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Abstract— Underwater robots beneath ocean waves can bene-
fit from feedforward control to reduce position error. This paper
proposes a method using Model Predictive Control (MPC) to
predict and counteract future disturbances from an ocean wave
field. The MPC state estimator employs a Linear Wave Theory
(LWT) solver to approximate the component fluid dynamics
under a wave field. Wave data from deployed ocean buoys is
used to construct the simulated wave field. The MPC state
estimator is used to optimize a set of control actions by gradient
descent along a prediction horizon. The optimized control input
minimizes a global cost function, the squared distance from the
target state. The robot then carries out the optimized trajectory
with an emphasis on real-time execution. Several prediction
horizons are compared, with a horizon of 0.8 seconds selected
as having a good balance of low error and fast computation.
The controller with the chosen prediction horizon is simulated
and found to show a 74% reduction in position error over
traditional feedback control. Additional simulations are run
where the MPC takes in noisy measurements of the wave field
parameters. The MPC algorithm is shown to be resistant to
sensor noise, showing a mean position error 44% lower than
the noise-free feedback control case.

I. INTRODUCTION

The coastal ocean is bounded by the shoreline and the
200 m isobath, and is a common experimental setting for
field robotics. This is the most biologically productive area
of ocean [1] and is subject to the majority of natural and
industrial disasters. Its proximity to the shore and coastal
communities adds to a variety of economic, military, and
energy research areas under development. The increased
demand for robotic advancement in all of these coastal
research areas predicates the need to better understand the
dynamics of this environment.

Wave forces in the intermediate depths of the coastal
ocean will displace a robot throughout the majority of the
water column. These forces decay exponentially from the
water surface as shown in Fig. 1, and sufficient depths yield
negligible disturbances [2]. Because of this decay, as well
as their cyclic nature, wave forces are often neglected in
robotic path planning. In field applications where there is a
low operational depth, a persistent wave climate, and strict
localization constraints, this assumption can quickly break
down. As a result, increased sensor drift can hinder the
quality of robotic observations, such as those needed to close
SLAM loops in [3] and [4].
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Fig. 1. A visualization of the flow field velocity at various depths beneath a
monochromatic wave. These vector lengths are not to scale and are intended
to conceptualize the direction and decay with depth of wave forces.

Traditional PID control techniques can be used to counter
wave displacements, but reaction times for underwater robots
are slow relative to the changing wave forces. Given the
periodicity of waves, feedforward techniques should be ex-
plored. This paper outlines how Model Predictive Control
(MPC) can reduce an underwater robot’s position error
when station-keeping under the influence of ocean waves.
A wave field is decomposed to component velocities and
used as input to the model. Using this model, an optimized
control input is calculated over the desired time horizon. This
optimized control is shown to resist wave displacement by
using thruster force to counter impending disturbances.

The main novelty of the work presented in this paper is a
control method that can forecast and compensate for future
wave action. This is demonstrated through simulations of an
underwater robot performing station keeping in a shallow
water bathymetry under the influence of a strong sea swell.
The calculated control actions are optimized to actuate an
underwater robot’s thrusters in an anticipatory fashion so
that the vehicle remains nearly stationary as the waves pass
over it. This allows us to increase the quality of robotic
observations in shallow ocean water, as well as reducing the
risk of equipment damage while deployed. MPC shows to
reduce an underwater robot position error in a station keeping
application when compared to traditional feedback control.
Additionally, the algorithm is shown to be resistant to sensor
noise of the observed wave field.

The remainder of this paper is organized as follows: related
work is highlighted in Section II. Next, the MPC method is
described in Section III. Section IV describes the wave me-
chanics used in the system model. Section V outlines the ve-
hicle model and overall system dynamics. Section VI details
the algorithm structure and controller specifics. Section VII
presents results of determining effective prediction horizons
and analyzes system performance against a simulated wave
field with noisy observations. Finally, concluding remarks
are provided in Section VIII.



II. RELATED WORK

Path optimization is a key aspect of robotic path planning
where the amount of information gain should be maximized
while considering some cost function (e.g., mission dura-
tion). In [5] and [6], a sampling path is designed to minimize
the distance between an AUV and specific oceanographic
point of interests. The hybrid Fast Marching method, or FM*,
employed in [7] uses an A* search heuristic to find a contin-
uous path while minimizing drift. These methods incorporate
ocean current models as a quadratic drag force, but do not
include influence from wave forces. Localization challenges,
such as the mid-column glider position uncertainty presented
in [8], are further complicated when considering additive
uncertainty due to wave disturbances.

