
Stochastic Optimization for Autonomous Vehicles with
Limited Control Authority

Dylan Jones1, Michael J. Kuhlman2,∗, Donald A. Sofge2, Satyandra K. Gupta3, Geoffrey A. Hollinger1

Abstract— In this work, we present a Stochastic Gradient
Ascent (SGA) algorithm for multi-vehicle information gathering
that accounts for limitations on a vehicle’s control authority
caused by external forces. By representing vehicle paths using
a novel action space representation, rather than a state space
representation, we remove the need to perform feasibility
calculations on the vehicle’s path. Our algorithm uses a
stochastic optimization scheme by sampling perturbed action
sequences around the current best known sequence to estimate
the gradient of a state space information function with respect
to the action sequence. Additionally, we use sequential greedy
allocation to plan for multiple vehicles. Results are shown
using a Navy Coastal Ocean Model (NCOM) for the Gulf of
Mexico (GoM). SGA shows improvement in the amount of
information gained over a greedy baseline. Additionally, we
compare to Monte Carlo Tree Search (MCTS) Method, which
is able to gather competitive amounts of information but is
more computationally intensive than our approach.

I. INTRODUCTION

In order to better measure and understand oceanographic
processes, oceanographers need to be able to monitor large
areas of the ocean for long periods of time. Traditionally,
researchers collect data by chartering a research vessel which
can cost upwards of $30,000 per day as noted in [1]. As
such, there is a significant interest in using autonomous
vehicles, such as underwater gliders (see [2]) or ocean
profiling Lagrangian drifters (see [3]), which are more cost
efficient and allow for the collection of data for months
(for gliders) or years (for drifters). These vehicles achieve
extended endurance at the cost of strong actuation. Due to
this trade off, vehicle motion is heavily dictated by external
forces, such as ocean currents, as shown in Figure 1.

Previous work (such as [3], [4], [5]) has looked at path
and motion planning for these classes of vehicles. How-
ever, these approaches have been limited by a number of
assumptions, especially in dealing with limits to control au-
thority introduced by ocean currents. Rather, the techniques
usually assume that any desired navigation action can be
achieved. This assumption introduces problems when the

†This work was supported by NRL 6.2 funding.
1D. Jones and G. Hollinger are with the Collaborative Robotics and Intel-

ligent Systems (CoRIS) Institute, Corvallis, OR, 97330 USA {jonesdy,
geoff.hollinger}@oregonstate.edu

2M. Kuhlman and D. Sofge are with the Navy Center for
Applied Research in Artificial Intelligence, Naval Research
Laboratory, Washington, DC 20375 USA {michael.kuhlman,
donald.sofge}@nrl.navy.mil

3 S. Gupta is with the Aerospace and Mechanical Engineering Depart-
ment and the Center for Advanced Manufacturing at the University of
Southern California, Los Angeles, CA 90089 USA guptask@usc.edu

∗M. Kuhlman is a Ph.D candidate in the Department of Mechanical
Engineering, University of Maryland, College Park, MD 20742 USA

Fig. 1: Representative information field over the Gulf of Mexico where
brighter colors indicate more information. The inset shows a zoomed in view
of one of the four designated test regions used in the results. Two vehicles’
paths are illustrated in the inset. The vehicle on the left (yellow) is able to
utilize the ocean currents to move from a location of low information to
one of high information. In contrast, the vehicle on the right (red) starts in
a region of high information but is unable to stay there due to the limited
control authority introduced by the ocean currents.

vehicle is commanded to travel in a direction against the
ocean currents. When these ocean currents are stronger than
the actuation the vehicle can provide, the vehicle is unable
to achieve the desired control and so does not execute the
planned path. When previous work has considered limits to
control authority, it has not considered complex goals, such
as information gathering, and instead focused on reaching a
desired destination. The information gathering problem has
rewards which are no longer path independent, as the vehicle
will gather information as it moves through the world. An
example of such an information function can be seen in
Figure 1, which shows a simulated information field over
the Gulf of Mexico.

