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Abstract— In this paper, we propose the Contrastive, Feature-
based eXplainability (CoFeX) method for explaining robotic
decisions that provides: (1) contrasting examples, which illus-
trate the decision in terms of an alternative example, (2) post-
hoc explanations that are generated after the decision making
algorithm is run, which allows a wide range of decision making
algorithms to be used, and (3) a feature-importance method
that produces explanations that provide more detail than just
trade-offs between objectives. Explainability of robotic actions
is important for users to understand, trust, and manage robotic
systems. While there are a few existing robotic explainability
methods, they are either noncontrastive, rely on simple models
that limit the complexity of the decision making algorithms, or
use high-level trade-offs for the causal reasons which do not
provide detailed explanations. To allow our explanation method
to work with a wide range of decision making algorithms, we
use a shared language of semantic features for communication
between humans and robots. We then select the best causal
reason that sets the decision making algorithm’s chosen example
apart from other considered examples. Finally, we select a
contrasting example that best illustrates the causal reason.

I. INTRODUCTION

In-situ data collection is important for scientific sampling
applications that are time-consuming, dangerous, or hard to
access. While there are different algorithms that can help
scientists optimize robot paths [1–7], there is a gap between
the state-of-the-art and state-of-practice in decision making
algorithms. One reason these algorithms may not be used
in practice is because users prefer using systems that act in
an expected manner they can trust [8]. We propose using
explanations to describe the robot’s actions. State-of-the-
art eXplainable Artificial Intelligence (XAI) focuses on pro-
viding explanations that provide additional information and
transparency about the structure and function of the decision-
maker [9–11], while research from the social sciences sug-
gests a more effective way to provide an explanation is
through a contrastive example [12]. Our goal is to help users
understand the robot’s decisions.

While several explainability methods for robotics have
appeared in the literature, they either:

• Use noncontrastive explanations [13,14], i.e., explana-
tions that directly try to explain a decision without
relating it to an alternative example.

• Rely on interpretable models, such as behavior trees
[14,15], that limit the decision making algorithm to
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Fig. 1: A contrastive explanation which shows the causal reason selected by
CoFeX, highlighted in orange, and the illustrative contrasting path (blue).
The causal reason is selected from a set of semantic features that best shows
what differentiates the selected path apart from other considered paths. The
contrasting path is then selected to best illustrate the chosen causal reason.

simple models that a human can understand throughout.
• Provide the explanations in terms of trade-offs between

high-level objectives [16–18], or only show contrastive
examples, which do not provide as detailed causal
reasons that CoFeX enables [19,20].

Using insights from the social sciences, we propose the
CoFeX method, which removes these prior limitations. We
use contrastive explanations to illustrate causal reasons, i.e.,
‘Why A instead of B’ rather than ‘Why A’. We select
contrasting explanations because previous social science re-
search has shown they are easier for humans to understand
[12]. We also choose post-hoc explanations, ones where
the explanations are generated after the decision making
algorithm has made a selection, to allow complex decision
making algorithms to be used. In this work, we define a set
of semantic features in the environment as the ‘words’ in our
shared communication between the human and robot. Finally,
we provide a method to select a single most important causal
reason to show to the user which is informed by previous
feature-importance methods [21]. This aligns with research
that shows humans typically accept a single best cause that
differentiates the event from other events, instead of many
causes in the full causal attribution [12].

We present three novel main contributions in this paper:



1) A post-hoc (explanations are generated after the deci-
sion making algorithm is run) explainability framework
for robotic decision making that is agnostic to the
particular algorithms being used.

2) A method to select the most likely casual reason for a
decision given the relative importance of features.

3) A method to select a contrastive example that best
illustrates the causal reason for the decision.

We show preliminary validation of our method by running
a user study, N = 50, that shows we improve the user’s
understandability of the robot decision making on a scientific
data collection task.