Robotic maintenance of Wave Energy Converters (WEC),
such as the platform detailed in [9], is an active area of
research. In fact, MPC techniques have been explored by the
wave energy community as a way to optimize WEC power
generation. As shown in [10] and [11], MPC can incorporate
actuator limits and system constraints to provide optimal
energy capture while benefiting from a variable prediction
horizon. Wave prediction modeling is also an active area of
research. In [12], Ling provides a method of real-time WEC
force estimation, showing accurate predictions for horizons
up to 15s. This method is noteworthy since it does not
require a network of sensors to provide wave spectra data.
In [13], Colby uses an artificial neural network to estimate
wave forces from a hydrodynamic model as inputs to an
evolutionary algorithm to optimize WEC geometry.

Applying MPC for underwater robotics is a promising
option as the combination of model dynamics and cost
function minimization requires minimal tuning of controller
gains. The method in [14] uses visual servoing MPC to
provide aperiodic, algorithm-generated control loop closures
to an AUV influenced by ocean currents. In [15], energy
efficient paths for a glider are generated by minimizing costs
across stratified, spatially-distributed currents using an A*
heuristic. In [16], MPC with a least squares cost function
is used to optimize sawtooth paths for an underwater glider
with an emphasis on real-time execution. This cost minimiza-
tion technique is similar to that used in this paper. These
approaches show the value in state estimation for robotic
path planning, but do not incorporate wave disturbances.

Wave-induced station keeping is explored in [17] and
[18] where a dynamic Kalman filter is created to synthesize
onboard sensor data and provide an estimate of wave-
induced disturbances. The filter fuses ground speed from the
Doppler Velocity Log (DVL), relative water speed from the
Acoustic Doppler Current Profiler (ADCP), and attitude from
the Inertial Measurement Unit (IMU) among other sensors
to produce an estimate of the fluid velocity. This method
highlights some of the difficulties of estimating in situ wave
parameters. One drawback of their experiments was the need
for a subsurface sensor network to provide wave parameters
to the controller. The work in this paper seeks to improve
on these results by providing improved cost minimization
techniques and emphasizing real-time control execution.

III. MODEL PREDICTIVE CONTROL

The term MPC does not refer to a specific strategy, but
a variety of methods that all in some way incorporate the
following [19]:

o Modeled state estimator along some time horizon

o Cost function to minimize a control sequence

o Receding horizon as optimized control is carried out

MPC requires a model of the system dynamics that can
estimate future states from a current state and set of control
inputs along a time horizon. The model in this case includes
the vehicle dynamics and thruster forces, along with a distur-
bance matrix to model the wave disturbances on the system.
By thresholding the thruster forces within the minimization
function, the need for tuning gains, such as in PID control, is
removed [20]; however, the number of steps in the prediction
horizon must be judiciously chosen. Too little time will not
allow for the full dynamics of the system to be accounted
for while too much time will be computationally intensive.

The optimization objective is to find the sequence of input
control actions to the state estimator that minimizes some
global cost function. Cost functions can be formulated by
balancing one or several metrics, e.g. mission duration, en-
ergy consumption, or number of sampled observations [21],
[22]. Given the station-keeping objective, the cost function
employed in this work is the sum of squared distances
between the desired and predicted states added to its input
control over the current horizon, or:

N
J = [Ttarget - ‘rk:(uk)]z + uia (1)
k=1
and
uj.y = argmin J(uy.n), (2)
ui:nN

where NNV is horizon length, k is the current time step in the
N horizon, Y4rge: is the desired state, Y (ug) is the state
at time k£ from input uy, and uj,, is the optimized control
input that minimizes the cost, J. The ui term in (1) acts to
minimize energy usage where possible.

The control action is then optimized by evaluating the
Jacobian, which is the derivative of the cost with respect to
the control action. The Jacobian is minimized as the optimal
control action is approached. At each optimization step, a
new set of control actions is generated by perturbing the
previous set according to the Jacobian. The new control
action effects are then estimated along the horizon. This is
repeated until a set of control actions that minimizes the cost
function is calculated as in (2). This gradient descent method
of cost evaluation and optimization is similar to that used by
Medagoda et al. in [16].

