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Abstract—In this paper we propose an approach for modeling
and learning human preferences using a combination of absolute
(querying an expert for a numerical value) and relative (asking
the expert to select the highest-value option from a set) queries.
Our approach uses a Gaussian process regression model with
an associated likelihood function that can take into account
both pairwise preferences and numerical ratings to approxi-
mate the user’s latent value function from a set of (noisy)
queries. We show that using a combination of relative and
absolute queries performs better than either query type alone
and propose a simple active learning approach to sequentially
select informative queries that speed up the learning process
when searching for high-value regions of the user’s latent value
space. We demonstrate the effectiveness of our method on a 1-D
function approximation task and on a simulated autonomous
surface vehicle performing a lake monitoring mission. These
experiments show that our algorithm is able to efficiently learn an
operator’s mission preferences and use those mission preferences
to autonomously plan trajectories that fulfill the operator’s goals.

I. INTRODUCTION

Current methods for performing robotic environmental mon-
itoring place a high mental, physical, and time burden on
human operators. Reducing this burden requires increasing
levels of autonomy. In addition to adapting to and withstanding
dangerous, dynamic, and unstructured environments, attaining
a greater level of autonomy requires that a robot have a
complete picture of the operator’s preferences and goals.

Due to environmental complexities, it can be difficult and
time-consuming for operators to build controllers for au-
tonomous vehicles performing complex tasks. Furthermore,
many tasks do not have a single goal, but rather involve a trade-
off between multiple objectives. For instance, an autonomous
robot monitoring an ocean environment is required to observe
multiple ecological variables while avoiding strong currents
and obstacles, all with limited endurance and communication.

With current levels of autonomy, a team of trained experts
is required to deploy and operate these robots for the du-
ration of each of these missions. By improving the robot’s
understanding of the operator’s goals, we can reduce this
high mental (and often physical) burden on the operators
while simultaneously increasing the robot’s ability to adapt
to unexpected environmental conditions.

Several methods have been proposed to allow the robot to
learn and model the expert’s goals [20]. With an accurate
model of the expert’s preferences, the robot can plan actions
for itself, leveraging the large amount of research into planning

Fig. 1: Commanding aquatic robots, such as the pictured Platypus Lutra
autonomous surface vehicle, is currently a slow, hands-on process where
operators manually set individual waypoints at the outset of the mission. This
burden motivates the need for algorithms that can quickly learn and meet a
human operator’s goals while adapting to the dynamic aquatic environment.

and optimization [11]. By automatically building a controller
based on a reward function learned from an expert, the time-
consuming complexity of manually programming a controller
is removed. Ultimately, these methods combine the expert’s
domain knowledge with the robot’s ability to gather and
adapt to new data. However, current approaches, such as
learning from demonstration, have several disadvantages. They
require the expert to manually provide demonstrations of robot
trajectories and are susceptible to noise.

We propose a novel method that combines absolute and
relative queries to learn a Gaussian process (GP) representation
of the user’s latent reward function over the mission objective
space. This method has several advantages over existing frame-
works. First, combining the specificity of absolute trajectory
ratings with the exploration value of a relative ranking of
several trajectories speeds the learning process. Additionally,
actively selecting between absolute and relative queries max-
imizes the information gained from each question. Further-
more, since our approach represents the learned preference
function as a GP in the high-level objective space, it is able to
incorporate domain knowledge and is resistant to noisy, non-
linear inputs.

With experiments in non-linear function approximation and



on simulated lake monitoring trials, we show that our proposed
method efficiently learns an expert’s preferences and can use
those preferences to plan trajectories that meet the expert’s
goals. Furthermore, we demonstrate the value of adaptively
selecting rating and ranking queries in reducing the effort
required of the robot operator.

II. RELATED WORK

Learning from demonstration (LfD) methods are often used
to learn an operators preferences from a set of human driven
demonstrations of near-optimal robot behavior [2]. One of
the most well-known LfD algorithms is inverse reinforcement
learning (IRL) [1]. IRL assumes that the human is acting as
a Markov decision process providing optimal demonstrations,
then attempts to find the reward function that matches the
policy presented in the user’s demonstrations. Another com-
mon LfD method is coactive learning, which learns a user’s
reward function from improvements the user makes to example
solutions for a problem. Studied representations of the reward
functions include a linear scaling over the features of the
proposed control plan [19] and a probabilistic distribution
over this linear scaling [20]. These LfD methods often assume
the demonstrations are optimal, can perform poorly when the
expert’s preferences are non-linear [20], and require time-
consuming complete demonstrations.

