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Abstract— Persistent operation of autonomous underwater
vehicles (AUVs) without manual interruption for recharging
saves time and total cost for the mission. In order to facilitate
AUVs for longer mission durations, they can be equipped with
docking capabilities to recharge at on-site Wave Energy Con-
verter and dock hybrid type recharging stations. However, the
power generated at the recharging stations could be constrained
depending on the sea conditions. Therefore, a robust mission
planning framework is proposed using a centralized and de-
centralized scheme that incorporates the power availability
constraint at the recharging station in addition to the limited
battery capacity of each AUV. The planner generates efficient
mission plans for all AUVs by optimizing their time to visit the
dock based on the imposed constraint. The effect of increasing
the number of AUVs and number of mission points is studied
on the mission duration. The effect of sea state on mission
performance is also analysed in a particular mission scenario.

I. INTRODUCTION
Multiple autonomous underwater vehicles (AUVs) have

the ability to navigate autonomously for prolonged periods
in potentially hazardous environments that are otherwise
unsafe or time consuming for human divers by utilizing in-
situ recharging strategies. Continuous operation of AUVs is
essential for missions to carry out continuous data collec-
tion, exploration, or monitoring in underwater environments.
Hence, AUV’s can be equipped with docking capabilities that
allow them to recharge at a docking station and resume it’s
mission without manual intervention.

Some missions allow tethered charging where AUVs are
connected to an external power source using a tether cable.
However, they can impose physical limitations on the maxi-
mum range covered by the AUV based on the cable length.
On the other hand, docking stations can allow higher flexi-
bility for AUV as these docking stations are often positioned
at one or more fixed locations in the mission area allowing
the AUVs to dock, recharge their batteries and resume their
mission. The power available at the docking station can be
sourced from Wave Energy Converters (WECs). WECs cap-
ture energy from ocean waves and convert it into electricity
which is then used to power the docking stations. The power
generated at WECs is determined by the characteristics of the
incident waves defined by the sea state as well as the design
and efficiency of the converter [1].

Much of the existing work [2] in generating efficient
mission plans for AUV fails to account for the energy
constraint at the docking station, as it is assumed that
the docks would always have surplus energy to completely
recharge the AUVs. In other scenarios that account for energy
constraints at the dock [3] mission plans are executed such
that AUVs visit the dock at periodic intervals and recharge

completely. The time between subsequent recharge ensures
that the dock has sufficient power available. However, these
assumptions come at the expense of higher mission time and
energy consumption as it might not be essential for an AUV
to recharge completely or periodically.

Hence, efficient mission planning would ensure optimal
utilization of vehicle energy resource as well as power
generated by WECs. Based on the specific mission goals
and the power availability at the docking stations, a mission
planner can generate waypoints or routes for the AUV by
efficiently minimizing energy consumption and travel time
and at the same time maximizing mission coverage.

In this paper, a robust mission-planning algorithm is
designed for multiple AUVs that minimizes the mission
duration while adhering to the energy constraints of both the
AUVs as well as the docking station. A mission planning
framework incorporating the energy constraints is provided
using a centralised and decentralised algorithm. An empirical
evaluation is carried out to compare the performance of
the two algorithms with respect to total mission time on
randomly generated maps with varying number of AUVs and
mission points. The effect of low and high sea states on the
mission time is also analyzed using both of the algorithms.

II. RELATED WORK

A. AUV Docking and Recharging Systems

Underwater docking infrastructure provides a platform for
AUV recharging and data transfer. The existing dock designs
are classified as unidirectional and omnidirectional [4] based
on the direction in which AUV can approach the dock. They
are further categorized into fixed or floating type.

A WEC-dock hybrid system design [5] allows on-site
energy harvesting and AUV recharging capabilities. The type
of docking mechanism decides the AUV navigation and
undocking strategies.

