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Abstract— We present a coactive learning algorithm to solve
the problem of learning a human expert’s preferences in
planning trajectories for robotic monitoring. The algorithm
learns these preferences by iteratively presenting solutions to
the expert and updating an estimated utility function based
on the expert’s improvements. We applied these algorithms in
the context of underwater exploration using a pair of risk and
reward maps. In simulated trials, the algorithm successfully
learns the underlying weighting behind a utility map used by
a human planning trajectories. This work shows it is possible
to create algorithms for autonomous navigation with reward
functions that mimic a human planner’s preferences.

I. INTRODUCTION

When robotic vehicles collaborate with humans, true au-
tonomy relies on the robot having a clear understanding of
its goals and the tradeoffs it faces when making decisions.
When a robot is assisting a human, the robot’s goals must
often mimic those of the human. One example of this is
in planning trajectories for underwater robots performing
scientific monitoring. The robot must autonomously navigate
the environment while maintaining the same goals as a
human scientist.

When planning trajectories for underwater gliders dur-
ing such robotic monitoring, a scientist implicitly balances
several environmental variables, such as risk of collision,
uncertainty in ocean currents, and the location of points
of interest. While current planning algorithms can account
for all of these variables, it is difficult to learn the correct
tradeoffs between them [3]. In this work, we study applying
a coactive learning algorithm to learn a human path planner’s
weighting of the variables involved in choosing a trajectory.
In this way, we can create an autonomous system that
generalizes to different problems while still capturing the
scientist’s expert knowledge and experience.

Most previous work on coactive learning algorithms has
studied problems where both the expert and the learner are
computer programs which solve and improve the solution
using different methods [1]. In our work, the solver attempts
to learn a human expert’s preference in the area of robotic
path planning, modeled after planning for underwater scien-
tific exploration. Specifically, the algorithm attempts to learn
the expert’s judgment of the utility of a particular path.

II. COACTIVE LEARNING ALGORITHM

Our proposed coactive learning algorithms attempt to learn
an expert’s utility function, U(〈x, y〉) → R, for judging a
candidate solution y for a given problem x (as in [1]). We
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assume that the expert’s utility function can be approximated
as a weighted linear function of the features of the candidate
solution: Û(〈x, y〉) = ~w>~φ(〈x, y〉). The ultimate goal of the
algorithm is to learn the parameters ~w that match the expert’s
method for judging the utility of a solution.

On each update of the coactive learning algorithm, the
algorithm creates a candidate solution yt based on its current
estimate Û of the expert’s utility function and presents that
solution to the expert. The expert has a set of operators, O,
that can be applied to the solution to improve it: Oi ∈ O :
〈x, y〉 → 〈x, y′〉. In path planning, these operators might
involve altering the trajectory. The cost for the update Ct

is equal to the number of operators the expert applies to
improve the solution. The learning algorithm then adjusts Û
based on the difference in parameters between yt and y′.

Algorithm 1: CoactiveLearningUpdate (problem xt,
learning algorithm’s solution yt, improved solution y′,
cost Ct)

if Ct > 0 then
~∆t := ~φ(〈xt, y′〉)− ~φ(〈xt, yt〉)
~w>
t+1 = ~w>

t + λt ∗ ~∆t

end

Algorithm 1 shows how the weights w are updated. If the
expert has improved the proposed solution, the difference in
parameters ~∆ between the proposed and improved solutions
is calculated. This difference is then scaled by the learning
rate and added to the previous estimated weights to find the
new estimated weights.

Several variations of the coactive learning algorithm are
created by adjusting the learning rate λ. Two of the most
commonly used are perceptron with a constant learning rate
and passive aggressive, which adjusts lambda to ensure the
most recent mistake is corrected [1].

III. ROBOTIC MONITORING RESULTS

The problem we examine consists of several components:
a planned trajectory of waypoints, a “risk” map that repre-
sents the cost of traveling in a given region, a “reward” map
that represents the quality and value of information gained
by traveling in a given area [4], and a target ~w> of risk and
reward weightings for the learning algorithm to learn.

In order to make the problem tenable for use with a human
expert, we make a number of modifications to the general
coactive learning algorithm. We assume that the expert’s
utility function is linearly composed of two features: the
risk the robot incurs, and the information it gains during its
tour [2]. The total risk and total information for a path are



(a) Reward map representing the value of trav-
eling in a particular area.

(b) Risk map showing the risk of traveling in a
region.

(c) Utility map generated from a weighted sum of
the risk and reward maps. Here, the target weights
of risk and reward are -10 and 20 respectively.

Fig. 1: An example path and utility field generated using the proposed algorithm after one trial. Only the utility map shown in (1c) is presented to the
expert during trials. The black line represents the robot’s path through the environment after the expert has made local improvements to it. The proposed
algorithm learns the underlying weighting between risk and reward using coactive learning.

found by integrating each respective feature map along the
path. At each update, the human expert improves the learning
algorithm’s proposed path by moving one point. We use the
perceptron variation of the algorithm with an exponentially
decaying λ.

To test the algorithm’s ability to learn a human expert’s
weighting, the expert is presented with a randomly generated
path overlaid on a map of the utility at each location in
a region, as shown in in Fig. 1. Maps of risk and reward
are generated as a random sum of Gaussians. The utility
map is generated by weighting these risk and reward maps
by their respective target weights and summing them. Since
the human expert is optimizing the path based on a map of
utility calculated using the target weights, we can test how
effectively the learning algorithm finds the target weights.

At each update, the expert improves the path by moving
one of the points of the path. The change in information and
risk are calculated and used in the coactive learning update to
update the learning algorithm’s estimate of the expert’s utility
function. Using the new estimate of utility, the algorithm then
runs a locally optimal Travelling Salesman Solver [5] on the
updated set of points to generate a new guess at the optimal
path through the map. Each trial consists of 10 updates on
one randomly generated map.

IV. CONCLUSION AND FUTURE DIRECTIONS

We successfully applied a coactive learning algorithm
to path planning using a human expert, showing that the
algorithm can learn and mimic a human expert’s priorities.
Over several trials using a set of target weights we found
that the algorithm’s estimated weights would converge on
the target weights in a reasonable amount of time for use
with a human expert. An example trial is shown in Figure
2. However, the learning algorithm is susceptible to being
misled by imperfect improvements by the human expert.
Additional quantitative results will be presented in the final
workshop paper.

Further work is needed to make the algorithm usable in a
real-world situation. Perceptron, cost-sensitive, and passive-
aggressive learning rates should be studied to select which
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Fig. 2: An example plot of the ratio between the risk and reward weights
over a trial. An exponentially decreasing learning rate over time was used.
While the estimated weights converge on the target weights, note that
imperfections in the human expert’s improvements slows the convergence.

learns quickly while also being resistant to the imperfections
of the human operator. Additionally, other path parameters
could be included in order to more closely match the
human’s intentions. Ultimately, we hope to be able to learn a
human’s preferences in trajectory planning without complete
knowledge of the underlying parameters used.
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