
tion can be sourced from Wave Energy Converters (WECs).
WECs capture energy from ocean waves and convert it
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into electricity, which is then used to power the docking
stations. The power generated at WECs is determined by the
characteristics of the incident waves defined by the sea state
as well as the design and efficiency of the converter [1].
Much of the existing work in generating efficient mission
plans for AUVs fails to account for the energy constraint at
the docking station, as it is assumed that the docks would
always have surplus energy to completely recharge the AUVs
[2]. In other scenarios that account for energy constraints at
the dock, mission plans are executed such that AUVs visit
the dock at periodic intervals and recharge completely [3].
The time between subsequent recharges ensures that the dock
has sufficient power available. However, these assumptions
come at the expense of higher mission time and energy
consumption, as it might not be essential for an AUV to
recharge completely or periodically. The sea state of a region
can also exhibit significant variability seasonally due to vari-
ous oceanographic factors [4]. The Water Power Technology
Office’s (WPTO) Wave Hindcast dataset provides an annual
variation of the wave attributes for different regions [4].

Hence, efficient mission planning would ensure optimized
utilization of vehicle energy resource as well as power
generated by WECs. The power generated at the WECs
varies based on the incidental wave conditions from calm sea
state during summer to larger energetic waves during winter
and early spring. Based on the specific mission goals and
the power profile available at the docking stations, a mission
planner can generate waypoints or routes for the AUV by
efficiently minimizing energy consumption and travel time
and at the same time maximizing mission coverage.

In this paper, a robust mission planning framework is
designed for multiple AUVs that minimizes the mission
duration while adhering to the energy constraints of both the
AUVs as well as the docking station. The mission planning
framework incorporating the energy constraints is provided
using a centralized scheme based on Evolutionary Algorithm
(EA) and a decentralized scheme based on Monte Carlo Tree
Search (MCTS). The centralized EA approach generated
mission plans with lesser mission time as compared to
the decentralized MCTS approach at the cost of higher
computational overhead. We obtained efficient mission plans
on inclusion of time-varying power constraint at the docking
station, as compared to AUVs assuming unlimited power at
the docking station. This work is an extension of our previous
workshop paper accepted in IROS 2nd Advanced Marine
Robotics TC Workshop 2023.



II. RELATED WORK

A. AUV Docking and Recharging Systems

Underwater docking infrastructure provides a platform for
AUV recharging and data transfer. The existing dock designs
are classified as unidirectional and omnidirectional based on
the direction in which AUV can approach the dock [5]. They
are further categorized into fixed or floating type.

A WEC-dock hybrid system design allows on-site energy
harvesting and AUV recharging capabilities [6]. A review of
WEC technology is provided in [7] based on the location
and type. The WEC device can be classified into oscillating
water columns (OWCs), overtopping devices and oscillating
bodies. Studies are also carried out to determine the optimal
WEC size based on the incidental wave condition [8]. The
type of docking mechanism decides the AUV navigation and
undocking strategies.

B. Marine Energy Harvesting Model

Wave energy can be modelled using linear wave theory
or models that take into account nonlinear waves effects and
interactions. A simplified linear energy model for regular
waves is a function of wave height Hm and wave period
Tm as given by Equation 1, where ρ is the water density
and g is the acceleration due to gravity [3]. Assuming a
WEC-dock coupled system, the power generated at WEC
can be computed using Equation 2, where B represents
the WEC dimension, η is the hydrodynamic efficiency and
ϵ1, ϵ2 are generator efficiency and power transfer efficiency
respectively:

Jwave =
ρg2

64π
TmH2

m (1)

PWEC = JwaveBηϵ1ϵ2 (2)

The wave spectral density function provides the significant
wave height and energy period for irregular waves. The
power matrix for a particular WEC type provides a mapping
of the mean power available for a given sea state [9]. Sea
states could vary seasonally due to wind patterns, tides, and
currents creating calmer sea states in summer and larger
energetic waves in winter.

Wave Energy Converter Simulator (WECSim) is an open
source tool that incorporates complex wave energy mod-
elling. The modelling involves numerical simulations or
empirical relationships of wave steepness, water depth, wave
spectra, and nonlinear wave interactions and generates power
output based on the chosen WEC construction [10]. A time-
varying power profile can be generated using WECSim by
simulating the response of a specific WEC device to a given
incident irregular wave condition.

