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Thesis Defense for the Masters of Science in Robotics 
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UAVs	Successfully	Used	for	Many	Tasks	
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UAVs	Operate	in	Challenging	Environments	
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The	Challenges	
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The	Challenges	

●  Precision sensing ability, and/or robust 
planning algorithms 

 
●  Coordination between UAVs, other 

robots, and humans become 
increasingly important 

 

●  Planning in unknown or dynamic areas 
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Three	Main	Research	Areas	

Sensing     Coordinating   
 Planning 
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Outline	

Sensing     Coordinating   
 Planning 
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Related	Work	

Sensing     Coordinating   
 Planning 
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●  “An Unmanned Aircraft System for Automatic Forest Fire Monitoring and 
Measurement,” Merino, et al. 2012. 

 
●  “Planning periodic persistent monitoring trajectories for sensing robots in 

gaussian random fields,” Lan & Schwager, 2013. 



Sensing	

●  Sensing stationary targets is well studied 

●  Dynamic targets are tricky 

●  Used for environmental monitoring 

●  One of the most challenging monitoring problems is wildfires 

●  The uncertainty of where the fire will spread is challenging 
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Domain	

Wildfires 

●  Dangerous for human pilots to get close 

●  Aerial sensing provides critical information 

●  Highly dynamic points of interest 
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*Taken from weathernetwork.com 



Problem	Formulation	

●  Fireline intensity is crucial information 

●  Regions of high intensity are dangerous 

●  Identify regions as hotspots 

●  Minimize the max time that a hotspot is left unattended 
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Where ! is max time untracked. 



Simulation	Environment	

●  FARSITE generates fire characteristics 

●  UAVs limited to flying around fire 

●  UAVs have sensing radius 
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Simulation	Setup	

K-means clustering is run on a 
frontier filtered for the highest 
intensities. K is determined by 
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where N is number of 
points of interest. 



Algorithm:	Baseline	

●  Periodic monitoring 

●  Minimizes time untracked of all points 

along the frontier 

●  Assumes no knowledge of fire 
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Algorithm:	Clustered	Weighted-Greedy	

●  Hotspot priority determined by time 
left untracked and distance from the 
UAV.  
 

●  A weighting parameter (") is applied 
to the travel cost (C) of each hotspot 
(#) to combine with the time ($ ) 
metric. 
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Weighted-Greedy 

hotspots 



Simulation	Results	

●  Compare Baseline and Weighted-Greedy 

●  Three different hotspot thresholds used, (.25, .35, .45). 

●  Seven different fires 
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Where ! is max time untracked. 



Simulation	Results	
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J(t) = sum of the max time untracked of all hotspots 

Hotspot threshold = .25 



Simulation	Results	
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J(t) = sum of the max time untracked of all hotspots 

Hotspot threshold = .35 



Simulation	Results	
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J(t) = sum of the max time untracked of all hotspots 

Hotspot threshold = .45 



Hardware	Implementation	

●  FARSITE simulated fire 

●  Ground Station fed “live satellite data” from simulation 

●  Tethered IRIS+ Quadcopter 

●  10 minute experiment 
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Hardware	Implementation	

GPS trajectory with fire 
 2
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Discussion	

●  Naive methods of monitoring the fire miss valuable information 

●  More sophisticated sensing provides better results 

●  Fewer hotspots do a worse job representing the frontier regions 

●  Possible to bring this technology to the real world 
●  Publication:   

○  R. Skeele, and G. Hollinger. "Aerial Vehicle Path Planning for 
Monitoring Wildfire Frontiers." Field and Service Robotics, 2015. 
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Outline	

Sensing     Coordinating   
 Planning 
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Related	Work	

Sensing     Coordinating   
 Planning 
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●  “Multi-Robot Coordination with Periodic Connectivity,” Hollinger & Singh, 
2010. 

 
●  “The Sensor-based Random Graph Method for Cooperative Robot 

Exploration,” Franchi et al., 2009. 