In this work we attempt to bridge the gap between pre-
vious work considering information gathering and previous
work considering limits to control authority. We present a
stochastic optimization algorithm for information gathering
that:

• Allows for different levels of control authority by using
a novel action sequence path representation

• Approximates the gradient of the path dependent state

space reward function with respect to the action se-
quence path using random roll-outs

• Uses a Sequential Greedy Allocation scheme that allows
the algorithm to be scalable for multi-vehicle implemen-
tations

We validate this algorithm on data from a Navy Coastal
Ocean Model (NCOM) of the Gulf of Mexico, where the
dataset is constructed similarly to [6]. This data set includes
ocean currents, which affect the control authority of the
vehicles, and ocean temperatures, that we use to construct
an information function. We assume that there is some de-
sired temperature that could correlate with an oceanographic
process of interest, such as algae blooms, and assign each
location an amount of information corresponding to how
close it is to that desired temperature such as in [7].

The remainder of the paper is organized as follows. We
begin with a discussion of the related work on trajectory op-
timization, marine robotics, and information gathering (Sec-
tion II). We next introduce our problem formulation (Section
III). Following this, we present our proposed Stochastic Gra-
dient Ascent (SGA) algorithm and multi-robot coordination
scheme (Section IV). We then introduce our comparison
methods (Section V) and include a brief introduction to the
Monte Carlo Tree Search (MCTS) Method that we use for
comparison (Section V-A). Next, results for SGA and MCTS
methods are shown using data from a NCOM model (Section
VI). Lastly, we conclude and discuss future directions for this
research (Section VII).

II. RELATED WORK

This work is inspired by previous work in three major
areas of research: path optimization, marine robotics, and
information gathering. Much previous work has addressed
trajectory optimization for motion planning. In [8], the
authors present CHOMP, a trajectory optimization scheme
based upon covariant gradient descent. In [9], the authors
present an algorithm called TrajOpt, which uses sequential
convex optimization and a novel collision checking for-
mulation to reduce the number of iterations the algorithm
requires to converge. In [10], trajectories are represented
as a Gaussian Process, and a gradient-based optimization
technique is used to optimize the path. However, all these
works require calculation of the gradient of the cost function,
which requires the method to approximate the cost function
when an analytical gradient cannot be calculated. To remove
this requirement, the authors in [11] present STOMP, which
uses noisy trajectory rollouts to iteratively improve the path.
Building on this work, [12] presents EESTO, which expands
this stochastic optimization to allow the algorithm to consider
cost functions where the time spacing between trajectory
waypoints can change. Our current work is complementary
to these previous works by considering information gather-
ing cost functions and using an action sequence trajectory
representation.

Previous work in path planning and information gathering
for marine robotics has mostly either assumed fully actuated
systems or dealt with planning to reach a goal region.

Authors in [4] use a branch and bound technique to plan
informative paths. However, this method scales exponen-
tially with the length of the path and would not extend
well to a multi-robot implementation. In [13], the authors
present an implementation of a sparse Gaussian Process,
which allows for a compact representation of a discovered
information function. In [5], the authors propose a Markov-
based path planner for information gathering. However, both
these works assume that the agent can achieve any desired
path, which may not be true for the class of limited control
authority vehicles considered here.

To address the problem of planning achievable paths, [14]
creates a controllability map over the ocean. However, they
use this controllability map to plan trajectories for patrolling
tasks and do not account for the situation where the agent
may want to enter a region of low controllability if the
direction of controllability is favorable. Additionally, the
authors in [14] utilize an A* based path planner, which is
ill-suited to our problem as it is quite difficult to design
an informative heuristic for information gathering as it is
difficult to compute a tight bound on the future information.
In [15], the authors describe a high-level controller design
for spreading and attracting Lagrangian drifters. However,
they only consider final destinations and do not account for
path dependent rewards such as information.