IV. WAVE MECHANICS

According to Linear Wave Theory (LWT), a wave field in
a random sea is composed of a superposition of sinusoids.
Once decomposed, each sinusoid can then be analyzed as
a single monochromatic wave with unique period (7°), am-
plitude (a), and phase offset (¢) [1], [2]. For reference, this



paper instead uses the term waveheight (H), which is simply
twice the amplitude (H = 2a). LWT assumes fluid flow
is irrotational, incompressible, and inviscid, thus allowing
for potential flow [23]. In practice, LWT is not only easily
implemented, but has also been shown to produce surpris-
ingly accurate results [2]. Thus, LWT is often employed for
a reliable primary analysis before other nonlinear theories,
and it forms the initial approximation for the wave forces
modelled in this paper.

Using LWT, a field of random sea waves, not unlike an
electrical signal, can be decomposed to its component fre-
quency spectra by way of a Discrete Fourier Transformation
(DFT) [24]. DFT solvers will output frequency parameters
with associated energies correlating to signal amplitude. The
phase information can then be extracted by taking the tan !
of the imaginary over the real part of each component. For
details on Fourier spectra of wave fields, see [25].

In this work, the input wave field is assumed to be
provided to the vehicle as an array of wave period, wave
height, and phase offset (7', H, ¢). Component wavelengths
(L), wave numbers (k), and frequencies (w) for each wave (\)
in the set of waves (A) are solved for by way of the dispersion
relation [2]. The superimposed wave field shown in Fig. 3 is
then constructed by the water surface wave equation shown:
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Beneath each component monochromatic wave, wave-
induced particle displacements occur in a cyclical fashion. In
deep water waves where depth is greater than approximately
half of the wavelength (d > L/2), these displacements
follow circular paths. As d decreases, the paths become
more elliptical until they are nearly horizontal in the surf
zone [2]. Associated particle velocities and accelerations
can be derived from these trajectories. As stated earlier,
the magnitude of these velocities and accelerations decay
exponentially through the water column such that they are
negligible (< 0.04%) at a depth, d ~ L/2 [2]. The per-
wave, at-depth solutions to these velocity and acceleration
equations are used as the primary inputs to the modeled

system dynamics.

V. SYSTEM DYNAMICS

For the scope of this paper, the term Remotely Operated
Vehicle (ROV) will be used to describe a tethered unmanned
vehicle whose operation may or may not be teleoperated
[26]. The ROV modeled for this work is the SeaBotix
vLBV300 shown in Fig. 2. In simulation, the ROV is not
teleoperated and performs control actions autonomously.

A. Vehicle Model

The SeaBotix vLBV300 ROV has six vectored thrusters
controlling motion along five degrees of freedom. For the
scope of this work, and to test the initial feasibilty of MPC in
ocean waves, only the surge and heave directions, or forward

Fig. 2. A SeaBotix vLBV300 ROV similar to the one modeled in this work.
Along with IMU and DVL sensors, the vehicle has six angled thrusters
which control it along five degrees of freedom: heave (vertical z), sway
(lateral y), surge (lateral x), roll (rotation around x), and yaw (rotation
around z). For this work, only the x and z axes are considered.

TABLE I
VEHICLE PARAMETERS USED IN SIMULATION

Parameter Symbol Value
Density of Seawater Psea 1030 k:g/m3
Incident Area, x Aix 0.156 m?2
Incident Area, z Az 0.273 m?2
Moment of Inertia, x Ipo 0.62 kg m?2
Moment of Inertia, z I.. 1.60 kg m?2
Dry Mass Mry 22.2 kg
Added Mass, x Madd,x 8.1 kg
Added Mass, z Madd,z 36.7 kg
Drag Coefficient, x Cd,z 0.84
Drag Coefficient, z Cd,z 1.06
Max Thruster Force Tmazx 29.7 N
Thruster Angle, Forward 0y 35°
Thruster Angle, Aft Oa 45°
Thruster Angle, Vertical 0y 20°

(global x) and vertical (global z) axes, are considered. See
Fig. 2 for reference.

