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Abstract— In this paper, we present a novel algorithm for
constructing a maximally informative path for a robot in an
information gathering task. We use a Self-Organizing Map
(SOM) framework to discover important topological features
in the information function. Using these features, we identify
a set of distinct classes of trajectories, each of which has
improved convexity compared with the original function. We
then leverage a Stochastic Gradient Ascent (SGA) optimization
algorithm within each of these classes to optimize promising
representative paths. The increased convexity leads to an
improved chance of SGA finding the globally optimal path
across all homotopy classes. We demonstrate our approach in
three different simulated experiments. First, we show that our
SOM is able to correctly learn the topological features of a
gyre environment with a well-defined topology. Then, in the
second set of experiments, we compare the effectiveness of our
algorithm in an information gathering task across the gyre
world, a set of randomly generated worlds, and a set of worlds
drawn from real-world ocean model data. In these experiments
our algorithm performs competitively or better than a state-
of-the-art Branch and Bound while requiring significantly less
computation time. Lastly, the final set of experiments show that
our method scales better than the comparison methods across
different planning mission sizes in real-world environments.

I. INTRODUCTION
In a wide variety of field applications, autonomous robots

are an attractive alternative to traditional manual approaches
to data collection. Compared to established data collection
methods, deploying robots for remote sensing offers im-
proved access to difficult environments, often at a lower cost,
which enables wider coverage with less risk to humans. One
domain where robots are already widely used to collect sci-
entific data is in marine environments. Due to biological and
geophysical processes, the regions of the ocean that provide
valuable scientific data are relatively sparse, with interesting
activity clustering around a discrete set of features, such as
along upwelling and mixing fronts or in patches of wildlife
activity known as hotspots [1]. Identifying high-quality paths
in such environments presents a significant challenge to
optimization-based information gathering algorithms. The
sparse reward function leads to difficulties in calculating
useful gradients for improving paths, as well as creating a
significant risk of the optimizer becoming stuck in a local
maxima, and failing to identify a globally optimal path [2].

In this paper, we propose using a topological represen-
tation of the environment to decompose the space of all
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Fig. 1: Training of an SOM on a Gyre world. Darker regions contain more
information. Before training (top-left), the topological features identified
by the SOM (areas with green edges) are driven by the sampling noise
and indistinguishable from the true topological features, (areas in white).
Once trained (top-right) the identified regions align with the true features.
The topology of the SOM (bottom-left) is used to identify a set of
reference trajectories in unique homotopy classes. These trajectories are
then optimized using Stochastic Gradient Ascent (bottom-right).

possible paths a robot could take into a set of topologically
distinct groups of paths, called homotopy classes. By using
paths from different homotopy classes as the initial paths for
stochastic optimization, we can ensure better coverage of the
environment than using random restarts. An overview of our
proposed method is shown in Fig. 1. Previous work has al-
ready shown that considering distinct topological classes can
improve path optimization in obstacle-filled environments
[3]. However, these methods rely on explicitly identifiable
obstacles that induce topologically distinct trajectory classes.
In exploration and information gathering, particularly in the
marine domain, there are few or none of these obstacles. In-
stead, the different classes of trajectories a robot might wish
to consider are defined by the information objective function,
with high-value regions separated by low information voids.

The main challenge in applying topological techniques
to information gathering tasks then becomes identifying
the shape, size, and connectivity of the high information
regions [4]. The core of our approach is to construct a
discrete graphical model to allow the computation of a set of
homotopy classes. These homotopy classes then can be used
to constrain a set of locally near-convex regions which paths



can be optimized more effectively. The primary contribution
of this paper is a topology-aware Self-Organizing Map
(SOM) which is able to learn the topology of an anisotropic
information field. We accomplish this through the addition of
a topology modification step in the SOM training algorithm.
We then utilize the learned topology in conjunction with a
local optimizer to search for a globally optimal path from
among the learned homotopy classes.