In [16], the authors introduce an information theoretic
solution method for model predictive path integral (MPPI)
control. To calculate updates to the control, the authors
use a large number of samples to approximate the KL-
Divergence between the current control distribution and an
optimal control distribution, which is used to derive an
iterative control update law. In this work, we use sampling
to approximate a gradient, which allows our method to use
a comparatively smaller number of samples. Additionally, it
is unknown how MPPI will handle the large control space
which our vehicles can choose from.

In order to bridge the gap in previous work, we present
a scalable algorithm which allows for an efficient multi-
robot implementation and uses stochastic optimization to
approximate the gradient of the path dependent reward given
by an information field.

III. PROBLEM FORMULATION

We seek to find the set of feasible paths for a team of
vehicles which maximizes a given reward function. This is
formulated as the following optimization problem:

X∗ = max
X∈Ω

R(X), s.t. ∀ xi ∈ X, xi ∈ Ψ, (1)

X = {x1, x2, · · · , xn},

where xi is the path of an individual agent, X is a set of
paths, R(X) is a user defined reward function, Ω is the
set of all paths, Ψ is the set of all feasible paths, and
n is the number of agents being considered. In previous
work, such as [14] and [15], these paths were specified

through a set of state-space coordinates defined by latitude-
longitude-depth coordinates. However, optimizing the state-
space coordinates directly requires nontrivial calculations to
ensure that the trajectory is feasible due to control limits
compared to environmental disturbances. We choose to plan
over sequences of actions available to the vehicle, which
removes the need to perform these feasibility calculations.
Instead, we assume that we have a function Φ : A, x0 7→ X
where A is a set of action sequences and x0 is a defined
state-space starting location. This redefines our optimization
problem as:

A∗ = max
A∈Λ

R(Φ(A, x0)), (2)

where we are trying to find the optimal set of action
sequences in Λ, the set of all possible action sequences.

We define an individual action sequence as:

a = {(d1, t1, v1), (d2, t2, v2), · · · , (dm, tm, vm)},

where (di, ti, vi) defines a single action of diving to depth
di, thrusting at velocity vi, and maintaining that depth and
thrust for an amount of time ti. We assume that the agents
have the ability to achieve and maintain a range of depths
and provide a limited amount thrust. Using this definition,
A = {a1, a2, · · · , an}.

We use a generalized autonomous underwater vehicle
(AUV) model to demonstrate our algorithm, but our formu-
lation is general and a number of different sets of actions,
a, can be used in the action sequence, a. We do make two
assumptions about the actions that can be included in the
actions sequence. First, we assume that the action can be
represented by a function f : x0, a 7→ x1, which maps
actions to states with a defined on a range:

a ∈ λ = [β, α],

where α defines an upper bound and β defines a lower bound.
This means that the action can be represented as a continuous
real number which can be used to map from one location to
another. Second, we assume that it is simple to check both
that a ∈ λ and that x1 is a valid state for the vehicle.

In this work, we are interested in information gathering
tasks defined by an information function, R(X) = I(X),
which maps a set of state-space paths to an amount of
information gathered by the team of agents. Again, we can
transform this into our action sequence representation as
I(Φ(A, x0)).

IV. METHOD

We use the Stochastic Gradient Ascent (SGA) algorithm,
shown in Algorithm I, to approximate A∗ by iteratively
updating an initial guess. The first step is to initialize the
set A using a simple default policy. Next, we optimize the
action sequences using a sequential greedy allocation method
by optimizing one vehicle while holding all others fixed. This
was shown in [17] to produce high-quality results in similar
domains. For each vehicle, we iteratively improve the action
sequence by calculating a number of perturbed sequences,

scoring them, and then doing a weighted recombination of
the perturbations to estimate the gradient which is used to
update the sequence for the next iteration.

