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Abstract— In this paper, we present a method to improve
the navigation of tethered underwater vehicles by computing
optimal paths that prevent their tethers from becoming en-
tangled in obstacles. To accomplish this, we define the Non-
Entangling Travelling Salesperson Problem (NE-TSP) as an
extension of the Travelling Salesperson Problem with a non-
entangling constraint. We compute the optimal solution to the
NE-TSP by constructing a Mixed Integer Programming model,
leveraging homotopy augmented graphs to plan an optimal
trajectory through a set of inspection points, while maintaining
a non-entangling guarantee. To avoid the computational expense
of computing an optimal solution to the NE-TSP, we also
introduce several methods to compute near-optimal solutions.
In a set of simulated trials, our method was able to plan optimal
non-entangling paths through a variety of environments. These
results were then validated in a set of pool and field trials using
a Seabotix vLBV300 underwater vehicle. The paths generated
by our method were then compared to human-generated paths.

I. INTRODUCTION

Inspection of underwater devices is a time-consuming task,
which either requires a human diver to physically inspect the
device or a human controlled Remotely Operated Vehicle
(ROV) to perform the inspection. This task can be made
easier through the addition of autonomy to the ROV. Offshore
energy production devices, such as Wave Energy Converters
(WECs), need routine maintenance and inspection to prevent
the buildup of marine life as well as mechanical wear and
tear. WECs are often arranged in multi-device arrays to
maximize their performance [1]. These environments can be
complex, with many obstacles. Control of an ROV in such an
environment can be difficult, and automating portions of it,
such as navigation to an inspection site, would significantly
ease the control burden on the operator.

Underwater inspection involves navigating a ROV or an
Autonomous Underwater Vehicle (AUV) on a path which
passes through a series of goal points and returns to the
start. At each point of interest along the path, the robot may
need to stop to make an observation or take a sample, as
seen in Fig. 1. A tether connecting the robot to a continuous
power supply can extend the mission duration of an AUV
indefinitely [2]. The tether also provides a reliable commu-
nications link with a base station and a safety mechanism,
preventing the robot from being lost at sea. However, a tether
is not without drawbacks. Tethers limit the operational range
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Fig. 1: Seabotix vLBV-300 Vehicle completing a wharf inspection in
Newport, Oregon. Using our method, the robot plans a path to inspect the
wharf’s eight pilings in a non-entangling manner.

of the robot, requiring them to stay within some distance of
the base station. This range is further limited by the presence
of obstacles, as the tether can become wrapped around them.
In severe cases of entanglement, where the robot is unable
to disentangle itself from the obstacle, it can even prevent
the robot’s recovery.

In this paper, we introduce the Non-Entangling Travelling
Salesperson Problem (NE-TSP), which extends the tradi-
tional Travelling Salesperson Problem (TSP) by adding a
non-entangling constraint. To solve the NE-TSP, we propose
a novel method for planning optimal non-entangling paths
by solving a Mixed Integer Programming (MIP) model.
Since computing an optimal solution to the NE-TSP can
be computationally expensive, we also introduce a heuristic
method for reducing the search space of the MIP, enabling
it to compute near-optimal paths more quickly.

The remainder of the paper is organized as follows. In
Section II we examine prior work and the mathematical
concept of a homotopy class. Section III formally defines the
problem of computing a non-entangling path. We propose our
solution to this problem in Section IV, as well as a heuristic
for simplifying the robot’s travel graph. Finally, in Section
V, we compare our algorithm with a stochastic optimization
method and a greedy approach as well as against a human
in a set of field trials.