The vehicle is assumed to be a rigid body, and irrotational
in the water flow. Since its size is well below the wavelength,
its drift motion is assumed to follow that of a particle.
Vehicle dimensions, mass parameters, and thruster forces
are provided in Table I. Moment of inertia and center of
gravity data was provided by a CAD model input to Das-
sault Systemes SolidWorks [27]. Added mass values were
provided by the same model input to Ansys AQWA [28].
Drag coefficient data was provided by the manufacturer. The
differential equation defining ROV motion is:

M‘.’a = Fthrust + Fd + Fg + FC7 (4)

where M is a mass term containing the dry and added
masses, Mqry and Mmgqq, v, 1s the absolute velocity of the



vehicle with respect to the inertial reference frame, F is the
drag force from the water, F, is the force of gravity, F. is
the Coriolis force, and Fi,s¢ is the ROV thruster force.
By assuming that the Coriolis force is negligible and that
the vehicle is neutrally buoyant, the F. and F, terms are
neglected. Decomposing the M term and substituting inertia
and drag relations, (4) becomes:

. . 1
MdryVa + MaddVr = Finrust + ipseaAicd|Vr|Vra (5

where v,. is the of the vehicle relative to the water, which
acts on the added mass term of M in (4). Substituting heave,
surge, and particle velocity components, (5) becomes:

Mdry + Madd,x X _ Fthrust,x + Madd,x vp,x
Mdry + Madd,z vA Fthrust,z Madd,= Vp,z
Psea | AixCax| 1% = Vpx|(X = vpx)

2 |AizCaz| [12=Vpal(Z—vpa) |’

where v, is the particle velocity at a time and position
beneath a monochromatic wave. For added reference, v, =
Ve + vy, and Vo x =X, Vo, = Z.

(6)
+

B. State Space Form

The differential equations are now rewritten in state space
form solvable by the simulator. This takes the form:

T:[x X z z} = Ax+ Bu+ D, @)
where
01 0 0f [x
Ax_ [0 0 0 0] [x )
|0 0 0 1f |z’
0 0 0 Of |z
Uy
0 0 0 0 0 0 Usg
__ Tnaz |cosOp cosy —cosf, —cosbly 0 0 Uug
Bu = Mary | 0 0 0 0 0 0 ug |’ ©)
0 0 0 0 —cost, —cosb,| |us
Ug
and
0
Vp.x PsealixCax 1o .
D = | Mary 2(Mary+Mmadd,x) ‘X VP,X|(X Vp,x) (10)
0 .
\"p,z pseaA'i,xCd,z s s
Mdry 2(Mary+madd,z) |Z vp7z|(z Vpﬁz)

The u vector in (9) refers to motor inputs of each of the
vehicle’s six vectored thrusters: u; and wuy are the forward
thrusters, ug and u, are the aft thrusters, and us and ug are
the vertical thrusters.

VI. SIMULATOR SETUP

The ROV was simulated along a 240s long time vector
with 0.2s discretizations. All robot thruster actuations and
wave disturbances occur along the global x and z axes.
Each motor input simulated by the Bu matrix in (9) is
a thresholded value between [-1,1], which correlates to a
percentage of maximum possible thrust. All forward-looking
state estimations and robot movements use the MATLAB
function ODE45 which uses a variable step Runge-Kutta
Method to numerically solve the system differential equa-
tions [29].

TABLE II
WAVE FIELD PARAMETERS USED IN SIMULATION

Component Wave | 1 2 3 4 5 6 7 8
Wave Period, s 10 8 12 11 6 7 9 25
Wave Height, m 1.8109| 16 |13 ] 04 |05 1.1 | 0.7
Phase, radians -z 5z | 4m ul
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Fig. 3. A time series of the wave profile over the 240s simulated time
window constructed using the parameters listed in Table II.

A. Wave Field Model

The bathymetry and wave climate selected for analysis is
similar to that of the National Northwest Marine Renewable
Energy Center (NNMREC) North Energy Test Site (NETS)
in the coastal Pacific Ocean two nautical miles out of
Newport, Oregon [12]. The operational depth at NETS is
approximately 50 m. The wave field used in this work was
qualitatively verified using AWAC acoustic measurement
data deployed at NETS in August 2013. Each 40 min time
series was recorded at 2 Hz.

The wave field used by the simulator is the set of eight
different periods, heights, and phases (7', H, ¢) detailed in
Table II. By assuming LWT and using superposition, a
reconstructed time series using (3) is shown in Fig. 3.
Because of the 2-dimensional analysis along only surge and
heave motions, wave angles are set to 0.