Learning and modeling user ratings is a well-studied prob-
lem across many domains, such as for the well-known Netflix
challenge [4]. However, learning ranking models is still an
open problem. Several methods have been proposed, includ-
ing the ELO chess rating system commonly used to rank
competitors in multiple games and sports[8]. Rankings have
also been incorporated into the latent factor models used in
recommender systems [3]. We base our methods for combining
rating and ranking queries on previously studied methods
for training GPs on ranking inputs [6, 10, 17]. In a robotic
handover task, Kupcsik et al. [13] used a similar GP to
estimate a human’s reward function during policy search.
However, they only briefly mention combining query types
and do not further discuss the generalizability or limitations
of the method.

Active learning methods further improve the convergence
rate of supervised learning algorithms. They’ve been applied
across a wide range of domains, including performing IRL
in a simple grid world [15], informing reinforcement learning
rewards for grasping tasks [7], and selecting poses for under-
water inspection [9]. Many of these methods use a form of
Bayesian optimization, such as an Upper Confidence Bound
(UCB) metric [5]. However, finding the best heuristic has
proven challenging, as estimating the value of any given query
is highly domain dependent [5]. We demonstrate that actively
selecting query types and trajectories provides significant
benefit in the user preference domain.

III. METHOD

In this section, we outline our methods for representing a
user’s preferences as a GP in the mission objective space and
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Fig. 2: A trajectory T is mapped to a corresponding objective-space feature
vector xT (with feature dimensions of path length and accumulated risk). An
expert is assumed to have an internal function f that associates an objective-
space vector with a scalar utility value f(xT ).

for actively learning that representation using a combination
of absolute and relative queries. Our goal is to create a
system that efficiently learns a rich representation of the
user’s preferences by utilizing faster and simpler queries than
previous methods while also incorporating domain knowledge
to speed up the learning process. Ultimately, this increases the
autonomy of the robotic system while simultaneously reducing
the human effort required to program and control the robot.

A. Problem formulation

We assume that the expert has an internal utility model
that can associate a trajectory T with a scalar utility value.
We represent this model using a fixed objective feature space
mapping that maps a trajectory T to a set of k objective values
in the form of a vector xT ∈ Rk in the objective space of
the problem. A simple illustration is shown in Fig. 2. The
dimensions of the objective space represent features of the
trajectory that relate to mission success. For an autonomous
underwater vehicle traversing an ocean these could include
distance traveled, number of informative samples, and risk
measures such as the strength of ocean currents. An example
of a set of ratings in the lake monitoring objective space is
shown in Fig. 8.

We assume that the user’s utility can be modeled as a
function f : Rk → R that maps from a k-dimensional
feature space to a scalar utility. The user can be queried
about their objective space utility through either absolute or
relative queries. For an absolute query, the user is presented
with a trajectory and asked to provide a numerical rating
u ∈ [umin, umax], representing a scalar utility measure on
a bounded scale.

For relative queries, the user is presented with a set of m
trajectories, T = {T1, T2, . . . , Tm} and asked to identify the
best (highest utility) trajectory Tj ∈ T . This provides a set of
m − 1 pairwise relationships where the selected trajectory is
preferred over each of the other members of the query set, such
that Tj � Ti ∀ Ti ∈ T \ {Tj}, where the trajectory preference
relationship is related to the associated utility values, such that
Tj � Ti ↔ f(xj) > f(xi).