II. PROBLEM DEFINITION

The problem we seek to address is providing explanations
for robotic decision making algorithms that are both highly
informative to a human user and not reliant on the inter-
pretability of the internal decision making representation.
We define a Contrastive Explanation as an explanation that
illustrates the causal reasons as explaining A instead of B,
rather than just A [12]. Post-hoc explanations are defined
as being generated after the decision making process. Post-
hoc explanations contrast with Interpretable Models that can
be inspected at every point. Interpretable Models [22] are
decision making processes that are understandable to humans
at all layers of their computation, but require specialized and
simplified decision-making models, such as Behavior Trees
[14]. Feature-based Explanations are ones where features are
used to describe the causal reason for the decisions. These
methods use local reasons that describe the causal justifica-
tion in terms of features rather than high-level objectives.

Using Miller’s [12] recommendations, explanations should
be given in the form of counterfactual cases. Consequently,
we use contrastive examples from alternative paths the
decision-making algorithm considered, p ∈ Pconsidered, as
the mechanism for explanation. Explanations also need a
causal reason. We define these causal reasons as a set of
semantic features, f ∈ F . We employ these semantic features
as the shared language between the robot and user. For
example, in the problem domain tested in the user study, we
utilize the information collected in regions of interest as the
semantic features. Miller [12] notes that humans typically
prefer only the single most informative cause, rather than
the full list of causes for an explanation. Thus, we simplify
our definition of explanations to the combination of a single
cause and single illustrative contrastive example,

e = (f, p) ∈ E = (F × Pconsidered). (1)

Since we are using a post-hoc method, the explanations
are generated after the decision making process has selected
its optimal decision p∗ ∈ Pconsidered. To find the most
informative cause, fe, we utilize the idea of selecting for
anomalies that differentiate p∗ from the rest of considered
possibilities Pconsidered [12]. In order to calculate differences
in the features, we require some measure of the relative
importance of features. We define the importance as φp,f , for

each example p ∈ Pconsidered, and for each semantic feature,
f ∈ F . Next, we define the anomalous feature as the feature
importance value with the largest possible value difference
from the median importance of features:

fe = argmax
f∈F

(
φp∗,f −median

p
φp,f

)
. (2)

Now, we define the contrasting example as the one that
best illustrates the cause. We define this illustrative example
as the one most similar to p∗ in the feature importance value
feature space, while being as different as possible in the
selected feature,

pe = argmax
p∈Pconsidered

(φp∗,fe − φp,fe)− similarity(p∗, p). (3)

Once the causal feature and illustrative paths are found,
they are combined to form ep∗ = (fe, pe), our mathematical
formulation for an explanation of the optimal decision p∗.

III. METHODOLOGY

We break our CoFeX framework into a set of discrete
steps, as shown in Figure 2. First, a small set of examples
considered by the decision making algorithm are selected,
Pconsidered. While our method works for any arbitrary decision
making algorithm, we assume the algorithm can output mul-
tiple alternative examples. Next, we extract semantic features
from every example in Pconsidered. Then, we learn a random
forest of regression trees using the semantic features as input
with the utility score of the example as the output. The trees
are fed into the TreeExplainer algorithm [21] to extract the
relative contribution of each feature using the Shapley values
[23]. Next, we select fe as the semantic feature for the causal
explanation using Eq. 2. After fe is selected, we pick pe as
the example that best illustrates the chosen causal feature
as defined in Eq. 3. Finally, text and visual explanations
are generated using templates of explanations given the type
of feature selected. We use regions of interest as shown in
Figure 1 as the main semantic features in our examples.

A. Shapley Values from TreeExplainer

The decision making algorithm generates a set of al-
ternative examples, Pconsidered, and has semantic features
extracted for all of the examples. We want to find the relative
importance of each semantic feature to the utility score of the
example. Shapley values are utilized, which are the average
relative marginal contribution of the feature to the resulting
utility, as a measure for this relative importance. However,
calculating the Shapley values directly by enumeration of
coalitions is infeasible for most domains. Instead, we approx-
imate the Shapley values using the TreeExplainer algorithm
developed in Lundberg et al. [21].