Prior to any forward state estimation or any simulated
vehicle motion, the wave action, or particle accelerations
and velocities, are calculated for the robot’s current position
in time and space. These accelerations and velocities are
calculated for each wave and summed by superposition in
the function GETPARTICLES shown in Algorithm 1.

B. Algorithm Layout

The MPC algorithm shown in Algorithm 1 requires four
inputs. The first, ¢, is a time object containing the overall time
vector and horizon and discretization parameters. The second
input, A, is an object containing all relevant wave spectra
data. The third input is the robot object, which contains the
vehicle dynamics, states, and error history. The last input,
Yiarget, is the target state.

Once all inputs are passed through, MPC runs by first
generating the initial sea state at LOADSEASTATE from the
wave spectra data in A. Then, and until some cessation cri-
teria, GETFORECAST generates the optimized motor inputs
for each thruster while MOVEROBOT passes those inputs and
moves the robot one step forward along that control vector.

In GETFORECAST, the function INITIALIZEINPUT gener-
ates initial cost, control, and state vectors, or J;, u;, and
Y; respectively. The initial control vector, u;, is a set of
PD control actions along the N horizon. This initial control



Algorithm 1 MPC for ocean wave station keeping
where ¢ is a time vector, A is an object containing all relevant
wave spectra data, and Y represents states in time and space.

1: procedure M PC( t, A, robot, Tigrger )

2: n<+1

3: 1 <— LOADSEASTATE( t, A, TVinitial )

4: while n < simulatorOff do

5: input <— GETFORECAST(t, robot, A, Yigrget, 1)
6: robot <~ MOVEROBOT( ¢, robot, A, input, n )
7: n+<n+1

8: function GETFORECAST( ¢, robot, A, Tyqrget, count )
9: 141

10: N « t.Horizon / t.Discretization

11: Ji, u;, Y; < INITIALIZEINPUT( robot )

12: 0 < INITIALIZEDELTA( )

13: while ¢ < maxIterations and § > exitCriteria do
14: Uil < U — 1)

15: for k € [1,2,...,N] do

16: Vp, Vp <= GETPARTICLES( ¢, Y;(k), A)
17: Ae=vp, v,

18: Yi+1(k) + GETSTATE(Z, robot, A, u,11(k))
19: Jit1(k) <= GETCOST( Yigrget, Yit1(k) )
20: 0 <— GETJACOBIAN( J;, Jiy1, Ui, U1 )

21: U; < Ujt1

22: Ji Ji+1

23: T, « Ti+1

24: 14— 1+1

25: return v,

vector serves as a first guess to the estimator to reduce
optimization iterations, producing an added benefit of using
PD control actions in smaller wave states (n), where net
displacement is neglible. INITIALIZEDELTA creates a value,
d, to perturb u; and generates a new input, u;y;, which
is then evaluated. First, the wave forces along the input
trajectory, v, and v, are calculated through GETPARTICLES.
Next, v, Vv,, and the control vector, u;4; are passed in
to GETSTATE which estimates the resulting predicted state,
Y;y1. Lastly, Y,,; is evaluated with respect to the target
state, Yiqrger in GETCOST by way of the cost function (1).

After the cost, J;;;, is evaluated over the entire N
horizon, the function GETJACOBIAN evaluates the Jacobian,
or J/0u, and returns a new ¢ value. This value translates
the rate at which cost changes with respect to a change in
control inputs, and a J value growing smaller implies that
a control vector is nearing a local minimum. At the end of
each evaluation, if § does not meet some exitCriteria, a
new input vector is generated and the process is repeated.
If it does; however, the optimized control vector, u;41, is
returned and the robot moves forward along that trajectory.

VII. RESULTS

One challenge when implementing MPC is determining
a preferred prediction horizon. Section VII-A details how
the horizon that balances solution accuracy with computation

time is selected for this work. Section VII-B evaluates the
controller with the chosen prediction horizon against a PD
controller comparable to those employed in similar robotic
tasks in the same wave climate. Finally, in Section VII-
C, sensor observation noise is inserted to the MPC and
is compared with the deterministic PD controller. For all
simulations, the robot was to maintain a depth of z = —15m
below the surface, or Yyqrger = [0, —15]. The simulator is
designed to simulate wave forces at any depth; however,
simulations were not run at varied depths as the scaled results
offered little additional insight. The ezitCriteria for an
optimized trajectory used in Algorithm 1 was set to 5 mm.