Coordination	

●  Is task allocation among multiple systems 

●  Provide robustness and fault tolerance 

●  Operate effectively in groups or with humans 

●  Better efficiency 

●  Requires communication protocols 

●  Coordination is difficult if the space is unknown 
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Domain:	Indoor	Exploration	

High-impact applications: 

●  Urban search and rescue 

●  Industrial inspection 

●  Military reconnaissance 

●  Underground mine rescue operations 
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Key Challenges: 

●  Communication is uncertain 

●  Real robots have limited battery 

●  Planning through unknown maps  

 

 

*Image from movie Indiana Jones 



Problem	Formulation	

●  Indoor environment 
represented in ℝ2 

 
●  Multiple UAVs merge maps 

 
●  Maximize the map returned 

map to base station 
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Maximize	Area	Mapped:	

?

Area explored (Ar) with paths (%) in the possible path 
space (&), such that the path of each UAV (k) is less 
than the battery limit (B). 



Simulation	Setup	

●  UAVs are modeled as discs with omnidirectional sensors 

●  Kinodynamics of the vehicles are not considered 

●  Each UAV has a limited battery life 

●  Communication is constrained by distance and obstacles 
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Simple Tunnel Map 
(50m x 50m) 

Complex Office Map (120m x 40m) 



Algorithm:	Baseline	(Frontier	Exploration)	

●  Finds open cells next to unknown cells 

●  Uses blob detection to identify frontier regions 

●  Assigns robot to explore nearest frontier region 
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*Taken from robotfrontier.com 



●  Coordinates robots to share information 

●  Robust to unreliable communication 

●  Considers limited battery life 

Algorithm:	EMSR	(Explore	Meet	SacriOice	Relay)	
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●  Coordinates robots to share information 

●  Robust to unreliable communication 

●  Considers limited battery life 

Algorithm:	EMSR	(Explore	Meet	SacriOice	Relay)	
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Simulation	Results	

●  200 Simulations 

●  Random Starting Point 

●  Speed 1 m/s 
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Simulation	Results	
	
2 UAVs 
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4 UAVs 

Simulation	Results	
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Complex Office Map (120m x 40m) 



8 UAVs in a simple tunnel 

Simulation	Results	
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Simple Tunnel Map (50m x 50m) 



Simulation	Results	
	
●  Can use other exploration 

techniques with our state machine 
on top 

 

●  Improvements range from 5% to 
18% 

 

●  Better results with a larger team 

Average of 200 simulation runs, with random start points. 
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Hardware	Testing	

●  Low cost platform, less than $1500 

●  Small enough to fit through doors 

●  Onboard vision and planning real time 

●  ROS planning and SLAM packages 

●  PX4 flight controller 

●  Xtion RGB-D Sensor 
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Hardware	Testing	

Demonstrated with two quadcopters 

●  Standard ROS-Packages for navigation 

●  Complete onboard autonomy 

●  Un-instrumented environment 
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Hardware	Results	
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Discussion	

●  First looked at single vehicle constrained planning 

●  Coordinated exploration outperforms non coordinated methods 

●  Indoor exploration is feasible 

●  Publication:  
○  K. Cesare, R. Skeele, S. Yoo, Y. Zhang, G. Hollinger, “Multi-UAV 

Exploration with Limited Communication and Battery.” IEEE 
International Conference on Robotics and Automation (ICRA), 2015. 
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Outline	

Sensing      Coordinating   
 Planning 
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Related	Work	

Sensing     Coordinating   
 Planning 
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●  “Sampling-based Algorithms for Optimal Motion Planning,” Karaman & 
Frazzoli 2011. 

 
●  “The Stochastic Motion Roadmap: A Sampling Framework for Planning 

with Markov Motion Uncertainty,” Alterovitz, et al. 2007. 
 
●  “Planning Most-Likely Paths From Overhead Imagery,” Murphy & 

Newman, 2010. 



Path	Planning	

●  Trajectory optimization 

●  Waypoint navigation 

●  Graph based planning 

●  Discrete and sampling based planners 
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*Taken from wikipedia.com 



Motivation	

●  Representing the world perfectly is impossible 

●  Graphs are a versatile representation of many domains 

●  Making reliable decisions is vital to future of robotics 

 

4
7 



Algorithm:	Risk-Aware	Graph	Search	(RAGS)	

●  Represent graphs using normal distributions of edge costs 

●  Search through graph for paths to goal 

●  Traverse the graph along the path of least risk 

(Mean, Variance) 
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●  Red path represents A* planning over mean 

●  Blue paths represents RAGS 

− RAGS trades off the lower mean of Red against the path options of 
Blue. 

