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UAVs Successfully Used for Many Tasks
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UAVs Operate in Challenging Environments




The Challenges




The Challenges

e Precision sensing ability, and/or robust
planning algorithms

e Coordination between UAVSs, other
robots, and humans become
increasingly important

e Planning in unknown or dynamic areas




Three Main Research Areas

Sensing Coordinating
Planning
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Related Work
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“An Unmanned Aircraft System for Automatic Forest Fire Monitoring and
Measurement,” Merino, et al. 2012.

“Planning periodic persistent monitoring trajectories for sensing robots in
gaussian random fields,” Lan & Schwager, 2013. )




Sensing

e Sensing stationary targets is well studied

e Dynamic targets are tricky

e Used for environmental monitoring

e One of the most challenging monitoring problems is wildfires

e The uncertainty of where the fire will spread is challenging
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Domain

Wildfires
e Dangerous for human pilots to get close
e Aerial sensing provides critical information

e Highly dynamic points of interest

1 *Taken from weathernetwork.com



Problem Formulation

e Fireline intensity is crucial information
e Regions of high intensity are dangerous
e |dentify regions as hotspots

e Minimize the max time that a hotspot is left unattended

hotspots

Jt)= ) ¢,

1=0

Where ¢ is max time untracked.
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Simulation Environment

e FARSITE generates fire characteristics

e UAVs limited to flying around fire

e UAVs have sensing radius
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Simulation Setup

start —>| Fire Progression

K-means clustering is run on a
frontier filtered for the highest
intensities. K is determined by

K =/NJ2

where N is number of
points of interest.

Baseline Planner Find Clusters

State diagram of FLAME Oregon State
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Algorithm: Baseline

e Periodic monitoring
e Minimizes time untracked of all points
along the frontier

e Assumes no knowledge of fire

Baseline: Circling




Algorithm: Clustered Weighted-Greedy

e Hotspot priority determined by time
left untracked and distance from the
UAV.

e A weighting parameter (a) is applied P ’\ hotspots
to the travel cost (C) of each hotspot ’ S
(h) to combine with the time (7" ) |
metric.

Weighted-Greedy

'

/

H = argmin7, — a*xCy,
h
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Simulation Results

e Compare Baseline and Weighted-Greedy

e Three different hotspot thresholds used, (.25, .35, .45).

hotspots

e Seven different fires J(t) = Z 3.
2==()

Where ¢ is max time untracked.
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Simulation Results

J(t) = sum of the max time untracked of all hotspots

w— \Weighted-Greedy
—— Bmune
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Hotspot threshold = .25 Oregon State




Simulation Results

J(t) = sum of the max time untracked of all hotspots

— VWeighted-Greedy
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Simulation Results

J(t) = sum of the max time untracked of all hotspots

w— Weighted-Greedy

— Baseline

Hotspot threshold = .45 Oregon State




Hardware Implementation

e FARSITE simulated fire

e Ground Station fed “live satellite data” from simulation

e Tethered IRIS+ Quadcopter

e 10 minute experiment




Hardware Implementation

GPS trajectory with fire
1



Discussion

NN

Naive methods of monitoring the fire miss valuable information
More sophisticated sensing provides better results
Fewer hotspots do a worse job representing the frontier regions

Possible to bring this technology to the real world

Publication:
o R. Skeele, and G. Hollinger. "Aerial Vehicle Path Planning for
Monitoring Wildfire Frontiers." Field and Service Robotics, 2015.
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Related Work

Sensing / C%rdinatin_q
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“Multi-Robot Coordination with Periodic Connectivity,” Hollinger & Singh,

2010.

“The Sensor-based Random Graph Method for Cooperative Robot
Exploration,” Franchi et al., 2009.
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Coordination
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|s task allocation among multiple systems
Provide robustness and fault tolerance
Operate effectively in groups or with humans
Better efficiency

Requires communication protocols

Coordination is difficult if the space is unknown




Domain: Indoor Exploration

High-impact applications: Key Challenges:

e Urban search and rescue e Communication is uncertain

e Industrial inspection e Real robots have limited battery
e Military reconnaissance e Planning through unknown maps

e Underground minege

UNIVERSITY
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Problem Formulation

e |Indoor environment
represented in R?

e Multiple UAVs merge maps

e Maximize the map returned
map to base station

~N N

Maximize Area Mapped:

P = argmax A,.(P) s.t. |Px| < B Vk,
Pev

Area explored (A,) with paths () in the possible path
space (¥), such that the path of each UAV (k) is less
than the battery limit (B).