B. Marine Energy Harvesting Model

Wave energy can be modelled using linear wave theory
or models that take into account nonlinear waves effects and
interactions. A simplified linear energy model based on sea
state for regular waves [3] is a function of wave height Hm

and wave period Tm as given by Equation (1), where ρ is the
water density and g is the acceleration due to gravity. Assum-
ing a WEC-dock hybrid system, the power generated at WEC
can be computed using Equation (2), where B represents
the WEC dimension, η is the hydrodynamic efficiency and
ϵ, ϵ2 are generator efficiency and power transfer efficiency
respectively.
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PWEC = JwaveBηϵ1ϵ2 (2)

The wave spectral density function provides the significant
wave height and energy period for irregular waves. The
power matrix [6] for a particular WEC type provides a
mapping of the mean power available for a given sea state.

Wave Energy Converter Simulator (WECSim) [7] is an
open source tool that incorporates complex wave energy
modelling involving numerical simulations or empirical re-
lationships that include additional factors such as wave
steepness, water depth, wave spectra, and nonlinear wave
interactions and generates power output based on the chosen
WEC construction.

Additionally, the power generated from WEC recharges
the energy storage device at the dock such as batteries. The
charging and discharging of the batteries can be modelled
using the function as given in Equation (3), where β is the
rate of charging and discharging.

q̇(t) = β (3)

C. Mission Planning Algorithms

Existing methods on mission planning for multiple au-
tonomous vehicles mostly fall under the categories of cen-
tralised or decentralised approaches. In [8] and [9], a tax-
onomy for multirobot task allocation problems with inter-
task dependencies is provided along with a mathematical
formulation for each class of problems.

A multi-objective genetic algorithm (GA) is utilised in [2]
that generates energy efficient trajectories while accounting
for obstacles and ocean currents. Such population based op-
timization approaches generate a candidate pool of possible
solutions and iteratively improve upon them to converge to
an approximate solution. In [10], Multi-Robot Long Term
Persistent Coverage Problem (MRPCP) is formulated as
MILP that accounts degree constraints, capacity and flow
constraints and fuel constraints. The method can also handle
dynamic costs between the targets.

A policy gradient based search [11] is utilised to train
all the robots independently, and is deployed in a decentral-
ized manner where the robots are allowed to communicate
about their completed tasks. Other reinforcement learning
approaches such as actor-critic based methods incorporate
centralised learning and decentralised execution as those
discussed in [12].

An online multiagent Monte Carlo Tree Search (MCTS)
approach [13] is applied in multi-drone delivery problem
using dynamic coordination graphs. The decentralised variant
of MCTS is presented in [14] where every autonomous
vehicle grows its own search tree and iteratively optimizes
upon the action-sequence probabilities by communicating
with other autonomous vehicles. [15] presents an online dis-
tributed method for coordinating heterogeneous multirobot
systems for task allocation.

However, all the above methods assume unlimited power
at the recharging stations, hence they do not account for
power availability at the dock that can generate more in-
formed mission plans for the autonomous vehicles.

III. METHODOLOGY

A. Problem Formulation

There are R = {r1, r2, ...., rn} AUVs that are assigned
to cover a mission area in minimum time. The mission area
is represented as a undirected graph G = (V,E), where V
represents the mission points and recharging station nodes
such that Vdock ⊂ V , and E represents the edges connecting
any two nodes in V . The mission planning algorithm is
formulated as given in Equation (4). The paths of all AUVs
that minimizes the total mission duration is given by PM =
{p1, p2, ...pn}. pi = {vi1, vi2, ....} is the sequence of nodes
traversed by an ith AUV, vi ⊂ V represents the points
covered by ith AUV. pi determines when the ith AUV would
visit the recharging station. Ti represents the individual
mission time of an ith AUV in R. AUVs are assumed to be
traveling at a specific constant speed si between two mission
points.

Equation (5) defines that set V is equal to the total mission
points covered by all the AUVs. No overlapping constraint
between the mission plans pi, pj of any two AUVs is given
by Equation (6). The current charge Ci(t) of the ith AUV at
any given time is bounded by its maximum charge capacity
Bi as given in Equation (7). The charge available at the
dock qdock(t) is bounded by its maximum charge capacity
of Bdock as given in Equation (8). The current dynamic state
of charge available at the dock is given by a function f in
Equation (9).