II. BACKGROUND

For autonomous underwater inspection tasks, close prox-
imity to obstacles has led previous research to employ
untethered AUVs to avoid the entanglement risk posed by
a tethered vehicle [3]. Where a tether is used, existing
research has focused on the length of the tether as the
primary constraint in planning paths [4]. We consider the



Fig. 2: An example of a trajectory modification which avoids tether
entanglement. By modifying the path subsection between g2 and g3 (shown
with a solid line) to the dotted line, the overall path length may be increased;
however, the entanglement with O3 is eliminated, as O3 is no longer inside
the bound of the trajectory.

additional constraint of avoiding entanglement as the robot
plans through multiple goal points. While it is possible for
the robot to reverse its path to avoid any entanglement, as was
done in [5] to obtain maximum coverage by a tethered robot,
such a behavior can lead to lengthy paths which reduce the
overall area which can be inspected in a reasonable amount
of time.

Planning for tethered robots has been framed as a topo-
logical planning problem, where the topology of the free
space that the robot can plan through has been altered by the
presence of obstacles. Multiple methods for planning in this
space have been suggested, namely homotopy augmented
graphs [6], [4], and filtrations of simplicial complexes [7].

In recent work, Mixed Integer Programming (MIP) has
proven to be a flexible and powerful tool for computing
optimal paths subject to constraints. MIP-based methods
have been employed in orienteering-style extensions of the
Travelling Salesperson Problem (TSP). In [8], the authors
develop a MIP model to compute an optimal tour for a tourist
collecting time-varying reward, while subject to a limited
travel budget. MIP-based planning approaches have also been
employed to plan optimal paths for autonomous aerial and
marine vehicles while avoiding obstacles [9], [10].

In this paper, we build on the preliminary version of
our method presented in our prior workshop paper [11].
Our method improves upon previous work by incorporating
entanglement constraints into the planning process of a
complete inspection tour. This enables us to plan tours which
avoid entanglement while simultaneously minimizing total
path length.

A. Homotopy Classes

A homotopy class describes a set of curves between two
points. Two curves share the same homotopy class (i.e. are
homotopic) if they share the same end points and one can
be continuously deformed into another without encountering
any obstacles. For example, in Fig. 2, the dotted and solid
curves between g2 and g3 do not share the same homotopy
class, although they do share the same endpoints, since the
continuous deformation between them passes through O3.

Fig. 3: Demonstration of h-signature Calculation. 1) Representative Points
and their rays are constructed within obstacles O1, O2, and O3. 2) Path
between g1 and g2 is traced and intersections with rays from (1) are
recorded. “O2, O−1

2 , O2, O1, O3” 3) h-signature reduced to “O2, O1,
O3”.

In order to characterize homotopy classes, Bhattacharya
et al. [12] developed a descriptor, called an h-signature,
which uniquely describes a homotopy class given a start
and end point. The h-signature is computed by selecting
representative points inside each obstacle, then drawing a
parallel ray from each point. To determine the h-signature
of a curve, the curve is traced, beginning at its start point.
Each time the trace intersects one of the rays, a symbol
corresponding to the ray and direction of intersection is
added to the h-signature. This process is demonstrated in
Fig. 3. A positive crossing of the ray emanating from the
nth obstacle is considered to be from left to right, and is
denoted as On. The inverse crossing, from right to left,
is denoted as O−1n . The h-signature is then reduced by
removing adjacent elements with opposite signs along the
same ray. This process is repeated until no more elements
can be removed. The resulting h-signature is a homotopy
invariant which uniquely identifies the homotopy class of a
curve.

III. PROBLEM DEFINITION

To plan non-entangling paths through the world, we need
to first define an entanglement. Since a tour of goal points
consists of a loop starting and ending at g1, obstacles in the
world may be divided into two sets: those contained within
the bound of the tour (the interior set), and those outside
the bound (the exterior set). Any obstacles in the interior set
are considered to be entangled in the tether, while obstacles
in the exterior set are non-entangled. This is illustrated in
Fig. 2, where a path modification moves O3 from the interior
set to the exterior set. There exists a simple test for whether
a given trajectory is entangled in any obstacles. We compute
the h-signature of the trajectory by combining the h-signature
of each of its sub-paths, and then reducing the combined
h-signature as described in Section II-A. If the resulting h-
signature is empty, the trajectory is non-entangling.