Additionally, the power generated from WEC recharges
the energy storage device at the dock such as batteries. The
charging and discharging of the batteries can be modelled
using the function as given in Equation 3, where β is the
rate of charging and discharging:

q̇(t) = β (3)

C. Mission Planning Algorithms

Existing methods of mission planning for multiple au-
tonomous vehicles mostly fall under the categories of cen-
tralized or decentralized approaches. In [11] and [12], a
taxonomy for multirobot task allocation problems with inter-
task dependencies is provided along with a mathematical
formulation for each class of problems. A survey of collec-
tive behavior algorithms for multiagent systems provides a
classification of the family of algorithms based on the under-
lying mathematical structure and provides insight into how
the same algorithm can be applied to multiple applications
[13].

A multi-objective genetic algorithm (GA) is utilized in [2]
that generates energy efficient trajectories while accounting
for obstacles and ocean currents. Such population based op-
timization approaches generate a candidate pool of possible
solutions and iteratively improve upon them to converge to
an approximate solution. In [14], Multi-Robot Long Term
Persistent Coverage Problem (MRPCP) is formulated as
Mixed Integer Linear Programming (MILP) that accounts
for degree constraints, capacity and flow constraints, and
fuel constraints. The method can also handle dynamic costs
between the targets.

Multiagent reinforcement learning based methods for solv-
ing multiagent task allocation problems involves an MDP
formulation that learns an optimal policy as the autonomous
vehicles iteratively receive a reward for taking actions in
the environment from their current state. A policy gradient
based search is utilized to train all the robots independently,
and is deployed in a decentralized manner where the robots
are allowed to communicate about their completed tasks
[15]. Other reinforcement learning approaches such as actor-
critic based methods incorporate centralized learning and
decentralized execution as those discussed in [16].

An online multiagent MCTS approach is applied in multi-
drone delivery problem using dynamic coordination graphs
[17]. The decentralized variant of MCTS is presented in [18]
where every autonomous vehicle grows its own search tree
and iteratively optimizes upon the action-sequence probabil-
ities by communicating with other autonomous vehicles. In
[19], an online distributed method for coordinating hetero-
geneous multirobot systems for task allocation is proposed.
An optimal coverage problem under energy depletion and
repletion constraints is developed using a hybrid system
model that controls the switching between coverage and
battery charging modes of all agents [20]. However, all the
above methods assume unlimited power at the recharging
stations, hence they do not account for power availability at
the dock that can generate more informed mission plans for
the autonomous vehicles.

III. METHODOLOGY

A. Problem Formulation

There are N AUVs that are assigned to cover all points
of interest in the mission area atmost once in minimum
time. The mission area is represented as an undirected graph



G = (V,E), where V represents the points of interest and
recharging station nodes within the mission area such that
Vdock ⊂ V , and E represents the edges connecting any
two nodes in V . P represents the set of AUV paths for all
possible candidate solutions. PM = {p1, p2, ...pN} ∈ P ,
where pi represents the path of ith AUV. pi = (vi1, v

i
2, ....)

is the sequence of nodes traversed by an ith AUV, vij ∈ V
represents the jth point covered by ith AUV. pi determines
when the ith AUV would visit the recharging station. p′i
represents the set of nodes traversed by an ith AUV. Ti

represents the individual mission time of an ith AUV.
Equation 5 defines that set V is equal to the total points of

interest covered by all the AUVs. No overlapping constraint
of points of interest covered by the ith and jth AUV in
their respective mission plan p′i, p′j is given by Equation 6.
The current charge Ci(t) of the ith AUV at any given time
is bounded by its maximum charge capacity Bi as given
in Equation 7. The charge available at the dock qdock(t) is
bounded by its maximum charge capacity of Bdock as given
in Equation 8. The current dynamic state of charge available
at the dock is dependent on PWEC (Equation 2), β (Equation
3), and Ci(t) as given by a function f in Equation 9:

P∗ = argmin
PM∈P

max
i={1,2,...N}

Ti (4)

such that,

V =
⋃

i={1,2,...N}

p′i (5)

∀i ̸=j{p′i \ Vdock} ∩ {p′j \ Vdock} = ∅ (6)

0 ≤ Ci(t) ≤ Bi (7)
0 ≤ qdock(t) ≤ Bdock (8)

qdock(t) = f(Ci={1,.N}(t), PWEC, β) (9)

B. Algorithm

To solve the optimization problem formulated in Equation
(4), a decentralized scheme using MCTS [21] as given in
Algorithm 1 and a centralized scheme using an EA [22] [23]
as given in Algorithm 2 is applied. The charge capacity
of both AUVs and docking stations is incorporated into
cost/fitness function implicitly as AUVs are penalized for a
negative charge when they do not visit the docking station on
time and rewarded otherwise. As the cost function provides
a tradeoff between the total distance travelled and the total
charge consumption for an entire mission, the visit to the
docking station is an implicit function of the dock’s current
charge availability to meet the minimum incremental charge
required by the AUVs for completing the mission.

