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I. INTRODUCTION

Robots performing delivery tasks use cost-based planning
in order to move from a starting point to a destination point.
This can ensure obstacle-free and distance-optimal trajec-
tories for individual robots. However, when many robots
share the same space, their shortest routes may overlap,
causing traffic. This is particularly relevant when managing
unmanned aerial vehicles (UAV) in the airspace, where
low-level conflict-avoidance maneuvers can cause potentially
hazardous situations when the density of traffic becomes too
high.

We propose a multiagent approach to traffic management,
such that agents manipulate the sector-level cost space of
UAVs traveling through an obstacle-filled environment. Re-
sults from testing on a simulated urban environment show
that given only local UAV information, the team of sector
agents was able to learn appropriate costing strategies to
reduce the number of conflicts experienced in the entire
airspace. Comparison to a uniform costing strategy showed
on average a 16.4% reduction of conflicts in the airspace
after 100 learning epochs.

II. RELATED WORK

There are two primary ways of handling congestion in
an airspace: conflict-avoidance and air traffic management.
The task of conflict-avoidance includes how to avoid the
trajectory of another aircraft in the system. This is essential to
the safe operation of UAVs in the airspace. However, there
are limits to the efficacy of conflict-avoidance techniques,
and situations may arise where there are too many UAVs
traveling through a particular corridor to effectively decon-
flict. Because of this risk, effective traffic control must exist
at a higher level to manage the densities of UAVs across the
airspace.

Previous research has explored congestion as a centralized
controller scheduling and routing problem. A comprehensive
survey of centralized scheduling methods for automated
vehicles is given in [1]. Using centralized methods, every
robot in the system is told when it can travel and where it can
travel. In order to compute a solution, these methods require
full state information and are often slow and computationally
complex. Dynamic routing methods [2], [3] manage the time-
window of each robot through time-expanded graphs without
needing full state information [4]. However these methods
become computationally expensive when applied to a fast-
changing system.
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into discrete sectors with a single UAV traffic management (UTM) agent
controlling the cost of travel through each sector. UAVs traveling from start
(triangle) to goal (circle) locations plan and execute paths to reduce their
individual travel cost without explicitly coordinating with other UAVs in
the airspace.

Congestion in the national airspace has been approached
as a multiagent system. Using reinforcement learning agents
to manage air traffic through geographical fixes, Agogino
and Tumer [5] were able to reduce airspace congestion by
over 90% when compared to current traffic control methods.
In the current paper, we apply a similar network of routing
agents to control the flow of UAV traffic. However, we
consider the UAV Traffic Management (UTM) domain where
platforms are not restricted to fly through particular fixes in
the environment. Furthermore, our routing algorithm is based
on the assumption that we have no direct control over the
path planning aspect of the UAVs.

III. PROBLEM SETUP

We consider traffic management for UAVs performing
delivery tasks in an urban airspace. The airspace is divided
into 15 Voronoi partitions, as shown on Fig. 1, centered
at hand-selected areas where UAV path intersections are
expected. 20 locations, which we refer to as fixes, are
randomly generated across this space, and serve as sources
and destinations of UAV traffic. UAV traffic is generated
randomly each timestep with a probability pge, = 5%. A
conflict arises in the airspace when two UAVs are within a
distance deon f1ict = 2 pixels of one another.

There are 3 levels of control across the airspace:

Sector cost agents: These agents control the cost map at
the sector level. These are neural networks that are coe-
volved using a cooperative coevolutionary algorithm, using
a summation of conflicts in the whole airspace for the fitness
function. They take as an input the tuple {nx,ns,ng, nw},
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Fig. 2: Change in congestion observed over one run of evolution. The overlaid heat map shows the number of conflicts experienced in an area for (a) the
best evaluation trial for agents with random initialized sector travel costs and (b) the best evaluation trial for agents with evolved sector travel costs after
100 epochs. The overall number of conflict instances has reduced with some high congestion regions removed completely.
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Fig. 3: Comparison of conflicft occurrence over epochs using fixed costs
versus evolved costs.

which represents the number of UAVs traveling in each of
the cardinal directions. They then output a cost for travel in
each of the cardinal directions, {cn,cs, cg,cw }, which is
used by the sector-level planner.

Sector-level planner: Each UAV has a sector-level planner
that takes in sector cost information and plans across the
sector map. This defines the sector visitation order for the
UAV, and is used by the obstacle-level planner.

Obstacle-level planners: Each UAV also has an obstacle-
level planner that plans a trajectory across the obstacle map.
This is given as an 8-connected pixel image as shown in Fig.
1, where each pixel movement has unit cost. It is restricted
to follow the sector visitation order dictated by the high-
level planner, and plans obstacle-free trajectories across the
airspace.

The path planners tested in this work use A* to plan
across their respective cost maps. However, this multiagent
approach can accommodate any cost-based planner.

IV. RESULTS

We initially performed a set of simulations using uniform
fixed costs for travel between the sectors in order to compare
to a distance-optimal path solution for each UAV. Each set
of experiments contained 20 runs of 100 learning epochs.

Figure 2a shows the congestion observed in the first
learning epoch. Sector agents initially assign travel costs

randomly, so there are areas of high congestion that occur.
Figure 2b shows the performance at the end of evolution.
Comparing Fig. 2a and Fig. 2b we can see a definite
reduction in the number of conflict instances. Figure 3 also
shows this congestion reduction over the number of epochs
in the simulation.

The number of conflicts in the baseline comparison algo-
rithm remains high, with an overall average of 1023 conflicts.
Comparing to the fixed-cost method, we see an average of
856 conflicts at the end of learning, which represents a 16.4%
reduction in total conflicts after 100 epochs using evolution.

V. CONCLUSIONS AND FUTURE WORK

The results presented in this paper show that a distributed
UTM system can learn appropriate costs to apply to UAVs
traveling in the airspace to incentivize implicit cooperation
between the UAV planners. Using our method, we achieved
a 16.4% reduction in conflicts compared to the baseline
method with uniform sector costs. It is also worth noting here
that agents do not require a model of the available airspace
or knowledge of the obstacles in the sector. The number of
conflicts experienced in the sector was sufficient information
by which to evaluate the performance of the current policy.

The ability to manipulate high-level planners allows us to
reduce occurrences of potentially dangerous congestion in
the system. UAVs in the real world can handle encounters
with other UAVs using low-level collision avoidance proce-
dures, but by reducing the congestion in the airspace at a
high level, we can permit safer travel by avoiding many of
these conflicts before they occur.

As more companies become interested in sharing the
urban airspace, we must accommodate heterogeneity in the
airspace. Because of these differences in capabilities, algo-
rithms developed for air traffic management must accommo-
date heterogeneity when routing. The heterogeneity between
aircraft can affect the maximum safe congestion level in
a sector. We are currently exploring ways to incorporate
heterogeneous traffic flow into the evolution process outlined
in this paper.
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