A. Non-Entangling Travelling Salesperson Problem

The problem of planning optimal non-entangling paths can
be seen as an extension of the TSP, with the additional con-
straint that the path does not cause the tether to entangle any
obstacles. This extension is the Non-Entangling Travelling
Salesperson Problem.

An instance of the NE-TSP consists of a map of the
world which contains n obstacles O = {o1, o2, ..., on}. To
allow for application to many representative environments,
each obstacle oi is defined as a vertical projection from
a circle on R2 to R3. The map also contains m goals
G = {g1, g2, ..., gm} where gi ∈ R3. The initial deployment
point of the robot is also its first goal g1. A trajectory T is
a complete circuit of these goal points, ultimately returning
to the initial deployment point after visiting the final point
in T .

A solution to the NE-TSP consists of a trajectory T ∗ which
satisfies

T ∗ = argmin
T
{LT |h-signature(T ) = ∅ , |T | = m}, (1)

where LT is the length of the path needed to traverse all
points in T and |T | is the number of elements in T . T ∗ is
the minimum-length, non-entangling trajectory which passes
through all gi ∈ G.

To compute the optimal solution to this problem, we
propose a Mixed-Integer Programming model which can
compute T ∗ given a set of goals G and obstacles O.

IV. ALGORITHM

A. Homotopy Augmented Graph

To guarantee the construction of non-entangling paths, we
construct a homotopy augmented graph based at the robot’s
deployment point. Formulated by Bhattacharya et al. [12],
a homotopy augmented graph allows the robot to plan the
shortest path between two points in a given homotopy class.
The homotopy augmented graph, GAug = {VAug, EAug}, is
constructed by augmenting a prior graph G = {V,E} with
another dimension, h, which indicates the homotopy class of
the path between a given vertex in GAug and the base point
of the graph. Thus a vertex vi ∈ Vaug consists of the spatial
location of vi, as well as the homotopy class of the path
between it and the base node. Using the vertices in GAug , we
can construct an augmented trajectory TAug which augments
T with the homotopy classes of each of its elements.

We build on the idea of the homotopy augmented graph
given in [12] by employing an extension of the Probabalistic
Roadmap (PRM∗) [13], [14] in place of the grid-based graph.
PRMs provide a probabalistically complete graph-based map
of an environment by taking a number of samples of the
free space, and connecting nearby samples with traversable
edges. PRM* extends the PRM by providing a principled
method for determining which pairs of samples should be
connected with edges. A more detailed explanation of PRM
and PRM* can be found in [13]. Leveraging PRM* allows
us to more easily span a 3-Dimensional environment, such
as the underwater domain. However, since obstacles are

projected from R2 to R3, we can compute entanglements and
homotopy classes on the projection in R2, while distances
between points and the resultant trajectory for the robot
remain in R3.

By constructing the homotopy augmented graph using the
AUV’s deployment point as a starting point, we can ensure
that each point in the graph is reachable by the robot. This
is accomplished by only adding points to the graph which
are within range of the robot’s tether. Furthermore, during
the construction of the homotopy augmented graph, we add
a non-looping constraint, thus each path through the graph
is both feasible and non-entangling.

Once constructed, paths can be planned over the
homotopy-augmented graph using standard graph-based
planning algorithms, such as A*, which are both complete
and optimal. This, combined with the probabilistic complete-
ness guarantees of PRM*, ensures that our proposed method
retains the same probabilistic completeness guarantees as
PRM*. Additionally, any paths generated on the homotopy
augmented graph will be optimal with respect to the graph.