In Algorithm 1, each ith AUV builds its own tree until
no mission point is unvisited. A node in the tree represents
the point of interest in the mission area, AUV’s state of
charge, and possible next points of interest that can be
traversed from the current point. Every AUV simultaneously
takes one step in the environment through STEP 1-3 in
lines 5-7, and updates its current state of charge using the
ChargeUpdate() function in line 11. The AUV charge is
updated based on the distance traveled from the current node

Algorithm 1 Decentralized mission planning framework
using monte carlo tree search (MCTS) for multiple AUVs

1: Input: Graph G
2: Output: Mission time TM , Path traced by each AUV pi
3: for each episode do
4: Initialize Vunvisited = V , rooti = {vistart ∀i ∈ R}
5: STEP 1 Perform selection for each AUV simultane-

ously until reaching a leaf node. Update the AUV
charge and branch cost based on the distance tra-
versed.

6: STEP 2 Perform expansion in each AUV’s tree and
select a child for rollout if Vunvisited ̸= ∅. Update the
AUV charge and branch cost based on the selected
child node.

7: STEP 3 Perform simulation in each AUV’s tree until
Vunvisited = ∅.

8: STEP 4 Backpropagate maxi∈R costi in each tree.
9: STEP 5 Evaluate the policy and return the best

sequence of points traversed by each AUV pi if
Vunvisited = ∅

10: end for
11: Function:ChargeUpdate()
{▷Compute AUV/dock charge& branch cost}
civnext

← civcurr
− ci(v

i
next, vicurr)

12: if vinext ∈ Vdock then
13: cdock ← cdock +

∑
f(t)

14: civnext
← civnext

+min{cdock, Bi − civnext
}

15: cdock ← max{0, cdock −min{cdock, Bi − civnext
}}

16: end if
17: branch costi = −d(vnext, vcurr)

si
− {civcurr

− civnext
}

Algorithm 2 Centralized mission planning framework using
evolutionary algorithm for multiple AUVs

1: Initialize population P
Each state in the population is represented as
p = {v1start, v11 , v12 , ...., v1dock;
v2start, v

2
1 , v

2
2 , ...., v

2
dock; ...} where, v ∈ V

2: for each episode do
3: STEP 1 Evaluate Fitness F :

{▷ Update dock& ith AUV′s current charge}
civnext

← civcurr
− ci(v

i
next, vicurr)

cdock ← cdock +
∑

f(t)
F ← F + civnext

4: if (vnext ∈ Vdock & cdock > 0) then
5: ∆ci = max{cdock, Bi − civnext

}
6: F ← F +∆ci

7: else if cdock = 0 then
8: F ← F −Bdock {▷Add penalty}
9: end if

10: STEP 2 Perform Roulette Selection and save k can-
didates for next generation.

11: STEP 3 In the remaining P − k candidates, perform
mutation by selecting a state from each robot path
such that the current state /∈ {vstart, vdock}

12: end for



to the next node. If the destination is a docking location
(line 12), the AUV is recharged based on the current charge
available at the docking station. In STEP 4, the cost of the
terminal state for each AUV is computed as given in line 17
and the cost is backpropagated from the starting node in the
simulation phase to the root node.

In Algorithm 2, a population of possible solutions P is
randomly generated. Each state p is encoded such that each
AUV’s path has nodes corresponding to starting node, dock-
ing node and a random sequence of mission points of interest.
All AUVs start from the same point vistart. The docking
node vidock in each AUV’s path is non-interchangeable during
mutation with any other AUV’s path. All other mission points
of interest are interchangeable across the entire possible
solution during mutation. In STEP 1 (lines 3-9), the fitness
of each member solution in the population is evaluated using
a cost function that penalizes cost of traveling between two
points and an added penalty for reaching the docking station
when the dock has no charge left. Any incremental change
in AUV’s charge at the dock ∆ci is added as a reward to
the cost function. A fraction of solutions from the population
are selected based on Roulette selection [24] for continuing
in the next generation. The remainder of the next generation
of population is formed by mutating the selected candidates
from the roulette selection. The process is repeated until the
fitness value converges.