PM = argminmax
i∈R

Ti (4)

such that,

V =
⋃
i∈R

pi (5)

∀i ̸=j{pi \ Vdock} ∩ {pj \ Vdock} = ∅ (6)
0 ≤ Ci(t) ≤ Bi (7)

0 ≤ qdock(t) ≤ Bdock (8)
qdock(t) = f(Ci∈R(t), PWEC , β) (9)

B. Algorithm

To solve the optimization problem formulated in Equation
(4), a decentralised scheme using Monte Carlo Tree Search
as given in Algorithm 1 and a centralised scheme using a
Genetic Algorithm as given in Algorithm 2 is applied.

In Algorithm 1, the selection starts from a root node
in each AUV’s tree and terminates at a leaf node, and at
every step a node in the tree is selected using a tree policy.
The expansion phase expands over the leaf node if the
leaf node is not the terminal state. The simulation phase
executes possible future scenarios in order to select best
state-action pair in the subsequent iterations. At every step in
the selection/expansion/simulation phases, the AUV charge
is updated based on the distance traveled. If the destination



Algorithm 1 Decentralised Mission Planning Scheme using
Monte Carlo Tree Search for Multiple Underwater Vehicles

Input: Graph G
Output: Mission time TM , Path traced by each AUV pi
for each episode do

Initialize Vunvisited = V , rooti = {vistart ∀i ∈ R}
STEP 1 Perform selection for each AUV simultane-
ously until reaching a leaf node. Update the AUV charge
and branch cost based on the distance traversed.
STEP 2 Perform expansion in each AUV’s tree and
select a child for rollout if Vunvisited ̸= ∅. Update the
AUV charge and branch cost based on the selected child
node.
STEP 3 Perform simulation in each AUV’s tree until
Vunvisited = ∅.
STEP 4 Backpropagate maxi∈R costi in each tree.
STEP 5 Evaluate the policy and return the best
sequence of points traversed by each AUV pi if
Vunvisited = ∅

end for
The charge and branch cost are updated as follows:
Function: ChargeUpdate()
civnext

← civcurr
− ci(v

i
next, vicurr)

if vinext ∈ Vdock then
csource ← csource +

∑
f(t)

civnext
← civnext

+min{csource, Bi − civnext
}

csource ← max{0, csource−min{csource, Bi−civnext
}}

end if
costi = −d(vnext, vcurr)

si
− {civnext

− civcurr
}

is a docking location, the AUV is recharged based on the
current charge available at the docking station using the
ChargeUpdate() function. Based on the outcome of the
simulation, the computed branch cost is backpropagated from
the starting node in the simulation to the root node.

In Algorithm 2, a population of possible solutions is
randomly generated. Each state is encoded such that each
AUV’s path has nodes corresponding to starting node, dock-
ing node and a random distribution of mission points. The
index of the starting node remains fixed with respect to the
starting gene for each AUV’s path. The index of docking
location in each AUV’s path is non-interchangeable during
mutation with any other AUV’s path. All other mission points
are interchangeable across the entire chromosome length
during mutation. The fitness of each chromosome in the
population is evaluated using a cost function that penalizes
cost of traveling between two points and an added penalty
for reaching the docking station when the dock has no
charge left. Any incremental change in AUV’s charge at the
dock is added as a reward to the cost function. A fraction
of individuals are selected based on Roulette selection for
continuing in the next generation. The remainder of the next
generation of population is formed by mutating the selected
nodes obtained through roulette selection. The process is
repeated until the fitness value converges.

Algorithm 2 Centralized mission planning framework using
evolutionary algorithm for multiple AUVs

1: Initialize population P
Each state in the population is represented as
p = {vstart, vr11 , vr12 , ...., vdock;
vstart, v

r2
1 , vr22 , ...., vdock; ...} where, v ∈ V

2: for each episode do
3: STEP 1 Evaluate Fitness F :

{▷Update dock& AUVs current charge}
civnext

← civcurr
− ci(v

i
next, vicurr)

cdock ← cdock +
∑

f(t)
F ← F + civnext

4: if (vnext ∈ Vdock & cdock > 0) then
5: ∆ci = max{cdock, Bi − civnext

}
6: F ← F +∆ci

7: else if cdock = 0 then
8: F ← F −Bdock {▷Add penalty}
9: end if

10: STEP 2 Perform Roulette Selection and save k can-
didates for next generation.