Simulation Setup

e UAVs are modeled as discs with omnidirectional sensors
e Kinodynamics of the vehicles are not considered
e Each UAV has a limited battery life

e Communication is constrained by distance and obstacles

L

L Ll
—
Complex Office Map (120m x 40m) Simple Tunnel Map
(50m x 50m)
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Algorithm: Baseline (Frontier Exploration)

e Finds open cells next to unknown cells
e Uses blob detection to identify frontier regions

e Assigns robot to explore nearest frontier region

Qccupied Space Robot Cunent Podltion
>0.l‘ ..... .
-a.ll: ............... I{, .',: ’
e f »
...... ot
VPen SPGC - K » v
‘ 4\ s Frontier
"W\ Centrod
nknown Spoce Path 1o Fontie

*Taken from robotfrontier.com
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Algorithm: EMSR (Explore Meet Sacrifice Relay)

e C(Coordinates robots to share information
e Robust to unreliable communication

e Considers limited battery life

start —
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Algorithm: EMSR (Explore Meet Sacrifice Relay)

e C(Coordinates robots to share information

e Robust to unreliable communication

start —

e Considers limited battery life
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Algorithm: EMSR (Explore Meet Sacrifice Relay)

e C(Coordinates robots to share information

e Robust to unreliable communication

start —

e Considers limited battery life
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e C(Coordinates robots to share information
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Algorithm: EMSR (Explore Meet Sacrifice Relay)

e C(Coordinates robots to share information

e Robust to unreliable communication

e Considers limited battery life
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Simulation Results

e 200 Simulations
e Random Starting Point

e Speed1m/s
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Simulation Results
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Simulation Results
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Simulation Results

8 UAVs in a simple tunnel
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Simulation Results

e (Can use other exploration
techniques with our state machine
on top

e |Improvements range from 5% to
18%

e Better results with a larger team
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Exploration
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Hardware Testing

o h

Low cost platform, less than $1500
Small enough to fit through doors
Onboard vision and planning real time
ROS planning and SLAM packages
PX4 flight controller

Xtion RGB-D Sensor

i ROS

a
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Hardware Testing

Demonstrated with two quadcopters

e Standard ROS-Packages for navigation

e Complete onboard autonomy

e Un-instrumented environment




Hardware Results
18 meters

Sacrifice Landing

Home Relay

5 meters

Exploration Zone

N B~



Discussion

e First looked at single vehicle constrained planning
e Coordinated exploration outperforms non coordinated methods
e Indoor exploration is feasible

e Publication:

o K. Cesare, R. Skeele, S. Yoo, Y. Zhang, G. Hollinger, “Multi-UAV
Exploration with Limited Communication and Battery.” IEEE
International Conference on Robotics and Automation (ICRA), 2015.
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Related Work
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/o “Sampling-based Algorithms for Optimal Motion Planning,” Karaman &
Frazzoli 2011.

e “The Stochastic Motion Roadmap: A Sampling Framework for Planning
with Markov Motion Uncertainty,” Alterovitz, et al. 2007.

“Planning Most-Likely Paths From Overhead Imagery,” Murphy &
\ Newman, 2010. /
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Path Planning

o B~

Trajectory optimization
Waypoint navigation
Graph based planning

Discrete and sampling based planners

*Taken from wikipedia.com




Motivation

e Representing the world perfectly is impossible

£ £
” ot g g

e Graphs are a versatile representation of many domains

e Making reliable decisions is vital to future of robotics




Algorithm: Risk-Aware Graph Search (RAGS)

e Represent graphs using normal distributions of edge costs
e Search through graph for paths to goal

e Traverse the graph along the path of least risk

N(80,10) G (Mean, Variance)
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Execution

e Red path represents A* planning over mean

e Blue paths represents RAGS

—RAGS trades off the lower mean of Red against the path options of
Blue.

’V(SO,]O) G (Mean, Variance)
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Execution

e Red path represents A* planning over mean

e Blue paths represents RAGS

—RAGS trades off the lower mean of Red against the path options of
Blue.