The converged policy using both algorithms provides the
sequence of nodes traversed by each AUV, which also
dictates when the AUV would visit the dock through the
course of a mission.

IV. SIMULATION & RESULTS
A. Simulation Setup

The above algorithms are evaluated using maps with a
random distribution of nodes in a 60 km × 60 km area.
The dock is represented by one of the points on the map.
The dock is assumed to have a maximum charge capacity
lesser than or equivalent to a single AUV and can only
charge one AUV at a time in all the simulations following
Sec. IV-B. The assumed AUV battery capacity allows it to
travel continuously for 15 hr before recharging. The recharge
time is assumed to be negligible with respect to the total
uninterrupted travel time of the AUV. Mission duration by
increasing the number of AUVs, increasing the number of
points of interest in the same mission area, and in different
sea state conditions using constant mean power or time-
varying power profile for dock charging.

In our experiments, it is assumed that all the AUVs would
start from the same starting location and would need to
recharge once or twice at the docking stations to complete
the entire mission in the least amount of time. Moreover, the
proposed framework can be extended for multiple docks or
for multiple recharges at the same docking station. The dock
charges linearly based on either a constant mean power or
non-linearly using a time-varying power profile. A low and
high sea state representing seasonal variation is considered
to understand the impact on the total mission duration. The

Fig. 1. Charging and discharging profile for four AUVs {0, 1, 2, 3} and
the dock node through the course of mission in a 60 km × 60 km area
with 18 randomly distributed points of interest. Number of moves along
y-axis represents charge used while moving from one mission interest point
to another.

TABLE I
COMPUTATION TIME OF ALGORITHM 1 (MCTS), AND ALGORITHM 2

(EA) FOR A SINGLE ITERATION.

Computation Time (secs)
Number of nodes 10 14 18 22

EA 11.83 13.26 14.82 16.10
MCTS 2.42 4.32 7.638 11.41

Number of agents 2 4 6 8
EA 17.55 18.52 20.24 22.56

MCTS 22.03 14.97 13.5 12.38

AUV discharges linearly with distance traveled as shown
in Fig. 1 [25]. Experiments are also carried out using a
time-varying power profile for an irregular incident wave
condition.

The methods described in Section III-B were implemented
using Python 3.9.7, and the simulations were carried out
on a Dell Inspiron 7501 with Intel(R) Core(TM) i7-10750H
CPU@2.6GHz, 6 Core(s), and NVIDIA(R) GeForce GTX(R)
1650 Ti.

B. Results & Analysis

1) Using constant mean power for dock charging: The
total mission time is evaluated against an increasing number
of AUVs as well as an increasing number of mission points
of interest using both algorithms as shown in Fig. 2. The
computed mission time was also analysed for a low and high
sea state scenario as shown in Fig. 3. In the high sea state
scenario, the WEC is assumed to generate double the power
than the power generated in the low sea state scenario.

It is observed that Algorithm 2 (EA) generates plans
with reduced mission time for the constrained energy source
problem than Algorithm 1 (MCTS). However, the centralized
EA scheme has a higher computational overhead than the de-
centralized MCTS scheme as it requires one central planner
that generates the sequence of mission points of interest to be
traversed by each AUV in the entire fleet. Table I represents
the computational complexity of both algorithms for a single



Fig. 2. (Top) Mission duration with an increasing number of AUVs
with 26 randomly distributed nodes, and (Bottom) increasing number of
nodes in a 60 km× 60 km mission area with two AUVs. The centralized
EA framework generates mission plans with lower durations than the
decentralized MCTS framework for the constrained energy source problem.

Fig. 3. Mission duration for a low and high sea state condition with four
AUVs and one dock in a 60 km×60 km area with 18 randomly distributed
points of interest. In this mission scenario, higher sea state generates more
efficient mission plans that at low sea state and the impact can be seen from
reduced mission time.

iteration under the same simulation conditions as in Fig. 2.
On comparing the mission duration in low and high sea state
scenarios as shown in Fig. 3, it is observed that the mean
value of mission duration obtained over multiple episodes
decreases for a high sea state condition. The observation
indicates that the AUVs were able to optimize their visit
time to the recharging station more efficiently in the high
sea state condition since the maximum power availability
constraint at the dock is relaxed as compared to the low sea
state condition.