The remainder of the paper is structured as follows. Sec-
tion II covers existing work in the areas of informative path
planning, gradient-based optimization, and topological path
planning. Section III outlines our problem formulation and
notes key assumptions made by our algorithm. Section IV
provides a detailed description of our proposed algorithm.
Section V contains our experimental results, including a set
of experiments on randomly-generated worlds, as well as on
real-world data extracted from a Regional Ocean Modelling
System (ROMS) model. Finally, we conclude the paper in
Section VI and discuss potential avenues for future research.

II. BACKGROUND AND RELATED WORK
A. Autonomous Information Gathering

The Informative Path Planning problem is a widely re-
searched problem in robotics. It is particularly challenging,
since the size of the space of possible paths scales expo-
nentially with mission duration and, in all but the simplest
environments, the reward function over this space of paths
is nonconvex. These facts result in the informative path
planning problem being classified as NP-Hard [5].

There have been a large number of algorithms proposed
to solve the Informative Path Planning problem. Algorithms
such as Greedy, Recursive Greedy [6], and Branch and
Bound [7] approach the information gathering problem as
a problem of sequential decision making. In this paradigm,
each action by the robot is evaluated independently. This
process means that at each iteration of the algorithm the
only new information being added to the search process
is that which is local to the action being made. Since the
information gathering reward function is full-path depen-
dent, the submodularity property of information gathering
necessitates the re-evaluation of the entire path reward at
each evaluation, making the sequential path construction
approach fairly inefficient in evaluating paths in a global
context. Sampling-based methods, such as Rapidly exploring
Information Gathering (RIG) [5], partially address this by
sampling from the global information field; however they
too result in each action being added to the information tree
needing to be evaluated individually.

An alternative approach for information gathering is to use
trajectory optimization techniques to refine an preexisting or
naı̈ve trajectory. In [8], the authors formulate the information
gathering problem as a Sequential Quadratic Programming
problem. Doing so requires them to treat each sensor mea-
surement as independent. To allow for path dependent re-
wards, the authors in [9] utilize an evolutionary algorithm
to optimize the path of the robot. However, evolutionary
algorithms are computationally expensive and do not scale

well as the problem size increases. From general trajectory
optimization, a number of algorithms such as STOMP [10],
and EESTO [11] have been developed for problems where
analytical gradients are difficult to calculate. These methods
rely on sampling to estimate a gradient for the desired
function. Closest to our work is [12], which uses Stochastic
Gradient Ascent (SGA) to plan informative paths for a team
of vehicles. However, the authors only consider a single path
initialization and rely on the sampling to be large enough that
the paths do not get stuck in local maxima.

In our work we aim to improve on these existing methods
for information gathering by more rapidly incorporating
global information about the shape of the distribution of
information throughout the world in the planning process. In
doing so we will enable more efficient calculation of high-
quality paths.

B. Planning with Topological Features

Topological features provide a high-level method to de-
scribe the way that a path moves through an environment. In
doing so, they provide a language that places a trajectory in
a global context. Topological features have been used to plan
for information gathering [4]. However, there the authors
build a topological representation of the the world as a set
of discrete, connected regions, rather than considering the
full space of possible trajectories a robot may wish to take.
This capability requires the ability to identify topologically
distinct classes of trajectories. Early work in this area was
focused on planning paths for cabled and tethered robots
using homotopy classes. A homotopy class describes a set
of trajectories that all start and end at the same pair of
points, while allowing for a continuous, unobstructed defor-
mation between any two trajectories within the class [13]. In
their work, Bhattacharya et al. developed the H-signature, a
homotopy invariant which uniquely describes a trajectory’s
homotopy class [14]. They used this to construct a homotopy-
augmented graph, a topology-aware structure which enabled
a robot to plan a path to a point while constraining the
robot’s path to belong to a pre-specified homotopy class.
While homotopy classes do provide global information about
a trajectory, the information that they contain is not specific
to any particular trajectory, since there are an infinite number
of trajectories in any given homotopy class.