Algorithm 1 Stochastic Gradient Ascent (SGA)

1: Initialize A
2: for all ai in A do . Loop through vehicles
3: c← 0
4: for c < num its do
5: Θ, E ← get perturbed paths(ai)
6: S ← get scores(Θ,A)
7: ∆← estimate grad(S,E)
8: ai ← ai + ∆ ∗ η(c)
9: c← c+ 1

10: end for
11: end for

We will now go through each of the subroutines:
• get perturbed paths: We calculate the set of perturba-

tions, E, in the following way:

E = ε1, ε2, · · · , εK ,

εk = {(d̂1, t̂1, v̂1), (d̂2, t̂2, v̂2), · · · , (d̂m, ˆtm, v̂m)},

d̂i = N (0, σd), t̂i = N (0, σt), v̂i = N (0, σv),

where K is the desired number of perturbed sequences
and individual waypoint perturbations εjk = (d̂j , t̂j , v̂j)
are sampled from zero-mean normal distributions with
standard deviations σd, σt and σv , respectively.
We then calculate the set of perturbed sequences, Θ, as:

Θ = θ1, θ2, · · · , θK ,

θk = ai + εk,

where θk is perturbed action sequence k produced by
adding perturbation vector εk to ai.

• get scores: We calculate the score of each individual
action of all perturbed action sequences in Θ using a
method inspired from difference learning, presented in
[18]. This calculation approximates the contribution of
action θjk by estimating how much it improves over the
existing solution. The score, sk,j , is the score of action
j of θk and is calculated as:

sk,j = I(Ā)− I(Ã),

where Ā is A except ai is replaced with θk and Ã is A
with ai replaced with θk but action θjk replaced by aji .
By doing this, we also enable our gradient calculation to
be more efficient by containing information specifically
about the improvement offered by the waypoint, rather
than containing a large amount of noise about the
environment and other waypoints.

• estimate grad: To calculate the gradient we need to
convert the scores into costs by taking the inverse, which

gives a cost matrix C = 1
S . We then use the following

calculation to approximate the gradient:

∆j =
1

K

K∑
k=1

w(θjk) ∗ εjk,

w(θjk) = e
−h
(

C
j
k
−minC

j
k

maxC
j
k
−minC

j
k

)
,

where the function w(·) is a weighting function and
∆j is gradient at action j in the action sequence. The
variable h serves as a weighting term and is set equal
to 10 in this work. The max and min functions are
taken over all K perturbed sequences at action j. This
compares the cost of the action under consideration
to that of all other actions at the same point in the
path. By scaling the weighting by the maximum and
minimum seen in that iteration, the algorithm is able to
more accurately account for large improvements offered
by a small number of samples. Additionally, during
implementation we include the original path as one of
the samples which helps stabilize the algorithm and
allows for the gradient calculation to account for the
existing solution and scale the contribution of each
individual waypoint based upon how much the waypoint
improves over the existing solution.

Using the calculated ∆j values, we can compute ∆ as
{∆1,∆2, · · · ,∆m}. Using this ∆, we can then update the
sequence using η(c) which serves as a learning rate, which
can be a function of the iteration number and in this work
is calculated as η(c) = 0.99c.

V. BENCHMARK ALGORITHMS

We now discuss the various algorithms we benchmark
against our SGA algorithm. We assume an action sequence
consists of seven actions, each of which lasts for a duration
of 24 hours, which, unless otherwise noted, randomly selects
a velocity which is executed for the duration of the mission.
Below we list our five benchmark algorithms.
• Const Depth: The first default policy is to have all

vehicles maintain the same constant depth for the dura-
tion of the mission. In this work, we have the vehicle
maintain a constant depth of zero (i.e. floating on the
surface).

• Diff Depth: The second default policy is to equally
distribute the vehicles throughout the water column. By
doing this, the vehicles hope to find different ocean
currents which will cause them to spread out. In this
work, we have the vehicles spread out every 20 meters
in the depth column from zero to 180 meters.