A. Determination of Prediction Horizon

A desirable prediction horizon for MPC should reasonably
balance computation time against position error. This is a
discretionary characteristic as certain implementations may
have stricter tolerances than others. In this work, simulations
were run with a horizon ranging from 0.2 s to 3.0s. Table III
shows total RMS errors and computation times per horizon.

TABLE III
PERFORMANCE OF VARIOUS SIMULATED HORIZONS
Horizon, s 0.2 0.4 0.8 1.0 1.6 2.0 3.0
€Erms,m | 5.02 | 211 | 0.79 | 0.65 | 0.29 | 0.05 9.0E-6
tcatc/step | 138 | 0.42 | 0.08 | 0.19 | 6.51 | 18.24 84.38

Based on the information in Table III, two potential
choices for prediction horizon are 0.8 and 1.0 s. Both of these
offer low RMS error at reasonable computation times. For
the results presented in this work, the chosen horizon time
was 0.8 s as it yielded only a 6 cm difference in error for less
than half the total computation time.

With regards to the 1.0s horizon, it is worth noting that
the 240s long time vector used in simulation is just longer
than the 233.2s run time needed. This presents challenges
when considering real-time implementation of this method.
One solution is to recalculate the next optimized trajectory
not at each 0.2s time step, but one or multiple steps later.
In practice, the robot would use the first two or three inputs
from the optimized control vector instead of just the first,
while simultaneously calculating the next trajectory. This
would lead to fewer calculations but may increase overall
error due to sensor drift.

Another result worth noting is the long run times from the
shorter horizon controllers (0.2 and 0.4 s). They showed poor
performance, resulting in significantly larger tracking error
and requiring several times more calculation time than the
chosen horizon of 0.8s. This is likely due to an induced
"myopia" where: 1) the robot does not properly account
for its own inertia and 2) the robot does not take proper
advantage of changes in flow direction.

As expected, the longer horizons yield reduced errors at
the expense of computation time. None of the later three
time horizons (1.6, 2.0, and 3.0s) were considered because
of unreasonable time costs. An obvious avenue for future
work is to implement faster optimization and programming
techniques to further increase the robot horizon.
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Fig. 4. Position error time series in global x and z coordinates when comparing a traditional feedback controller with a model predictive controller. As
shown, MPC returns error values 74% lower than PD Control. RMS error values for these results are shown in Fig 5.

B. MPC Performance

Another set of simulations was run where a robot employ-
ing an 0.8 s horizon MPC was compared against one using
a feedback (PD) controller, which was originally structured
as a PID. The integral term was dropped, though, as it did
not contribute to performance in the submerged environment.
Both MPC and PD controllers were tested against the same
wave field. Additionally, a free-floating, non-actuated robot
disturbed by the same waves was simulated and compared
for reference. Figure 4 details the positional errors for the
PD and MPC controllers over the length of simulated time
and Fig. 5 shows the RMS error for each case.

As shown in Fig. 4, MPC gives a 74% reduction in
position error over PD control. This substantial reduction
is attained because the robot state estimator minimizes cost
by using thrusters in an anticipatory action. In practice,
the robot would thrust "against" the wave to reduce net
displacement. Without any forward-looking state estimation,
the PD controller can only choose a direct trajectory towards
the desired state that is always deviated by the wave action.

In Fig. 4, the wave field time series is provided to show
the correlation between wave height, H, which is directly
proportional with wave forces in the water column [2], and
position error below the waves. Both the MPC and PD
controllers record little error as [ approaches zero, which is
expected. As H increases; however, the PD errors increase
at a larger rate than the increase in MPC errors. This again

RMS Error Compared
T

(2]
=
o
10°
Drifting Robot PD Robot MPC Robot
. Ervs = 48.434 m Ervs = 3.096 M €rus =0.789 m
10°
Fig. 5. RMS errors for the three cases in Section VII-B. The MPC robot

showed a 74 % reduction in error compared to another using PD control.

results from the state estimator’s ability to predict changes
in flow direction and the impending effects of those changes
on the robot’s inertia.