2) Using time-varying power profile for dock charging:
The mission planning framework is extended to include a
time-varying power profile for the charging stations as dis-
cussed in [26]. The time-varying power profile captures the
irregular wave condition that relates more closely to an actual

Fig. 4. Charge consumption using four AUVs, one dock with 18 points
of interest on a 60 km× 60 km mission area. Dock charges using a time-
varying power profile for an irregular wave condition.

Fig. 5. Charge consumption using four AUVs, two docks with 27 points
of interest on a 60 km× 60 km area. Dock charges using a time varying
power profile for an irregular wave condition.

condition at sea as compared to the linear charging profile
as shown in Fig. 1. Two simulation scenarios are considered
that include four AUVs, one dock with 18 mission points of
interest, and four AUVs, two docks with 27 mission points
of interest. In Fig. 4 and Fig. 5, the top figure represents the
non-linear charging behaviour of the dock using the power
profile. Fig. 5 shows the scalability of the mission planning
framework to multiple docks with higher number of mission
points of interest. For incorporating a given time-varying
power profile, the dock charge is obtained by integrating
power at every time step such that the integration time step
would be less than the time step at which power data is
sampled in the given profile. Hence, this provision allows
efficient mission planning for different sea conditions with
any complex time-varying power profile.



Fig. 6. Mission scenario consisting of four AUVs, one dock, and 18
randomly generated points of interest on a 60 km× 60 km mission area.
(Top) Expected charge profile of all AUVs for a mission plan that was
generated assuming unlimited power at the dock. (Middle) Actual charge
profile of all AUVs when the mission plan was executed in an environment
with limited charge capacity of the dock. (Bottom) Actual charge variation
of the dock.

The impact of incorporating the dock’s charge capac-
ity constraint within the mission planning framework was
analyzed by comparing the mission performance without
accounting for this constraint. Without the dock charge
constraint, AUVs would assume unlimited charge availability
at the docks during their visit to the docking station. Fig. 6
represents one such scenario where the mission plans were
generated without the dock charge constraint. However, the
mission performance degraded when the AUVs executed
these plans in the actual scenario with limited charge capacity
at the dock.

Fig. 6-(Top) represents the expected charge profile for all
the AUVs generated using Algorithm 2 assuming unlimited
charge availability at the docking station. However, when
AUVs executed their respective mission plans in the actual
environment where the charge available at the dock was
limited, the total mission time increased by 37 mins along
with AUV1 shutting down before completing its intended
mission plan as seen in Fig. 6-(Middle). The increase in
mission time is because AUV2 has to wait for the dock
to recharge since AUV0 discharges the dock completely.
Moreover, AUV1 is unable to charge completely since the
current charge available at the dock in the actual environment
is not sufficient for AUV1 to complete its mission. Fig.
6-(Bottom) represents the actual charge availability at the
docking station.

Hence, mission plans can be improved by incorporating

Fig. 7. Mission scenario consisting of four AUVs, one dock and 18
randomly generated points of interest on a 60 km× 60 km area. (Bottom)
Charge profile of AUVs for the mission plan generated with the incorpora-
tion of the dock limited charge capacity constraint. (Top) The dock’s current
state of charge is determined using a time-varying power profile.

the charging constraint at the docking station. Fig. 7 repre-
sents the improved mission plans generated with Algorithm
2 incorporating the actual charge available at the dock. The
current charge at the dock is computed by integrating the
time-varying power profile. Using the improved plans, the
AUVs were able to complete the mission with non-negative
remaining charge and with lesser mission time as compared
to the previous scenario in Fig. 6.

V. CONCLUSIONS

A centralized framework using an EA and a decentralized
framework using MCTS are provided for the mission plan-
ning of multiple underwater vehicles that take into account
the charge available at the recharging station in addition to
the charge capacity of AUVs. The impact of an increasing
number of AUVs and an increasing number of points of
interest on the overall mission duration was compared against
the two algorithms. The mission performance was analyzed
with respect to changing sea state conditions. Improved
mission plans were obtained through incorporation of the
charge capacity constraint of the docking station as compared
to mission plans that assume unlimited power at the docking
station.

In the future, mission performance can be studied by
incorporating charging time delays at the recharging station.
Additionally, the continuous communication dependency of
a central planner during online replanning can be overcome
with a decentralized scheme. Hence, the mission perfor-
mance can be analyzed for online replanning scenarios as
well as AUV failure scenarios.
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