Computation of homotopy invariants and homotopy aug-
mented graphs require an explicit map of the obstacles
and their shapes in order to select the representative points
for each obstacle. Additionally, like many search-based al-
gorithms, they need to perform an exhaustive search of
the workspace to propagate the homotopy invariant to all
sections of the graph. In many domains, this can be compu-
tationally prohibitive, and in other cases, information about
the locations of obstacles may not be available. To solve this
problem, sampling-based approaches have been developed
which leverage simplicial complexes to build a map of where
topologically relevant features lie.

Persistent homology enables identification of major topo-
logical features within an environment [15], [16]. This is



Fig. 2: An example of a persistence diagram for a simplicial complex.
Using the persistence of 1st order topological features (orange dots), we
identify a persistence threshold (blue), classify features as ‘persistent’ and
‘ephemeral’, and set a corresponding filtration threshold (purple) which is
used to alter the SOM topology. Three different filtration thresholds and
their corresponding simplicial complexes are shown.

accomplished through a persistence diagram, which docu-
ments the birth and deaths of topological features on a graph.
These features include connected components and holes in
the graph, which are created and destroyed relative to the
value of a filtration parameter. An example of a persistence
diagram with two topological features is shown in Fig 2.
As the filtration parameter increases along the black dashed
line, connected components merge into progressively larger
components, causing the death of a smaller component as
it merges with a larger one. As components connect they
can birth holes which will eventually die as they are covered
over by the increasing connectivity of the graph. For a more
in-depth discussion of persistent homology, we refer the
interested reader to [16].

Existing methods that use persistent homology to identify
topological features focus on identifying features which
correspond with physical obstacles in the environment. We
expand on this capability by using them to identify prominent
features in an information field in conjunction with an SOM.

III. PROBLEM FORMULATION

A. Problem Formulation

In this paper, we consider a typical formulation for the
Informative Path Planning problem [6]. We are interested
in finding an optimal path for a robot, which satisfies the
following equation:

P∗ = argmax
P∈Φ

{I(P)} s.t. C(P) ≤ B,

where P is a path defined as a series of waypoints
(x0, x1, ..., xn) ∈ R2. The optimal path, P∗, is the path
from the space of all possible paths Φ which maximizes the
information function I(P), subject to a budget constraint:
that the cost of a path C(P) must not exceed the robot’s

overall mission budget B. Many different cost functions,
such as energy consumed, distance travelled, or time elapsed,
may be used to evaluate the cost of a particular path. In
this paper we assume that the robot travels at a constant
velocity and that it possesses sufficient actuation that the cost
of overcoming environmental disturbances is negligible. As
a result, the energy, distance, and time costs are interchange-
able. However, it is worth noting that our proposed method
is agnostic to the particulars of the cost function used, and
it is a straightforward extension to consider alternatives.

IV. METHOD

Our proposed algorithm is comprised of two main steps.
The first is to identify the salient topological features in the
environment, and use them to partition Φ into different ho-
motopy classes. The second step is to select a representative
path from each homotopy class and use Stochastic Gradient
Ascent to optimize a path within each homotopy class.

In many previous domains where topological techniques
have been utilized (e.g. [14], [16]), the techniques rely on
using physical obstacles to partition the space into distinct
trajectory classes. However in field robotics domains such
as marine scientific data collection or aerial surveillance,
physical obstacles such as islands or mountains can be few
and far-between. Instead, we observe that the information
function itself can generate distinct classes of trajectories
which span the environment. To enable the gradient-based
optimizer to perform most effectively, the homotopy classes
should each contain a single local maxima, and therefore, the
topological features should be rooted in the local minima of
the objective function. However, for a very noisy information
function, there can be a high number of local minima, which
will result in a large number of homotopy classes. Instead,
we only consider the most persistent local minima as features
which induce topological trajectory classes. Doing so greatly
reduces the total number of features while maintaining the
goal of optimizing trajectories in regions with near-convex
objective functions.