/V(80,10) Csmmmmm (Mean, Variance)

Probability of Better Path
AtV,->Avs B = 41.85%

At B -> Vg vs C =29.62%
AtC->D vsV = 47.16% msm
g
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Quantifying Risk

e Current location has neighbor vertices
e Each vertex has child paths to the goal

e Integrate probabilities (of cost) over all child paths

Quantify probability that traveling via B
will yield a cheaper path than traveling via A

Ay
A;- 5 l\'('“"- '('-.\- )

Start

=

B‘ . A’l““!:'.(’ﬁ.,
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Quantifying Risk
e Probability that the lowest-cost path in the set A is cheaper than the lowest-
cost path in the set B
—Becomes a relationship between mean, variance, and number of paths
—Pairwise comparison of two neighbors

—Provides local ordering

P(CAmin < CBmin) = f P(CBmin = X) . P(CAmin < x)dx

N O1



Bounding

e Paths with both worse mean and variance are ‘dominated’
e Bounding dominated paths reduces the computational complexity
e Partial ordering

— Only non-dominated nodes are expanded

A< B+ (pa<pp)A(0h <o)

Domination of path A given B's thickness
corresponds to a more certain path cost

A

Point 2 Q Point 1
5 B
3



Simulation Setup

Randomly generated graphs

e Final edge costs sampled from edge distributions
e Search from (0,0) to (100,100)

e Compared against A*, D*, and Greedy

Edge variances are represented in grayscale

A~ O




Example

The video shows

1. Generating a PRM (with edge
means and variances)

2. Pruning the edges for non-
dominated paths

3. Traversing the graph with risk-
aware planning

o1 O



Simulation Results

Comparison of Path Casts for Graph with oy = 5
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Simulation Results

Comparison of Path Costs for Graph with 0ipar = 10
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Simulation Results

Comparison of Path Costs for Graph with 0jper = 10
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Simulation Results

Comparison of Path Costs for Graph with of,40 » 20
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Experiments

e Dataset of 64 images
—tree clusters
—man made structures
—varying resolutions.

e Filtered to extract obstacles

e Edge variances taken from pixel
intensities between vertices

e Mean values are Euclidean distance

o o

Satellite images for ground robot or low flying UAV

YRIVERS I YY




Experiments

Satellite images for ground robot or low flying UAV
e Dataset of 64 images

—tree clusters
—man made structures
—varying resolutions.

e Filtered to extract obstacles

e Edge variances taken from pixel \* s
intensities between vertices

e Mean values are Euclidean distance
plus pixel intensity

6 VRIVERSIYY
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Experiments-Results

Comparison of Path Costs for Satellite Data Set
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Example: Empty Field
Three distinct scenarios for analysis

Similar trajectories through empty field.

co@ e Hindaiphe Optimal 380866358
M == A" 41329

w o

Empty Field



Example: Sparse Tree Cluster

RAGS cuts through sparse cluster to take advantage of open space.

oo@+« Hindsight Optimal: 313538
- = A% 3310.53
B, | —d—[AGS: 325521

Sparse Tree Cluster
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Example: Dense Obstacle

RAGS avoids narrow unlikely path through center of obstacle.

-

o h so@ e Hindsight Optimal: 3572.53

N g A" 1301.06G
| e R AGS: 3718.20

(6 o))

Large Dense Obstacle



Discussion

e Incorporating uncertainty accounts for unknowns in the real world
e Risk-aware planning provides robustness

e Traditional search methods plan over mean cost risk outliers

e Publication:
o R. Skeele, J. Chung, G. Hollinger, “Risk-Aware Graph Search”. |EEE
International Conference on Robotics and Automation. Workshop on
Beyond Geometric Constraints, 2015.

o Submission planned: Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2016.
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Summary of Contributions

Sensing Coordinating
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e Monitored dynamic points of e Introduced coordination method e Proposed risk-aware

interest for uncertain communication planning over uncertain costs
e Leveraged realistic wildfire e Simulated large teams of UAVs e Outperformed traditional
simulator for planning cooperatively exploring search algorithms
e Demonstrated capability on e Developed low cost indoor e Demonstrated on satellite
hardware autonomous quadcopters imagery
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Summary of Contributions

Sensing Coordinating
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Future Work

e Gaussian process model of the fire frontier
o Would give a continuous model of uncertainty
e Incorporate geometric knowledge of the environment to predict
reconnection
o Inference techniques on environment structure

e Informative path planning for RAGS

o o
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