• Greedy Depth: The third default policy is iteratively
choosing a constant depth and thrust for a new vehicle
as it is added to the team that maximizes the amount
of information gathered by the team. To do this, we
discretize the possible depths and thrusts and then
forward simulate the team with the new vehicle at
all these possible depths and thrusts. We then select

the depth and thrust that maximizes the information
gathered.

• Rand Policy: The final default policy is a uniform
random policy. Each action is chosen randomly, with
the vehicle choosing from a discrete set of depths and
thrusting in one of the four cardinal directions.

• Monte Carlo Tree Search (MCTS): MCTS is a natural
extension of the Rand Policy, iteratively improving
the policy over time. This state-of-the-art approach is
outlined below.

A. Monte Carlo Tree Search

Instead of approximately solving the optimization problem
by solving for the best action sequences, consider instead the
task of finding a stochastic policy, which maps states in the
ocean to distributions over control actions to maximize the
total reward. This is similar to finding policies for Markov
Decision Processes but has a different reward structure.
Techniques for solving MDPs that rely upon value functions,
such as dynamic programming [19], or reinforcement learn-
ing approaches [20] are not suitable. We instead focus on
techniques based on Monte Carlo rollouts to evaluate the
efficacy of a given policy.

One technique to find the best rollout is to start with a
random stochastic policy, and, over many crude Monte Carlo
rollouts, store the rollout with the highest reward. However,
the optimal reward is a low probability event, and it will take
prohibitively many rollouts to find a decent solution. Monte
Carlo Tree Search (MCTS), on the other hand, combines
multi-armed bandit techniques with graph based search to
efficiently guide Monte Carlo rollouts to maximize expected
reward, and is often used in playing adversarial games
such as Go [21]. MCTS is readily extensible to MDP-like
problems [22], [23]. When implementing MCTS, we use
UCB1 for the selection procedure of MCTS [22]. We also
use a graph based structure to store search nodes to save
on memory requirements [23]. Use of UCB1 as a selection
algorithm requires that rewards be upper bounded by a con-
stant, which is unknown. The algorithm stores the maximum
reward discovered and scales all rewards by this constant
at each selection phase. However, the selection algorithm
still requires experimental tuning of the parameter C which
establishes tradeoffs between exploration and exploitation.

One can generate a discrete stochastic ocean motion model
by selecting a discrete set of actions (depth and thrust
velocities) and dividing the ocean into rectangular cells.
Placing particles evenly spaced in each cell, one can track
the motion of the particles according to the control action
and ocean dynamics approximating the discrete transition
probabilities of the system. While discrete rollouts may not
be feasible trajectories, they approximate the continuous
system’s performance well enough, and the discrete stochas-
tic policies can be used to control the continuous system,
generating feasible paths.

VI. RESULTS

To evaluate the performance of SGA, we used a NCOM
model of the Gulf of Mexico. This model gives an ocean
current forecast at a two kilometer resolution, every three
hours for a week (168 hours) as a vector field of ocean
currents. In this work, we assume that the vehicle can
maintain its depth and so assume that the vertical current is
zero. Additionally, we assume that the vehicle can provide
a maximum thrust of 0.1 meters per second. This NCOM
model also contains ocean temperature predictions at the
same 2 km resolution. We use this temperature to generate
a simulated information field over the ocean (see Figure 1)
which can correlate with ocean phenomena such as algae
blooms. To do this we assume that there is some desired
temperature T0 and use the equation:

I(x) =

{
e−ap(T−T0) if T ≥ T0

e−an(T0−T) if T < T0

where ap is a scale factor for the positive case and an is a
scale factor for the negative case. We calculate T0, ap, and an
so that 20 percent of the information lies above a threshold
b, which was selected to be 0.5.

To generate starting regions for the vehicles we split the
gulf into seven different regions, three degrees of latitude
and longitude on a side. Three of these regions were used
for parameter tuning, and four were used for testing our
algorithms. The four regions used for testing are shown in
Figure 1. In each of these regions we selected a square
roughly 20 kilometers a side in the center as the possible
starting location area.