A. Identifying Homotopy Classes with Self-Organizing Maps

At a high level, the Self-Organizing Map algorithm is a
method for fitting a graph, G = (V, E), to a target function,
Ψ(·) [17]. In robotics applications, SOMs have been used as
a method to solve the Travelling Salesperson Problem [18],
[19], as well as the TSP’s common extensions, such as the
Orienteering Problem [20], and other information gathering
tasks [21]. However, a significant issue with existing methods
for SOMs is that the topology of the graph, G, is fixed
prior to training. Different graph topologies can have an
enormous impact on final positions of the graph vertices
[22]. Consequently, choosing the correct one can require a
significant amount of domain knowledge.

We propose improving on the existing capabilities of
SOMs by allowing them to alter their network topology
during training, so as to better mirror the structure of the
underlying function. We accomplish this by interleaving the
training process with a series of filtration steps, each of



Algorithm 1 Topology-Augmented Self-Organizing Map

1: function TOPOLOGYSOM(I(·), N )
2: V ←− DrawSamples(N, I(·))
3: E ←− DelaunayTriangulation(V)
4: G ←− (V, E)
5: while ¬ stopping do
6: Ĝ ←− TrainSOM(G, I(·))
7: G ←− Filtration(Ĝ, I(·))
8: return G

Algorithm 2 Self-Organizing Map

1: function TRAINSOM(G = (V, E), Ψ(·))
2: while ¬ stopping do
3: ψ ←− DrawSamples(1,Ψ)
4: v∗ ←− argminv∈V (EuclideanDist(ψ, v))
5: for v ∈ V do
6: v̄ ←− (v − φ)× λ×Neighborhood(v, v∗,G)
7: v ←− v + v̄

8: return G

which modifies the graph topology, removing and adding
edges. Each train-filter cycle forms a training epoch. We
continue training until a stopping condition is met, either
a convergence criterion, or simply a maximum number of
training epochs. Psuedocode is given in Algorithm 1. It relies
on two sub-processes, the standard SOM training function,
TrainSOM, and our proposed filtration function, Filtration.

The first step in TrainSOM is to draw a random sample,
ψ, from Ψ. Then, the closest vertex in V to ψ, v∗, is
computed. Once v∗ is known, all the vertices of G (including
v∗) are moved toward ψ. The distance each vertex vi ∈ V
is moved toward v∗ is based on both the Euclidean distance
between vi and v∗, as well as on a neighborhood function
that maps based the graph distance along G (i.e. the number
of edges between vi and v∗) to the range [0, 1]. We used a
common form for the neighborhood function:

Neighborhood(v0, v1,G) =
1

1 + GraphDist(v0, v1,G)γ
,

where γ is a hand-tuned weighting parameter which controls
the decay of the signal propagation along the graph. We set
γ to 5 such that approximately 50% of error is propagated
to the immediate neighbors of v∗ and 3% of the error signal
is propagated to vertices 2 edges away.

This process of sampling and moving vertices is repeated
until a stopping condition is met. Here the stopping condition
is given by

|V|∑
i=0

||v̄i|| ≤ T,

where T is a small threshold number, in our case T = 0.1.
To facilitate convergence, a decreasing discount factor, λ,
is used to slowly reduce the magnitude of perturbations to
each vertex during a training epoch. This training process is
outlined in Algorithm 2.

As previously mentioned, there is no provision in the
training of an SOM to allow the topology of G to change

over the course of training. We address this in our Filtration
function, which determines the edges in E to keep as a part
of the graph, and which edges to prune away. We want to
remove edges that traverse prominent gaps in the information
function, i.e. large, low-information areas, and keep edges
in high-information regions. We begin by asserting that our
graph forms a simplicial complex, where the vertices in the
graph are 0-simplices, the edges in the graph are 1-simplices,
and the triangles bounded by cyclic trios of edges are 2-
simplices [13]. This is true, since the edges are constructed
using a Delaunay Triangulation of the vertices. With a
simplical complex, we can easily construct a persistence
diagram using the Gudhi Topology Library [23], charting
the lifespan of the 1 and 2-dimensional topological features.