B. Mixed Integer Model

To compute the optimal non-entangling path for the robot
over the PRM∗, we model the NE-TSP with a Mixed-
Integer Program. For each goal point gi ∈ G, there is a
corresponding set of all homotopy classes which reach the
goal without exceeding the tether length constraint Hi =
{h1, h2, ...hzi} with zi ≥ 1. Each hj ∈ Hi corresponds to
an augmented goal vertex vgi,hj ∈ VAug . We define the set of
homotopy-augmented goals Vh as the union of these vertices
for all gi ∈ G:

∀gi ∈ G,Vi = {vgi,h1 , vgi,h2 , ..., vgi,hzi
},

Vh = ∪mi=1Vi,

where TAug ⊆ Vh.
To fully define our MIP model, we need to determine the

order that the goals are visited and by which homotopy class
each goal is visited. We introduce two sets of binary decision
variables, one to describe each of these two determinations.
To solve for the homotopy class hj of each goal, gi, for each
vgi,hj

let there be a corresponding xi,j , where xi,j = 1 if and
only if vgi,hj

is visited by the robot and xi,j = 0 otherwise.
The second portion of the solution, the order in which the

goals are visited, is developed by determining which edges
egi,hj ,gl,hk

∈ EAug are included in T . An edge egi,hj ,gl,hk

is the path segment between two vertices, vgi,hi
and vgl,hk

.
Let yi,j,k,l = 1 if and only if the robot travels the edge
egi,hj ,gl,hk

and yi,j,k,l = 0 otherwise. Each edge also has a
corresponding distance dgi,hj ,gl,hk

, which is the shortest-
path distance in the homotopy-augmented graph between
vgi,hi

and vgl,hk
.

To complete its tour of G, the robot will visit each gi ∈ G
exactly once. Correspondingly, there is only one homotopy
class at gi that the robot will visit. This constraint can be



(a) Initial Graph Edges (b) Non-Entangling Graph
Edges

(c) Complete Graph (d) TSP Solution

Fig. 4: Heuristic Map Generation method. The shortest edges between the goals {g1, g2, g3} and the base point, g0 are added to the map in 4a. In Fig.
4b, direct paths (shown in bold) are added, while indirect paths (dashed) are replaced with the bold paths shown in Fig. 4c. Finally, the TSP tour of the
resulting map is shown in 4d.

modelled with the following summation:

∀i,
zi∑
j=1

xi,j = 1. (2)

In the classic TSP model, for each vertex in the graph,
there is an incoming and outgoing edge. This can be captured
in a MIP model with a simple degree-2 constraint which
requires two unique edges to connect each vertex. However,
in our model, this simple constraint fails when presented with
the homotopy augmentation at each vertex. Since not every
vertex vgi,hj will be included in the final solution, a vertex
may have either degree-0 or degree-2, depending on whether
or not it is visited during the tour. Furthermore, the homotopy
class of both the incoming and outgoing edges must be the
same at vgi,hj

for the trajectory to be continuous. This is
accomplished using the following constraint:

∀i,
m∑

k,i 6=k

zi∑
j=1

zk∑
l=1

yi,j,k,l × xi,j = 2. (3)

Since only one xi,j for a given i is a part of the solution,
as is given in the constraint shown in Equation 2, Equation 3
ensures that only edges which correspond with xi,j can be
used. The first term enforces the degree-2 constraint, limiting
the total number of edges connecting to a given node, while
the second term ensures that any vgi,hj can have either
degree-2 or degree-0.

The final constraint in the MIP model eliminates subtours,
ensuring that the solution consists of exactly one tour which
visits each goal rather than multiple disjoint subtours. We
implement this constraint as follows:

m∑
i,k,i 6=k

zi∑
j=1

zk∑
l=1

yi,j,k,l ≤ |S ∩ TAug|,∀S ⊂ Vh, S 6= ∅, (4)

Since it is impractical to compute all proper and nonempty
subsets S of Vh, in practice the constraint modelled in
Equation 4 is implemented using a lazy constraint. When
a potentially valid solution is found, we determine whether
it is a single tour, or multiple disjoint subtours. If the solution

does contain subtours, a constraint is added disallowing the
potential solution as a valid one.