From the 3 regions used for parameter tuning, we selected
the maximum number of iterations as 50, a σd = 100
(represented in meters), σt = 5 (represented in hours), and a
σv = 0.02 (represented in meters per second). Additionally,
we found the number of noisy paths K = 20 to provide good
results. A relatively small number of noisy paths gives better
results by allowing the information from more informative
paths to more significantly influence the gradient. Due to
the randomness inherent in the gradient estimations of the
information function, we optimized each action sequence five
times and selected the highest scoring action sequence from
those.

For tuning MCTS exploration/exploitation parameter C we
tested various values of C ∈ [10−3, 101] over 21 logarithmi-
cally spaced points in the training dataset. Note that MCTS’s
performance is sensitive to selection of C and the best vs.
worst performance varied by 20% over the parameter space.
Setting C = 0.025 yielded the best performance and was
used in testing.

To test the multi-vehicle coordination aspect of the algo-
rithm, we used teams of size 10. Inside the ∼20km square
starting regions we generate four different locations with two
locations containing four vehicles each and two locations
containing one vehicle each. This was done to ensure that
there was ample opportunity for the vehicles to interact while
allowing the vehicles to start slightly dispersed. When all the

C
on

st
 D

ep
th

D
iff
 D

ep
th

G
re

ed
y
D
ep

th

R
an

d
Pol

ic
y

M
C
TS

0

50

100

150

200

P
e
rc

e
n
t
Im

p
ro

v
e
m

e
n
t

Percent Improvement

Fig. 2: Percent improvement offered by SGA with respect to all comparison
algorithms. We are able to offer a large improvement over the simple
baselines. MCTS is able to perform comparably to our algorithm, however
it requires approximately 5.2x the computation. See Figure 3 for a more
detailed look at the results for the final three methods.

G
re

ed
y
D
ep

th

R
an

d
Pol

ic
y

M
C
TS

-10

0

10

20

30

40

P
e
rc

e
n

t
Im

p
ro

v
e
m

e
n
t

Percent Improvement

Fig. 3: Percent improvement over the three best performing comparison
algorithms from Figure 2. SGA is able to improve over greedy depth
selection (8.63%), Random Policy (21.58%) and MCTS (1.50%).

vehicles started from the same location, there was not enough
time over the week deployment to see diversity in paths.

The results from our tests can be seen in Figures 2 and
3 and Table I. These show the percent improvement offered
by SGA with respect to the other methods. Unsurprisingly,
a default policy of having all vehicles stay at the same
depth performs poorly, especially when some vehicles are
started at the same location. Our optimized solution is able
to offer a 104% improvement on average and can offer much
larger improvements in environments with larger differences
in ocean current magnitudes and directions.

A default policy of equally distributing the vehicles
through the water column performs reasonably well. During

testing, it was observed that this policy allows the vehicles
to spread out spatially reasonably well but did not allow the
team to prioritize information rich sections of the ocean. Our
optimized solution offered an average of 61.00% improve-
ment over equally distributing the vehicles.

A greedy depth selection method is effective at gathering
information in these environments. However, our approach
is still able to offer an average improvement of 8.63% over
this greedy selection method. SGA is able to intelligently
consider interactions between different actions within the
sequence. While greedy depth selection is able to compute
these plans very quickly (on the order of a second), there is a
significant financial trade-off for any performance improve-
ment. Daily deployment costs from a crewed surface ship
can be upward of $30,000 dollars (see [1]) while a minute
of cloud computing time costs less than $1. Even if there
is only one day of deployment for a 30 day mission using
an autonomous vehicle, the amortized cost is still $1000 per
day for the mission. Put another way, to gather the same
amount of information required for a mission, 10 vehicles
using the proposed approach gather the same amount of
information on average that about 10.9 vehicles gather using
the greedy method. The effective deployment costs of each
mission therefore increases on average by 9% ($90 per day)
which dramatically outweighs the additional 1-2 minutes of
compute time ($1-$2).