The next step is to identify a filtration of the simplicial
complex that alters the graph topology around the persis-
tent features of the environment, while ignoring ephemeral
features which might arise as artifacts of the triangulation
process. To determine which features are ephemeral and
which are persistent, we fit a Weibull distribution to the first-
order persistence values. We define features with a persis-
tence value higher than one standard deviation of the fitted
Weibull as persistent, while each feature with persistence less
than one standard deviation is considered ephemeral. This
results in a diagonal persistence threshold, as seen in Fig. 2.
However, this threshold cannot be used directly to perform
the filtration, since it is a property of the triangulation,
not the individual edges. To remove edges from the graph,
we require a horizontal filtration threshold. To map the
persistence threshold to a corresponding filtration threshold,
we compute the set of possible values for the filtration
threshold which maximizes the number of persistent features
in existence. Then, from these, we select the value which
minimizes the number of ephemeral features which exist
simultaneously. Once the filtration set, we remove edges with
a value greater than the filtration threshold. This process is
shown in Fig. 2. Applying the filtration alters topology of the
SOM to be closer to that of the underlying function, allowing
it to fit the function better during subsequent training.

Once the Topology-Aware SOM is trained, it can be used
to enumerate the possible homotopy classes of trajectories.
To accomplish this, we use the homotopy augmented graph
proposed in [14]. The topological features identified during
training are used as ‘obstacles’ in the creation of this graph.
Using the robot’s current location as a root, we expand
a homotopy augmented graph. To keep the size of the
homotopy augmented graph manageable, we utilize a non-
looping constraint, preventing the expansion of paths that
loop more than once around any given obstacle. We also
prevent the expansion of any vertex beyond the robot’s move-
ment budget, instead adding those vertices to a boundary set.
With the homotopy augmented graph, we determine the set
of homotopy classes which contain trajectories of interest by
applying a quotient map to the unexpanded neighbors of the
boundary vertices, mapping them all to a single point. We
then determine all homotopy classes between the root point
and the quotient point. For each of these homotopy classes,



we select its representative path: the path in the homotopy
class which maximizes the objective function, I(·).

B. Stochastic Gradient Ascent

Once a representative path from each of the homotopy
classes has been identified, we can then proceed to refine
the representative paths using an optimization algorithm. To
improve performance, we examined several different heuris-
tics for choosing the order in which to perform optimization
on the representative paths. Experimentally, we found that
the best predictor for the quality of the optimized path
was the quality of the unoptimized path. Other metrics that
we considered were the average path quality within each
homotopy class as well as the number of trajectories in
each homotopy class. However, we found that the average
path quality had a weaker correlation than best path quality,
and that the number of paths within a homotopy class was
uncorrelated with the quality of the best optimized path.

We use Stochastic Gradient Ascent (SGA) algorithm as
the local optimization function, since the gradient of the in-
formation gathering objective function is difficult to calculate
analytically due to the path dependence of the reward [12].
At a high level, SGA operates by estimating the gradient
by sampling perturbations and recombining them using a
weighting based upon the objective function. Psuedocode for
the SGA algorithm is presented in Algorithm 3.

SGA requires an initial path, P , and an information
objective function I(·), which computes the path dependent
reward for executing the P in the environment. Then SGA
iterates through each of the waypoints in P , and for each
xi ∈ P a set of K perturbations is generated. Each per-
turbation is generated by drawing from a distribution D.
This distribution, D, can take on many different forms but is
typically a zero-mean normal distribution. In this work we
define D as a multivariate normal distribution:

D = N (

[
0
0

]
,

[
σx 0
0 σy

]
)

with zero mean and covariance matrix defined by σx and
σy , which are the variation in the x and y directions
respectively. Note that here we have defined the perturbations
as independent but this is not required. On each iteration
through P , we consider the vertices in a random order to
avoid undesirable effects of a particular ordering of the path.