Before the TreeExplainer algorithm can be used, a decision
tree or ensemble of decision trees must be constructed. Let
each example p ∈ Pconsidered have a utility v(p). We then
construct a regression decision tree that takes the semantic
features of the paths as input and outputs v(p) for each path
p ∈ Pconsidered. This method allows explanations to cover a
wide variety of semantic feature types, such as real-valued,



Fig. 2: Block diagram overview of our CoFeX method. After the decision making algorithm generates a set of examples to consider, we extract semantic
features as our shared language between human and robot. Next, we generate a model tree of the decision making process and use the TreeExplainer
algorithm to find approximate Shapley values of all paths and features. We then determine the semantic feature that best describes the causal reason the
selected example was chosen for. Finally, we find a contrastive example that best illustrates the causal feature and generate the templated text explanations.

integer, and categorical features. Once the decision tree has
been learned, we pass it to the TreeExplainer algorithm.

B. Explanation Feature and Constrastive Example Selection

Once the Shapley values for all examples p ∈ Pconsidered,
and all features f ∈ F has been found by the TreeExplainer
algorithm, we want to find the best feature to use as the
causal in the explanation. We directly solve Eq. 2 by iterating
through all features to find the one that maximizes the
equation. We use the found feature fe as the causal reason
in the explanation and pass it to the contrastive example
selection. One causal reason, fe, is shown as the region of
interest (ROI) in Figure 1.

To select the contrastive example that illustrates the causal
reason, we solve Eq. 3 by maximizing the difference in
importance of the given feature fe while minimizing the
overall difference between the optimal decision p∗ and the
illustrative example pe. We define the similarity between
the two paths as the L2-norm in the feature space between
the two examples. We normalize the similarity and feature
space and directly solve Eq. 3 by iteration. An example of
a selected illustrated path is the contrastive path shown in
Figure 1.

C. Textual Explanation

Finally, once the full mathematical explanation ep∗ =
(fe, pe) has been found, we generate a text version of the
explanation. We use a set of templates to generate the textual
explanation, such as “We prefer the {better} path because it
{reason}.”, where the reason can be templated for different
types of semantic features. In the case of the ROI features
used in the user study one reason template is “observed more
fish in the {feature}.” We combine these text explanations
with visual explanations of the selected semantic feature
and illustrative path. This combination of visual and textual
explanation of the selected causal feature and example are
used as the full explanation to show to the user as seen in
Figure 1.

IV. STUDY DESIGN

The goal of the user study is to show how using CoFeX
affects the the user’s understanding and confidence in their
understanding of a robot planner’s decisions. We want their
confidence to be proportional to their actual understanding
of the planner’s decisions. This leads us to propose the
following hypotheses:

• H1: CoFeX’s explanations improve user’s understand-
ing of the robot planner’s decisions.

• H2: CoFeX’s explanations improve confidence of the
user’s understanding of the robot planner’s decisions.

We also hypothesized that the contrastive example indi-
rectly encapsulated most of the information gained from the
textual explanation and feature. This led us to propose our
final hypothesis:

• H3: Contrastive explanations without features or text
yield similar results to CoFeX.

A. Problem Domain

We task the participants with selecting which of two
informative path planning [24] paths with the same starting
point is expected to observe more fish. The planner optimizes
the path over real-world maps of approximate fish density
in the Mid-Atlantic Coast [25]. We show the participants
the two informative paths and the fish density map as
well as any additional information provided by the method
being tested. This task allows us to use a direct quantitative
measures about user-understanding rather than qualitative or
self-reported results.

B. Semantic Features

Once paths have been generated for the user study, we
need a set of semantic features that are used as the shared
language between the robot and the human user. In our study
domain we used the information collected in ROIs and two
path-based metrics as our semantic features.

The ROI semantic features are turned into a single number
representing the expected number of fish observed in each
ROI for each path. We use two types of ROIs, the first
being a systematically generated grid over the environment.
The second type of ROI is automatically generated hotspots,
using the method described in [26]. We use two path metrics
as semantic features in our study. The first metric keeps a
count of the number of times a path crosses itself. The second
metric is the general path exploration measured by taking the
path integral of the distance the path is from itself.

C. Study Measures

For the study, we asked the participants to select which of
two paths they think will observe more fish and to rate their
confidence in their decision. This leads to the following study
measures of accuracy, confidence, and reliable confidence.