Using a random policy results in surprisingly good per-
formance. The random policy has an advantage over some
of the other simple policies by being able to choose a
different depth at each action. However, this selection is not
made in an intelligent way. Thus, the greedy depth selection,
despite being only able to select a single depth for a vehicle,
outperforms the random policy. Our optimized solution is
able to offer an average of 21.58% improvement.

The comparison method most competitive with SGA is
MCTS, where we are only able to offer a 1.5% improvement.
However, this is done with an average computational time
of 68.09 seconds in comparison with the 354.21 seconds
average computational time required by MCTS, which can
be seen in Figure 4. This represents a 5.2-fold increase in
computational time required by MCTS in comparison with
SGA. Future work will look at the effects of parallelizing
the sampling process has on computational time.

An example of the paths found by MCTS (green, x’s) and
SGA (magenta, o’s) is shown in Figure 5. SGA is able to plan
trajectories which collect information from the small field
seen at the end of the path at approximately 21.85 latitude
and 265.85 longitude while MCTS has trouble finding this
extra information through its random rollouts. The vehicles
are able to intelligently balance between spreading out to
find information and grouping up to exploit high information
regions.

One interesting observation from our testing is that this
percent improvement is highly environment dependent. In
two environments (1 and 4) SGA offers around the expected
1.5% improvement. However, in environment 2, SGA offers
about a 10% improvement over MCTS, while in environment

10
0

20
0

30
0

40
0

50
0

Time (sec)

MCTS

SGA

Computational Time

Fig. 4: Computational time taken by the MCTS and SGA. Note that SGA
takes 68.09 second on average while MCTS takes 354.21 seconds which
represents a 5.2 fold increase.

TABLE I: Percent Improvement by SGA versus competing algorithms

Const Depth Diff Depth Greedy Depth Rand Policy MCTS

104.10 61.00 8.63 21.58 1.50

3 MCTS offers a 3% improvement over the optimizer. Future
work will look more at identifying what features of these
environments lead to these disparities and what situations
each method is better suited for.

VII. CONCLUSIONS

In this work, we showed that by using a novel action
sequence representation and our SGA algorithm we are able
to improve upon a greedy baseline. We also compared to a
computationally intensive Monte Carlo Tree Search Method,
which performs comparably with SGA, but requires 5.2x the
amount of computation on average. By approximating the
gradient with random roll-outs we were able to efficiently
search the space and quickly improve the path. We presented
results for a NCOM model, which closely approximates what
the vehicle would experience in the ocean.

Future work should look in a number of directions. First,
the current computational bottleneck of the algorithm is
the numerous calculations of the information gathered by
the team of vehicles and to improve the efficiency of the
algorithm, methods for speeding up this calculation should be
investigated. Second, the algorithm is sensitive to the starting
conditions passed to the optimizer. To help ensure robust
performance, methods for helping remove this dependency
should be investigated, such as using random restarts or other
methods for guiding the search. Third, while there are high
quality ocean prediction models, they are subject to some
amount of uncertainty. Future work should look at methods
for reducing the effects that this uncertainty could have on
the team’s performance. Lastly, methods for allowing the
optimizer to find narrow solutions should be investigated.
One method that shows promise here is utilizing an adaptive
sampling technique when constructing the perturbations.
Rather than treating σd, σt, and σv as constant, they can
vary in response to the environment.

Fig. 5: Paths from MCTS and SGA for one deployment in Region 1 from Figure 1. MCTS is in green and x’s and SGA is in magenta and o’s. Lighter
indicates more information and vehicles start close to the center of the figure. SGA is able to utilize the ocean currents to find the information at the end
of the path (left side of the figure) while MCTS is unable to find this path using its random rollouts.

REFERENCES

[1] National Research Council, Science at Sea: Meeting Future Oceano-
graphic Goals with a Robust Academic Research Fleet. Washington,
DC: The National Academies Press, 2009.