After the set of perturbations, ε, is generated, each of these
perturbations needs to be scored using the information func-
tion, I(·). Each of the perturbations, εi in ε is independently
applied to P at the given index to generate perturbed path P̂k.
Each of these P̂k is then scored using I(·) to generate a score
vector s. This score vector, s, is then used in conjunction with
ε to calculate the update to that waypoint as:

∆ =
1

K

|K|∑
k=1

wk × εk,

where
wk = e−h

(
sk−min s

max s−min s

)
,

Algorithm 3 Stochastic Gradient Ascent (SGA)

1: function SGA(P , I(·))
2: while ¬ stopping do
3: for p ∈ P do
4: ε←− genPertubations(D,K)
5: s←− getScores(P, ε, p, I(·))
6: ∆←− calcGrad(s, ε)
7: p←− p+ ∆× λ
8: return P

is the weighting factor for perturbation εk comparing the
score for εk to the maximum and minimum scores calculated
and h is a weighting factor set to 1 in this work. As in
the SOM training algorithm, a discount factor, λ, is used to
facilitate convergence.

C. Analysis

SGA is guaranteed to almost surely converge to a local
maxima [24] given a large number of samples. Our method
seeks to improve the likelihood of SGA converging to the
global maxima instead of being trapped in a local maxima
by partitioning the space of paths into sets of paths with
higher local convexity. Since the globally optimal path is
guaranteed to lie in one of the enumerated homotopy classes,
by sequentially applying optimization within each homotopy
class, we hypothesize that our algorithm is more likely
to find the globally optimal path than blindly performing
an equivalent number of random restarts. We confirm this
hypothesis empirically in our comparisons with a naı̈vely
initialized SGA method (RRT-OPT).

V. RESULTS

To determine the effectiveness of our proposed approach,
we performed a three different sets of experiments. The first
of these was to evaluate how well our topology-aware Self-
Organizing Map was able to learn the underlying topological
structure of a field. The second of these was to evaluate how
well using topological classes improves the performance of a
robot in the Informative Path Planning problem. The last was
to evaluate how our approach scales across different budgets.

In our experiments, we consider the information gathering
problem in the context of a marine science gathering task. We
perform experiments in three different types of worlds: Gyre,
Random, and a real-world environment based on Regional
Ocean Modelling System (ROMS) model output which sim-
ulates ocean conditions in Monterey Bay, California1. [25].

The Gyre world, shown in Fig. 3a, is hand-constructed to
contain a quadruple-gyre system, similar to the worlds used
in [26] for planning in flows. The information function in
this world is the magnitude of the current flow. Since this
world was hand-constructed from well-defined topological
features, its topology is known a priori, and therefore can
be used to perform quantitative evaluations. The Gyre world
is a 50 km by 50 km environment on a 1 km grid.

1The Monterey Bay ROMS model output is provided by the Cooperative
Ocean Prediction System (COPS), and is available through their website at
http://west.rssoffice.com/ca roms nowcast 300m.



(a) Gyre World (b) Random World (c) ROMS World

Fig. 3: Examples of the three different types of worlds used for experiments with the path planned by our method. The robot’s path starts at the green dot.

The Random worlds is a set of randomly generated worlds
using a sum-of-Gaussians method to randomly distribute
information hotspots throughout a given world. Similar to the
Gyre world, the Random worlds are each 50 km by 50 km
with a 1 km grid resolution.

The ROMS worlds consists of a 35 km by 35 km section
in the center of Monterey Bay at 20 randomly chosen
times throughout 2017. The information function was defined
as the magnitude of the surface salinity gradient, a key
identification marker for the localization of upwelling fronts.
An example ROMS world is shown in Fig. 3c.

A. Identifying Topology

The first set of experiments we performed was to evaluate
the ability of the SOM to learn the topology of an informa-
tion field. We used the Gyre world to compare the number
of features that the SOM found to the true number: five, as
seen in Fig. 3a.

We constructed 20 SOMs on the Gyre world training the
SOM for zero to five training epochs and using 100, 200,
300, and 500 vertices. The results for these experiments
can be seen in Fig 4. At 100 vertices the SOM struggles
to consistently find all of the features present in the envi-
ronment. In the remainder, the SOM is able to smoothly
converge to the correct number of features. Additionally,
the amount of time required to train each of these SOMs
is shown in Fig 5. As expected, as the number of vertices in
the SOM increases the amount of time required to train the
SOM increases. Based on these results, we chose to use 150
vertices and three training epochs for a balance of quality-
of-fit and computation time.