11: STEP 3 In the remaining P − k candidates, perform
mutation by selecting a state from each robot path
such that the current state /∈ {vstart, vdock}

12: end for

The converged policy using both algorithms provides the
sequence of mission points traversed by each AUV which
also dictates when the AUV would visit the dock through
the course of a mission.

IV. EXPERIMENTAL SETUP

The above algorithms are evaluated using maps with a
random distribution of nodes in a 600 × 600 area. Every
AUV starts from the same point in the map assumed to
be the starting index. The dock is represented by one of
the points in the map, that has maximum energy capacity
equivalent to a single AUV and can only charge one AUV at
a time. The performance is evaluated using mission duration
by increasing the number of AUVs as well as by increasing
the number of mission points in the same area.

In our experiments, it is assumed that all the AUVs would
start from the same starting location and would need to
recharge once for completing the entire mission in the least
amount of time. The dock is assumed to have a constant
mean power value for a given sea state obtained from a power
matrix of a particular WEC type. The charging of the dock
and discharging of the AUVs changes linearly with time as
shown in Figure 1.

V. RESULTS & DISCUSSIONS

The total mission time is evaluated against an increasing
number of AUVs as well as an increasing number of mission
points using both algorithms as shown in Figure 2, and 3
respectively. The computed mission time was also analysed
for a low and high sea state scenario as shown in Figure 4. In
the high sea state scenario, the WEC is assumed to generate



Fig. 1. Charging and discharging profile for four AUVs {0, 1, 2, 3} and
the dock node through the course of mission in a 600× 600 area with 18
randomly distributed mission points.

Fig. 2. Mission duration with an increasing number of AUVs on a 600×
600 area with 26 randomly distributed mission points. The centralised GA
scheme generates better mission plans than the decentralised MCTS scheme
for the constrained energy source problem.

double the power than the power generated in the low sea
state scenario.

It is observed that Algorithm 2 (GA) provides better
estimate of mission time for the constrained energy source
problem than Algorithm 1 (MCTS). However, the centralised
GA scheme has a higher computational overhead than the de-
centralised MCTS scheme as it requires one central planner
that generates the sequence of mission points to be traversed
by each AUV in the entire fleet. On comparing the mission
duration in low and high sea state scenarios as shown in
Figure 4, it is observed that the mean value of mission
duration obtained over multiple episodes decreases for a
high sea state condition. The observation indicates that the
AUVs were able to optimize their visit time to the recharging
station more efficiently in the high sea state condition as the
maximum power availability constraint at the dock is relaxed
as compared to the low sea state condition.

Fig. 3. Mission duration using four AUVs with an increasing number
of mission points on a 600 × 600 area. The centralised GA scheme
generates better mission plans than the decentralised MCTS scheme for
the constrained energy source problem.

Fig. 4. Mission duration for a low and high sea state condition with four
AUVs and one dock in a 600 × 600 area with 18 randomly distributed
mission points. In this mission scenario, higher sea state generates more
efficient mission plans that at low sea state and the impact can be seen
from reduced mission time.

VI. CONCLUSIONS

A centralized and decentralized framework is provided
for the mission planning of multiple underwater vehicles
that take into account the charge available at the recharging
station in addition to the charge capacity of AUVs. The
impact of an increasing number of AUVs and an increasing
number of mission points on the overall mission duration
was compared against the two algorithms. The mission
performance was also analyzed with respect to changing sea
state conditions.

In the future, mission performance can be studied by
incorporating charging time delays at the recharging station.
Also, the continuous communication dependency of a central
planner during online replanning can be overcome with a
decentralized scheme. Hence, the mission performance can
be analyzed for online replanning scenarios as well as AUV
failure scenarios.
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