[2] R. A. Smith, Y. Chao, P. P. Li, D. A. Caron, B. H. Jones, and G. S.
Sukhatme, “Planning and implementing trajectories for autonomous
underwater vehicles to track evolving ocean processes based on
predictions from a regional ocean model,” The International Journal
of Robotics Research, vol. 29, no. 12, pp. 1475–1497, 2010.

[3] J. Gould, D. Roemmich, S. Wijffels, H. Freeland, M. Ignaszewsky,
X. Jianping, S. Pouliquen, Y. Desaubies, U. Send, K. Radhakrishnan,
et al., “Argo profiling floats bring new era of in situ ocean obser-
vations,” Eos, Transactions American Geophysical Union, vol. 85,
no. 19, pp. 185–191, 2004.

[4] J. Binney and G. S. Sukhatme, “Branch and bound for informative
path planning,” in Proc. IEEE Int. Conf. on Robotics and Automation,
2012, pp. 2147–2154.

[5] K. H. Low, J. M. Dolan, and P. Khosla, “Active markov information-
theoretic path planning for robotic environmental sensing,” in The
10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. International Foundation for Autonomous Agents
and Multiagent Systems, 2011, pp. 753–760.

[6] G. A. Jacobs, H. S. Huntley, A. Kirwan, B. L. Lipphardt, T. Campbell,
T. Smith, K. Edwards, and B. Bartels, “Ocean processes underlying
surface clustering,” Journal of Geophysical Research: Oceans, vol.
121, no. 1, pp. 180–197, 2016.

[7] J. A. Caley and G. A. Hollinger, “Data-driven comparison of spatio-
temporal monitoring techniques,” in OCEANS’15 MTS/IEEE Washing-
ton DC, 2015.

[8] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” 2009,
pp. 489–494.

[9] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[10] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion
planning,” 2016., pp. 9–15.

[11] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Proc. IEEE Int. Conf. on Robotics and Automation, 2011, pp. 4569–
4574.

[12] D. Jones and G. A. Hollinger, “Planning energy-efficient trajectories
in strong disturbances,” IEEE Robotics and Automation Letters, vol. 2,
no. 4, pp. 2080–2087, 2017.

[13] K.-C. Ma, L. Liu, and G. S. Sukhatme, “Informative planning and
online learning with sparse gaussian processes,” in Proc. IEEE Int.
Conf. on Robotics and Automation, 2017, pp. 4292–4298.

[14] R. N. Smith and V. T. Huynh, “Controlling buoyancy-driven profiling
floats for applications in ocean observation,” IEEE Journal of Oceanic
Engineering, vol. 39, no. 3, pp. 571–586, 2014.

[15] A. Molchanov, A. Breitenmoser, and G. S. Sukhatme, “Active drifters:
Towards a practical multi-robot system for ocean monitoring,” in Proc.
IEEE Int. Conf. on Robotics and Automation, 2015, pp. 545–552.

[16] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic mpc for model-based
reinforcement learning,” in Proc. IEEE Int. Conf. on Robotics and
Automation, 2017, pp. 1714–1721.

[17] G. A. Hollinger, S. Yerramalli, S. Singh, U. Mitra, and G. S. Sukhatme,
“Distributed data fusion for multirobot search,” IEEE Transactions on
Robotics, vol. 31, no. 1, pp. 55–66, 2015.

[18] A. K. Agogino and K. Tumer, “Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains,” Autonomous Agents and
Multi-Agent Systems, vol. 17, no. 2, pp. 320–338, 2008.

[19] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. John Wiley & Sons, Inc., 1994.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[21] G. Chaslot, “Monte-carlo tree search,” Ph.D. dissertation, Maastricht:
Universiteit Maastricht, Maastricht, Netherlands, 2010.

[22] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European Conference on Machine Learning, vol. 6. Springer, 2006,
pp. 282–293.

[23] B. Bonet and H. Geffner, “Action selection for mdps: Anytime AO*
versus UCT.” in AAAI Conference on Artifical Intelligence, 2012.