To solve the MIP model, we employed the Gurobi Mixed
Integer Solver [15]. The Gurobi solver utilizes a branch-and-
bound method to converge to the optimal solution to any
MIP. The solver also has the anytime property, meaning that
at any point before convergence to the optimal solution, the
incumbent solution (i.e. the best potential solution found)
will be a valid, though sub-optimal, solution to the model.
In Section V, we compare the optimal solution to the anytime
solution generated after 2 minutes of computation. The
optimality of our method is by construction. Equations 2 - 4
fully define the NE-TSP. As a result, the optimal solution on
the homotopy augmented graph to these constraints also is
the optimal solution to the NE-TSP.

C. Reduced MIP Heuristic

Solving the NE-TSP optimally requires a search over not
only the combinatorial space of goal point orderings, but also
the space of homotopy classes. To reduce this search space,
we propose a heuristic which selects homotopy classes which
are likely, though not guaranteed, to be a part of the optimal
solution.

This is accomplished by creating a subgraph of the ho-
motopy augmented-graph, the process of which is shown in
Fig. 4. The graph is initialized with vertices at each gi ∈ G.
The shortest path to the base point, g0, is computed, along
with its corresponding h-signature, shown in Fig. 4a. Then,
for each other pair of vertices, we attempt to construct a
direct connecting edge if the direct edge shares a homotopy
class with the path between the vertices which passes through
g0. If no such edge exists, shown by the dashed lines in
Fig. 4b, an indirect edge which corresponds with the shortest
path that does share the same homotopy class as the path
through g0 is added.

With this reduced graph, we remove the need for the
MIP model to make a decision about which homotopy class
to use for a given goal, reducing the overall search space
the solver will have to search. The computation time is
further reduced by eliminating a set of decision variables



and their corresponding constraints. The constraint defined in
Equation 2 is eliminated entirely, and the constraint defined
by Equation 3 is reduced to a simple linear constraint. By
computing the optimal TSP solution over the reduced graph,
we compute a near-optimal solution to the NE-TSP.

The path that results from this method is still non-
entangling, since no obstacles are contained within each loop
in the graph. By only adding edges, direct or indirect, to the
graph if they share a homotopy class with a known, non-
entangling path, we guarantee that any complete tour in the
graph will be non-entangling.

D. Simulated Annealing

The final method we examine to solve the NE-TSP is
simulated annealing. Simulated annealing is a stochastic
optimization algorithm, which performs search in multidi-
mensional space and is robust to entrapment in local optima
[16]. Initialized with some random state, x, at each iteration
of the algorithm, a successor state x′ is created by mutating
x through some function. This successor state is compared to
the previous state with an evaluation function. If the mutated
state has the higher score, it becomes the new state. If it has
a lower score, it becomes the new state with probability:

p = e−(s−s
′)/θ, (5)

where s and s′ are the scores of the state and mutated state,
and θ is a scaling factor that decreases with subsequent iter-
ations. To begin, x is initialized with a randomly generated
TAug , which is a random ordering of the goal points and
their corresponding homotopy classes.

During the mutation step of the simulated annealing pro-
cess, the first point in this trajectory remains fixed, reflecting
the assumption that the robot is tethered to a fixed base
station. At each iteration of the optimization process, a
trajectory can undergo one of the two types of mutations,
chosen at random. The first of these, goal-swapping, swaps
the order of two goals on the trajectory:

T ′ = {g1, ..., gi−1,gj, gi+1, ..., gj−1,gi, gj+1, ..., gm}.

This mutation can either raise or lower the overall trajec-
tory length and entanglement of the path. To ensure that
the resultant path is entanglement-free, we use a second
method of mutation, path-inversion. During path-inversion,
the homotopy class of one element in Taug is changed. The
result of a path-inversion mutation is shown in Fig. 2.