The goal is to identify regions of the objective space with
high utility using a limited number of queries to the expert.
In this work we explore a number of measures to quantify
performance, as discussed in the results section. Overall, we



θGP

f1 f2 f3 f4 f∗

x1 x2 x3 x4 x∗

u1 d1 d2 u2 d∗

θLabs
θLrel

Fig. 3: A graphical model illustration of the problem formulation. Cir-
cles represent random variables, boxes are deterministic. Filled shapes are
observed. Observations consist of input feature vectors (filled squares x),
output absolute utility observations (filled blue circles u) and output pairwise
relative relationships (filled orange circles d). The GP (illustrated as the black
horizontal bar) generates latent function values (unfilled circles f ) conditioned
on the hyperparameters of the covariance function θk and input locations. The
relative and absolute likelihoods, Lrel and Labs, also conditioned on their
respective parameters, provide the likelihood of the observations.

are interested in showing that a combination of absolute and
relative queries performs better than either query-type alone,
and we explore approaches to actively selecting queries.

B. Objective Space Gaussian Process Learning

We estimate the user’s preference function f using a GP
over the mission objective space of the robot conditioned on
relative and absolute queries. Our work draws on a formulation
for GP regression that combines absolute and pairwise relative
observations into a single modeling framework [17], adapting
it to the preference learning domain. The GP predicts the
unbounded, unobserved latent function f , from which we use
a likelihood function to estimate the probability of observing
the input training data. Figure 3 illustrates our approach as a
graphical model.

1) Gaussian process latent function: We want to estimate
f ∼ GP (0, k(x,x′)), the user’s (unobserved) latent reward
function from a set of observations collected from the user.
For ease of notation, we group both absolute and relative
queries into a single observation set consisting of input
locations X = {x1,x2, . . . ,xn} and output observations
Y = {d1, . . . , dp, u1, . . . , uq}. We assume that each x ∈ X is
unique but can be referenced by multiple observations (fig. 3).
The GP is conditioned on the input observation locations and
the GP covariance function hyperparameters θGP (fig. 3). For
this work, we use the common squared exponential covariance
function

k(x,x′) = σ2
fexp

(
−|x− x′|2

2l2

)
, (1)

with process variance σ2
f and length scale l, so θGP = {σf , l}.

The GP regression is similar to a standard GP regression
problem, except that there is no analytic solution for solving
for the maximum likelihood posterior. Instead, we use the
Laplace approximation that approximates the posterior as a

normal distribution, and the system is solved by iteratively
searching for the mode of the distribution that maximizes the
posterior likelihood,

f̂ = arg max
f(X)

p(f(X)|Y )

= arg max
f(X)

p(Y |f(X),θL)p(f(X)|θGP). (2)

Solving for the hyperparameters requires an additional step,
repeatedly solving the maximum likelihood f̂ for given hyper-
parameters, then varying the hyperparameters to maximize the
posterior likelihood until both converge. Chu and Ghahramani
[6] show that this problem is convex and can be solved using
gradient descent. Jensen and Nielsen [17] provide analytic
derivatives for the likelihood functions listed below with
respect to their hyperparameters.

2) Relative observation likelihood: The formulation for a
pairwise preference likelihood function was originally formu-
lated in [6]. We use a preference relationship for ranked points,
where an input point xi is said to be preferred over xj (written
xi � xj), if f(xi) ≥ f(xj).

Thus, a relative training point consists of a pair of input
points (xi,xj) and an associated binary observation d ∈
{−1, 1}, with d = −1 signifying to xi � xj and d = 1
the opposite. To incorporate noise, we assume that the obser-
vations of f are drawn from i.i.d. Gaussian distributions with
fixed variance σ2

R around the true function f , and the label
d represents which sample is larger. The likelihood Lrel of
observing a label can be written

Lrel (d|f(xi), f(xj), σR) = Φ

(
d
f(xj)− f(xi)

σR
√

2

)
(3)

where Φ : R → (0, 1) is the cumulative distribution function
for the normal distribution, Φ(z) =

∫ z

−∞N (γ; 0, 1)dγ. There
is one hyperparameter of (3), θLrel

= {σR}.
3) Absolute observation likelihood: To incorporate absolute

observations, where the expert is queried about a single
trajectory with associated feature vector x and provides a
scalar utility value u ∈ [0, 1], we use a formulation from [10]
where the likelihood is represented by a beta distribution,

Labs (u|f(x),θLabs
) = Beta (α(x), β(x)) . (4)

The beta distribution provides a probability density over a
bounded interval (0, 1), and is parameterized by two shape
parameters α and β:

α(x) = νµB(x), (5)
β(x) = (1− ν)µB(x). (6)

Since the GP itself maps onto an unbounded scale (R), we
also need a function that links the prediction from the latent
function f to the observed utility value u. We adopt an
approach proposed in [17] that links the mean of the beta
distribution µB with the mean of the GP prediction f̂(x) using
the common probit mean link function,

µB(x) = Φ

(
f̂(x)

σB
√

2

)
. (7)
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The hyperparameters for the absolute likelihood are θLabs
=

{σB , ν}. σB scales how f is mapped to the output range (0, 1),
and ν is a precision variable that determines how ‘peaky’ the
beta distribution is.