Figure 6 shows a time series of thruster inputs in percent-
ages of maximum thrust. As expected, the controller issues
less thrust when the wave action is reduced. This is a result
of the added input term to the cost function minimized in
(1). One concern about the inputs shown is that there are
frequent changes in direction. This can lead to unrealistic
results as thruster actuation time was not considered in this
work. A more accurate model of thruster dynamics as well as
an updated cost function to penalize large changes in thruster
input are both avenues for future work.
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Fig. 6. MPC thruster inputs in global x and z coordinates over the
simulated time series. The controller does not issue commands that saturate
the thrusters for prolonged periods; however, it is prone to frequent direction
changes.

C. Sensor Noise Impact

Simulations were also carried out to compare optimized
trajectories to the effects of simulated sensor observation
noise. For this set, Gaussian noise is injected to the vehicle’s
perceived value of particle velocities and accelerations, v,
and v,. The wave field parameters were selected instead of
other forms of localization noise because the vehicle Inertial
Measurement Unit (IMU) has lower resolution than the
Doppler Velocity Log (DVL), thus it is more likely that the
IMU would give inaccurate observations on the pressure field
above it (the wave action) than the DVL with bottom lock
would on vehicle localization. By extension, this assumption
allows for the PD control data from Section VII-B to serve
as a deterministic basis of comparison.

The additive, independent, and identically-distributed
Gaussian noise is provided by the MATLAB function AWGN.
This function injects noise to the desired signal according
to a Signal-to-Noise Ratio (SNR) which is related to the
noise variance. For this simulation, the wave height, H, was
assigned the highest variance to account for the moderately
noisy heave data provided by the deployed buoy sensors
[24]. Noise with a smaller variance is injected into the wave
period, 7', and phase terms, ¢, to account for error in Fourier
coefficients and their resulting phase transformations.

TABLE IV
PERFORMANCE OF MPC WITH NOISY WAVE OBSERVATIONS

Scenario €ERMS, M
Model Predictive Control 0.789
Mean MPC with Gaussian noise 1.737
Feedback (PD) Control 3.096
Drifting Robot 48.434

50 simulations of the MPC Algorithm 1 were run where
at each n'” step, the function GETFORECAST was run with a
noisy estimation of the wave field. This outputs a trajectory
whose first element is then carried out in the MOVEROBOT

function. The process is repeated with a new noisy wave
field estimation. Table IV shows the RMS errors for MPC
with noise against PD, MPC, and drift values. The MPC with
noise shows a mean error of 1.737 m with standard deviation
of 0.059 and gives a 43.9% reduction in position error over
feedback control.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a Model Predictive Control (MPC)
approach to reducing underwater robot position error under
the influence of shallow water under waves. Our method em-
ployed a Linear Wave Theory (LWT) solver to approximate
the component fluid dynamics under a wave field. These fluid
flow velocities and accelerations are input to a model state
estimator which predicts robot state along a finite horizon.
A set of control actions which minimizes a cost function is
generated and optimized via gradient descent.

Results show that the most effective prediction horizon is
4 steps, or 0.8 s forward. This horizon reasonably balanced
solution accuracy and computation time. Simulations show
that a station-keeping robot disturbed by the same wave field
can use our proposed MPC method to reduce its error by 74%
over traditional PD control. Additional simulations were run
where the MPC takes in noisy measurements of the wave
field parameters. The algorithm was found to be resistant to
sensor noise, showing a mean position error 44% lower than
the deterministic feedback control case.

For future work, the dynamics of the system could be
expanded to incorporate all five vehicle degrees of freedom.
With this extension, the wave field would better model a 3-
dimensional random sea. Second, the vehicle model could
be expanded to include effects from Response Amplitude
Operators (RAO). RAOs are frequency-domain solutions for
a vehicle response to a defined wave field along all reference
axes. Hydrodynamic LWT solvers such as Ansys AQWA are
potential tools for incorporating RAOs for a given vehicle
model. Also, simplifications were made in this work to help
the robot predict the wave field. Sensor detection for spectral
data as well as their decomposition methods are two areas
of interest when implementing this method. In addition,
analyses on system dependence on wavenumber should be
worked out using sets of monochromatic waves. This is
important so see if there are any specific harmonics which
make the system unstable or uncontrollable. Lastly, other
optimization techniques than gradient descent should be
explored while more efficient programming techniques could
be incorporated prior to field trials. This simulation was built
in MATLAB to test the algorithm’s feasibility and could
be rewritten in Python or C++ to improve computational
efficiency.
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