V. RESULTS

A. Simulations

We tested our method in a series of simulated tests, com-
paring the optimal MIP solution to the anytime MIP solution
generated after 2 minutes of computation, the simulated an-
nealing solution, and our heuristic solution. For each method
aside from the optimal MIP solution, the computation time
of the solution was limited to 2 minutes. We also compare to
a greedy-backtracking method, in which the robot iteratively
travels the closest point that does not violate the tether length

TABLE I: Comparison of computation time for optimal MIP solution.
Each element contains average time to convergence and number of trials
completed in 5 minutes (in parentheses).

Tether Length

# Goals 200 250 300 350

5 0.16 s, (10) 0.66 s, (10) 2.43 s, (10) 8.47 s, (10)
10 0.65 s, (10) 12.73 s, (10) 47.86 s, (7) 74.73 s, (8)
15 8.07 s, (8) 4.69 s, (2) 186.48 s, (3) 115.28 s, (3)
20 16.20 s, (9) 40.08 s, (2) 0.80 s, (1) 65.57 s, (1)

constraint. Because of the behavior of the tether, this may
not be the closest point in Euclidean space. After travelling
to the final point, the robot returns to the start location by
retracing its path. This ensures that the resulting tour will be
non-entangling.

The results of these simulations are shown in Fig. 5.
For each set of tether length and number of goal points,
the methods were compared over 20 randomly generated
worlds. In each of these worlds, up to 20 circular obstacles
are randomly placed in an environment 500 units per side.
The homotopy augmented graph is then constructed on a
PRM∗ built with 1000 samples, taken uniformly over the
non-obstructed space, with the base point randomly selected.
The goal points were randomly selected from coordinates
accessible within the homotopy augmented graph. Since each
method requires the use of the homotopy augmented graph,
the construction time of this graph is not included in the
overall planning time. Simulations were done using Python
on a Quad-Core Intel i7-2620M laptop processor clocked at
2.70GHz with 8GB of RAM.

In Fig. 5a to Fig. 5c we show a comparison of path lengths
between the methods of computing a non-entangling path. In
all three tests, the MIP-based methods (optimal MIP, MIP 2-
Min anytime, reduced MIP heuristic) outperform simulated
annealing and greedy methods. Both MIP 2-Min anytime and
heuristic maintain an average path length within 5% of the
optimal path length found by allowing the MIP solver to con-
verge. As the number of goals and the tether length increase,
performance across all 4 methods begin to degrade. However,
it is apparent that the MIP-based methods maintain their level
of performance in the larger environments far better than
either the greedy or simulated annealing approach. Though
initially close, as the environment gets large, the greedy
method begins to outperform simulated annealing. This can
be attributed to the restricting of simulated annealing to
only 2 minutes of search. As the search space expands with
more goal points and their corresponding homotopy classes,
simulated annealing is able to explore proportionally less of
that space, and so is less likely to find a short path.

B. Computational Performance

Computing the optimal solution to the Travelling Sales-
person Problem, and, by extension, the NE-TSP is NP-Hard,
meaning that no polynomial time algorithm to compute the
exact solution exists (unless P = NP). The NE-TSP is made
even more difficult, since the number of variables in our
MIP model scales not only with the number of goal points,
but also with the length of the tether and the number of
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Fig. 5: Comparison of path length and computation time. Fig. 5a to Fig. 5c show the percent increase in path length over the optimal MIP length. Fig.
5d to Fig. 5f compare the computation time required to compute each solution. Note the logarithmic axes on Fig. 5d to Fig. 5f. The runtime shown here
includes the time taken to compute a distance matrix between all potential goal points, and so can sometimes appear to slightly exceed 2 minutes of
computation time.

obstacles in the environment. A longer tether and more
obstacles allows the robot to reach the same goal point in
more homotopy classes. The effects of this can be seen in
Fig. 5d to Fig. 5f, where as the number of goal points and
the length of the tether increase, the computation time for
the optimal MIP solution increases exponentially. This is
especially clear in Fig. 5f, where the longest computation
time for the optimal MIP solution took over 12,000 seconds.