B. Planning Informative Paths

After testing that the SOM is able to properly identify the
relevant topological features in the environment, we tested
the performance of the entire system against three com-
parison methods. Greedy: The greedy method first builds
a Probabilistic Road Map (PRM) over the environment to
build a planning graph. Then, starting from x0, the algorithm
selects the edge which maximizes I(·). Branch and Bound:
We also compare to Branch and Bound for information
gathering [7]. We evaluated its performance planning over
a PRM. However, we found that it failed to converge to

Fig. 4: Number of topological features found by the SOM in the Gyre
world for different numbers of vertices across up to five training epochs.
The black dashed line at five is the true number of topological features in
this environment.

Fig. 5: Amount of time to train the SOM for different numbers of vertices
and training epochs in the Gyre world.

an optimal solution for even the shortest paths, and so
we also tested it using it on a uniform 4-connected grid
with a resolution of 10 km. RRT-Opt: Lastly, we compare
to a method which uses Rapidly Exploring Random Trees
(RRT) to quickly build a large number of paths through the
environment. Then, the top five scoring paths to leaf nodes
are optimized by SGA. RRT provides a set of random restarts
for SGA which do not use the topological information
identified by our approach.

To compute statistical results, we ran each algorithm
on each world type 20 times using randomized starting
locations. We also restricted the maximum computation time
of each to 600 seconds during these trials using the best
solution found by each algorithm before time expired. The



(a) (b) (c)

Fig. 6: Percentage of total environmental information collected by a robot using each of the compared methods. The exploration budget used across the
Gyre and Random worlds was 150 km. For the ROMS world, the ratio of budget to world size was kept the same, and a budget of 105 km was used.

exploration budget used across the Gyre and Random worlds
was 150 km. For the ROMS worlds, the ratio of budget to
world size was kept the same, and therefore a budget of
105 km was used. The simulated robot has a sensor radius
of 5 km. Similar to the budget, this radius was scaled to
3.5 km for ROMS trials to maintain the ratio to world size.

We first examined the percent of total information gathered
by our algorithm and the comparison methods on each of the
different world types. In the Gyre world, shown in Fig 3a,
our topological method performs comparably with Greedy,
and slightly worse than Branch and Bound (Uniform) in
terms of the total percentage of information gathered: 57.5%,
57.7%, and 60.4% respectively. A violin plot for these trials
with random starting locations and a budget of 150 km
is shown in Fig. 6a. In the Gyre world, there is a large
amount of information distributed throughout the world,
and the world exhibits rotational symmetry. The result is
that many topological classes contain the same amount of
information, reducing the amount of information provided
by each individual class.

In the random worlds, the relative sparsity of information
significantly diminishes Greedy’s effectiveness, while our
method continues to perform well. We achieve an average
information collection percentage of 63.8%, compared to an
average of only 55.52% for Greedy. Branch and Bound (Uni-
form) continues to exhibit the best performance, collecting
an average of 70.1% of the total information in the world.

Finally, when tested on the ROMS worlds derived from
real-world data, our method outperforms its competitors,
collecting an average of 67.2% of the information in the
environment, compared to 64.4% for Greedy and only 60.8%
for RRT-Opt and 56.56% for Branch and Bound (Uniform).
This result can be attributed to the magnitude and importance
of the topological features in the ROMS data. By reasoning
first over these features, our approach is able to place
its initial representative path in a good location, which is
further improved by optimization. Branch and Bound’s poor
performance can be attributed to the computational time
limitations (Branch and Bound had an average computation
time of 600s) combined with the shape of the frontal features.
When the fronts align poorly with the uniform grid used by
Branch and Bound the algorithm will struggle to find quality

paths. This can be counteracted by increasing the resolution
of the grid or increasing its connectivity, however these will
come at additional computational cost.