Fig. 3: From top-left to bottom-right: accuracy of the participant selecting the correct path, average confidence of participants decisions, average reliable
confidence of participants, and average time participants took to answer the prompt. Our CoFeX method outperforms the baseline Placebo and No-
Explanations for both accuracy and reliable confidence. In the confidence case, our CoFeX method performs only slightly better than the No-Explanations
or No-Feature methods. In the time to answer the prompt case, both methods with text explanations (CoFeX, Placebo) take longer than the non-text versions
(No-Explanations, CoFeX with No-Features). Additionally, the Placebo that provides poor information takes participants significantly longer to understand.

1) Accuracy (M1): Since the robot planner knows which
of the two paths is expected to collect more fish, we use the
participants’ accuracy in selecting the higher-valued path as
a direct quantitative measure.

2) Confidence (M2): Next, we use the average confidence
of participants’ decisions as a self-reported measure of their
own confidence in their understanding of the robot planner
given the information provided to them. We use a 5-point
Likert scale to measure the confidence.

3) Reliable Confidence (M3): However, pure confidence
does not account for appropriate trust [8,27]. A user may
trust even when they do not know the correct solution. To
account for appropriate trust, we use the reliable confidence
measure proposed by [17]. This measure takes the confidence
score and maps it to [0, 4], if the participant has selected the
correct path, we multiply the confidence by +1, otherwise we
multiple it by −1. This maps the reliable confidence between
[−4, 4]. We then take the average of these scores across the
five examples shown for each study section.

4) Average Time To Answer (M4): Finally, we measured
the average time it took participants to respond about which
path they thought was better.

D. Comparison Methods

For our comparison methods, we chose a No-Explanation
method, a Placebo method, and a No-Feature contrastive
explanation method. No-explanations and Placebo are used
as baselines, and the No-Features method is used to provide
insights into whether features are useful to the explanations.

1) Explanations (CoFeX): The first method we examine
in our study is our proposed CoFeX method described in
Section III. We show two paths: the first is the best path, p∗,
and the second path shown is the contrasting example pe,
with the order of the paths randomized. In order to make the
problem non-trivial for the participant to solve, explanations
are shown for both paths.

2) No-Explanations: We use No-Explanations as the first
baseline to compare against. The comparison selects and
shows two paths to the users, p∗ and pr, in a random
order. The first one shown is the best path p∗. The second
path is randomly selected from pr ∈ Pconsidered such that
v(pr) ≤ v(pe), where pe is the contrast selected by CoFeX.

3) Placebo: In the Placebo case, we once again show the
best path in Pconsidered, p∗, and the randomly selected path,
pr described above. However, in this case we select semantic
features to explain both p∗ and pr. These two semantic
features are uniformly randomly selected from F .

4) No-Features Contrastive Explanation Without Text: We
hypothesized that the contrasting path contained all of the
relevant information without needing to directly show the
feature or text, H3. To test this, we added a comparison
method that performs all of the same steps discussed in
Section III. However, this method does not show the selected
feature fe to the user or the related explanation text and only
shows the paths p∗ and pe.

V. RESULTS

We show preliminary results for N = 50 convenience
participants. These results for each of the study measures
are shown in Figure 3 with mean and standard error of the
mean shown. Since these are preliminary results, we do not
perform statistical tests. The Accuracy (M1) results show
that H1: Explanations improve user-understanding, is likely
supported since our proposed method performs better than
either the Placebo or No-explanations method. While the
Confidence (M2) scores are inconclusive, Reliable Confi-
dence (M3) is better for explanations than both the Placebo
and No-explanations methods. This implies H2: CoFeX’s ex-
planations improve confidence of the user’s understanding of
the robot planner’s decisions (M2, M3), is trending towards
being only true for confidence that is weighted by if the
user is correct, but does not raise overall confidence in their
decision whether a path is better or not. For H3: contrastive
explanations without features or text yield similar results to
CoFeX, is not supported as CoFeX No-Features had fairly
different performance than the full CoFeX method in all
of the metrics. Finally, participants took longer to respond
when given explanations versus without. This implies a
higher cognitive load on users when given explanations than
without. This could be a positive by allowing users to more
actively consider the decision making process which could
account for better performance in M1 and M3. Conversely,
the additional load could also be an annoyance. Future work
could analyze the cognitive load and consider when full
explanations are required versus just showing the decision.
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