Execution	

(Mean, Variance) 

4
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●  Red path represents A* planning over mean 

●  Blue paths represents RAGS 

− RAGS trades off the lower mean of Red against the path options of 
Blue. 

Execution	

(Mean, Variance) 

Probability of Better Path 
At Vs -> A vs B  =  41.85% 
At B -> Vg vs C  = 29.62% 
At C -> D  vs Vg =  47.16% 
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Quantifying	Risk	

●  Current location has neighbor vertices 

●  Each vertex has child paths to the goal 

●  Integrate probabilities (of cost) over all child paths 
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Quantifying	Risk	

●  Probability that the lowest-cost path in the set A is cheaper than the lowest-

cost path in the set B 

− Becomes a relationship between mean, variance, and number of paths 

− Pairwise comparison of two neighbors 

− Provides local ordering 
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Bounding	

●  Paths with both worse mean and variance are ‘dominated’ 

●  Bounding dominated paths reduces the computational complexity 

●  Partial ordering 

−  Only non-dominated nodes are expanded 
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Simulation	Setup	

Randomly generated graphs 

●  Final edge costs sampled from edge distributions 

●  Search from (0,0) to (100,100) 

●  Compared against A*, D*, and Greedy 
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Edge variances are represented in grayscale 



Example	

The video shows  

1.  Generating a PRM (with edge 
means and variances) 

 

2.  Pruning the edges for non- 
dominated paths 

 

3.  Traversing the graph with risk- 
aware planning 
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Simulation	Results	
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Simulation	Results	
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Simulation	Results	
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High cost paths! 
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Simulation	Results	
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Experiments	

●  Dataset of 64 images 

− tree clusters 

− man made structures  

− varying resolutions.  

●  Filtered to extract obstacles 

●  Edge variances taken from pixel 
intensities between vertices 

●  Mean values are Euclidean distance 

 

Satellite images for ground robot or low flying UAV 
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Experiments	

●  Dataset of 64 images 

− tree clusters 

− man made structures  

− varying resolutions.  

●  Filtered to extract obstacles 

●  Edge variances taken from pixel 
intensities between vertices 

●  Mean values are Euclidean distance 
plus pixel intensity 

 

Satellite images for ground robot or low flying UAV 
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µ = dist + ave(ip ) 
'2 = var(ip ) 



Experiments-Results	
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Example:	Empty	Field	

Three distinct scenarios for analysis 

Similar trajectories through empty field. 

Empty Field 
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Example:	Sparse	Tree	Cluster	

Sparse Tree Cluster 

RAGS cuts through sparse cluster to take advantage of open space. 
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Example:	Dense	Obstacle	

Large Dense Obstacle 

RAGS avoids narrow unlikely path through center of obstacle. 



Discussion	

●  Incorporating uncertainty accounts for unknowns in the real world 

●  Risk-aware planning provides robustness 

●  Traditional search methods plan over mean cost risk outliers 
●  Publication: 

○   R. Skeele, J. Chung, G. Hollinger, “Risk-Aware Graph Search”.  IEEE 
International Conference on Robotics and Automation. Workshop on 
Beyond Geometric Constraints, 2015. 

○  Submission planned: Workshop on the Algorithmic Foundations of 
Robotics (WAFR), 2016. 
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Summary	of	Contributions	

Sensing      Coordinating   
 Planning 
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●  Monitored dynamic points of 

interest 

●  Leveraged realistic wildfire 

simulator for planning 

●  Demonstrated capability on 

hardware 

●  Introduced coordination method 

for uncertain communication 

●  Simulated large teams of UAVs 

cooperatively exploring 

●  Developed low cost indoor 

autonomous quadcopters 

●  Proposed risk-aware 

planning over uncertain costs 

●  Outperformed traditional 

search algorithms 

●  Demonstrated on satellite 

imagery 



Sensing     Coordinating   
 Planning 

Summary	of	Contributions	
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Future	Work	

●  Gaussian process model of the fire frontier 

○  Would give a continuous model of uncertainty 

●  Incorporate geometric knowledge of the environment to predict 

reconnection 

○  Inference techniques on environment structure 

●  Informative path planning for RAGS 
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