The last set of experiments that we performed examined
how each of these methods scaled across different planning
budgets in ROMS worlds. Results from these trials can be
seen in Table I. Results annotated with a star indicate where
our method performs significantly better than the comparison
methods with 95% confidence (N = 20). At the low budgets,
many of the methods perform comparably to ours. With
the relatively low budget there are few homotopy classes to
search over, and so there is little benefit to considering the
topological information. As we scale to higher budgets, the
benefits of our proposed approach become more apparent.
At a budget of 70 km, both Branch and Bound methods
reach the computation time limit of 10 minutes while still
performing significantly worse than our method. Increasing
the budget again to 105 km, our method performs signifi-
cantly better than all the comparison algorithms apart from
Greedy, which jumps up to be the second-highest performing
algorithm. We attribute this change to our implementation of
Greedy, which prevents it from taking the same action multi-
ple times. As a result, eventually Greedy will be able to work
its way out of local minima. However, from an examination
of the distribution of the path scores in Fig. 6c, we can see
that our method is able to perform consistently well, while
Greedy’s performance varies wildly across worlds.

Our topological approach consistently outperforms the
naı̈vely initialized RRT-OPT, and as the budget increases
we see a trend of our topological method performing in-
creasingly well when compared to RRT-OPT. This evidence
supports our hypothesis that using homotopy information to
seed a local optimizer results in higher-quality plans than
simply performing random restarts. With longer budgets, the
initialization of the optimizer is more important, as it is
easier for a path to become trapped in a local minima. By
rapidly incorporating global information about the environ-
ment through topology, our method is able to better avoid
these pitfalls, leading to better performance.

VI. CONCLUSION
In this paper we have presented a novel method for

identifying the topology of an information field using Self-



TABLE I: Average results for methods ROMS Worlds across different budgets. Standard deviations in parentheses. Results annotated with a star indicate
where our method performs significantly better than the comparison methods with 95% confidence.

Budget: 35 km Budget: 70 km Budget: 105 km

Method Computation
(Seconds)

Information
Collected

(% of Total)

Computation
(Seconds)

Information
Collected

(% of Total)

Computation
(Seconds)

Information
Collected

(% of Total)
Greedy 7.21 (0.09) 29.14 (8.96)∗ 8.35 (0.38) 45.70 (10.73)∗ 9.71 (0.14) 64.02 (13.06)

Branch and Bound 73.18 (17.97) 39.26 (3.92) 600.11 (0.01) 46.64 (7.52)∗ 600.12 (0.01) 56.56 (6.83)∗

(Uniform)
Branch and Bound 600.17 (0.01) 28.03 (5.36)∗ 600.22 (0.02) 36.55 (11.30)∗ 600.29 (0.03) 41.42 (10.42)∗

(PRM)
RRT-Opt 52.65 (6.57) 38.45 (4.65) 107.06 (36.55) 54.60 (7.89) 118.81 (29.14) 60.81 (9.17)∗

Topological 58.88 (22.55) 36.00 (5.42) 133.88 (63.82) 54.87 (6.25) 259.88 (156.65) 67.17 (5.86)
(ours)

Organizing Maps. Once extracted, a set of topologically
distinct trajectory classes can be utilized to generate a
set of reference trajectories that span the prominent local
maxima of the path space in an information gathering task.
These trajectories enable improved performance from a local
optimizer, Stochastic Gradient Ascent, allowing it to more
easily find paths closer to a global optimum. In simulated
trials, we showed that our algorithm is able to outperform
a greedy algorithm as well as a sampling and optimization-
based algorithm. We also achieved comparable performance
to Branch and Bound, a globally optimal algorithm, in a
fraction of the computation time across both randomized
worlds and real-world ocean model datasets.

There are many interesting avenues for further research.
We demonstrated the capabilities of our approach in a one-
shot information gathering task, we would like to expand this
algorithm into a multirobot planning framework, enabling
a team of robots to collaboratively distribute themselves
among likely homotopy classes of trajectories. Additionally,
we see areas of improvement for our topology-aware Self-
Organizing Map. Through weighting the edges based on the
information function during the filtration step, we may be
able to improve the efficiency with which we can discover
the true underlying topology of an information function.
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