To evaluate the viability of our method in a practical
application, we evaluated the computation time for problems
with increasing numbers of goal points and with increasingly
longer tethers. The results of this are shown in Table I.
Each element in the table contains the average time to
convergence for the optimal solution and the number (out of
10) of paths for which the MIP solver was able to compute
the optimal solution (shown in parentheses). Computing the
optimal solution remains feasible for shorter tethers (200
units) or smaller numbers of goal points (5-10). However,
once the problem expands beyond this, an approximation
should be used.

C. Pool and Field Tests

To show that the tether behaved as expected, we con-
ducted a set of pool tests to ensure that the paths we
generated were non-entangling when executed on a tethered
vehicle. We implemented the non-entangling planner on a
Seabotix vLBV-300 underwater vehicle [17] equipped with
the Greensea INSpect GS3 Inertial Navigation System, a
Teledyne Explorer DVL, and a Tritech Gemini multibeam

Fig. 6: An example obstacle and goal layout for a tethered vehicle. The white
circles indicate goal locations (all of which lie on the water’s surface). The
red buoys act as obstacles and indicators of entanglement. The black line
shows the planned path for the AUV, and the direction of travel along that
path.

sonar. The SeaBotix vehicle can be controlled via a series
of waypoints provided through a Robotic Operating System
(ROS) interface with a command station [18]. Using the non-
entangling planner, the vehicle planned paths around a set of
buoys, shown in Fig 6, and was able to successfully execute
them without becoming entangled.

To represent an offshore inspection task, we deployed
the vehicle from the Hatfield Marine Science Center wharf
in Newport, Oregon and conducted an inspection of the
wharf’s pilings. The vehicle can be seen inspecting a piling
in Fig. 1. While beneath the wharf, the vehicle was subject



(a) Systematic Path 1 (b) Systematic Path 2 (c) Optimal MIP Path

Fig. 7: Visualization of paths for dock inspection task. The robot is deployed from a base station located at the star, and must inspect the eight wharf
pilings (gray circles) at the inspection locations (black circles). The endpoint of the tether is located at the base station.

TABLE II: Comparison of path lengths for hand-generated systematic paths
and optimal MIP path for a wharf inspection task.

Systematic Path 1 Systematic Path 2 MIP Path

Path Length 65.8 m 58.8 m 56.6 m

to a current of up to about 2 knots. The inspection task
involved maneuvering to each of 8 pilings and pausing to
inspect them. Two systematic paths were also hand-generated
for non-entangling inspection tours of the same points. A
comparison of the path lengths of each inspection tour are
shown in Table II, and a visualization of the paths that the
robot took is shown in Figs. 7a - 7c.

VI. CONCLUSION AND FUTURE WORK

In this work, we have introduced the Non-Entangling
Travelling Salesperson Problem and have presented a Mixed
Integer Programming model which can compute the optimal
solution for a tethered robot. Leveraging homotopy aug-
mented graphs, we can maintain a non-entangling guarantee
on all paths generated. To improve computation time we
developed a heuristic for selecting good homotopy classes
for each goal point, reducing the search space needed by the
MIP model to compute a near-optimal solution. We compare
the optimal MIP solution with the anytime solution generated
after 2 minutes with the MIP solver and our heuristic
solution, as well as a simulated annealing and a greedy
approach. To avoid the significant computational expense
required to compute the optimal solution to the MIP Model,
the 2-minute anytime solution and the heuristic solution were
found to be close approximations of the shortest path. In field
trials, we were able to plan short, non-entangling paths both
in a pool environment and during a wharf inspection.

Future directions for this work include incorporating un-
certainties into both the tether behavior and the model of the
world. We plan to expand this work by examining dynamic
obstacles, unknown obstacles, and disturbances to the tether.
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