4) Prediction: For the active learning process, and to
identify high-utility paths, we need to be able to generate pre-
dictions of both absolute and relative likelihoods from the GP
model for unobserved locations X∗. Generating predictions
from the GP latent function requires the maximum likelihood
solution f̂ , and the negative Hessian of the log likelihood W ,
where

Wi,j =
∑
k

∂2 − logL (yi | f(xi), f(xj),θL)

∂f(xi)∂f(xj)
. (8)

The latent posterior distribution is f∗ ∼ N (f̂∗,K∗), where

f̂∗ = KT
X,X∗K−1X,X f̂ , (9)

K∗ = KX∗,X∗ −KT
X,X∗ (I +WKX,X)

−1
WKX,X∗ . (10)

These results can then be used to calculate the output likeli-
hood distributions my marginalizing out f∗(x):

p(y∗|x∗, X, Y ) =

∫
L(y|f(x∗),θL)p(f(x∗)|X,Y )df(x∗).

(11)
Figure 4 shows an example of a ‘true’ one-dimensional

latent function, and the resulting sampling likelihood distribu-
tions. Figure 5 shows the posterior estimate of the latent func-
tion from the GP and resulting posterior likelihood estimates

given the training samples from Fig. 4. It is interesting to note
the effect of the relative observations which provide general
shape information versus the absolute measurements which
provide strong estimates of the value of the latent function
but only in a small region.

C. Active Selection of Ratings and Rankings

Absolute and relative queries provide different coverage
of the objective space. An absolute query learns an accurate
utility for a single point while a relative query provides general
pairwise comparisons of several points, thus exploring a larger
area of the space. Additionally, rankings are intuitively easier
to make and users are more confident about their responses
[3]. By combining rating and ranking queries, our method is
able to make use of the benefits of each.

The trajectories Ti for each query qi are selected based on
the upper confidence bound (UCB) of the GP’s estimate of the
user’s rating for Ti:

xt+1 = arg max
x

f̂∗(x) + γ
√
K∗(x) (12)

UCB is well suited to our method as it selects trajectories
that have both a high level of uncertainty and are also likely
to be highly rated [5]. In learning a user’s preferences, it is
most important for the robot to be confident that it understands
which trajectories have high utility. These trajectories are often
difficult to learn as they comprise a small, localized portion
of the objective space. Thus, once a region of the objective
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Fig. 6: Results for simulated randomized wave function problem. Lines show
mean and error bars show one standard deviation over 100 randomized trials.

space has been found to be poorly rated, there is little value
in continuing to explore it.

IV. EXPERIMENTS AND RESULTS

A. Randomized trials for active learning

To demonstrate the advantage of combining ratings and
rankings in a single framework we compare the performance
of different query selection algorithms on a learning task. We
generate ‘truth’ functions as a sum of three random sinusoidal
wave features:

f(x) =

3∑
k=1

ak cos(πfk(x− ok)) exp(−dk(x− ok)2) (13)

where the frequency, amplitude, offset and damping are uni-
formly randomly selected from the intervals fk ∈ [10, 30],
ak ∈ [0.6, 1.2], ok ∈ [0.1, 0.9] and dk ∈ [250.0, 350.0]
respectively. The input space is limited to x ∈ [0, 1]. In
each trial instance, we sample a wave function that can be
(noisily) queried, and provide one randomly placed absolute
training sample as initial data. Each tested method sequentially
selects query locations and samples the true function until
the maximum number of queries is reached. All methods
use the same GP formulation and hyperparameters, and differ
only in their active selection algorithm. We compare our
proposed UCB Combined method (labeled UCBC in plots) to
a random absolute-only sampler that randomly selects a single
rating query at each step, a random relative-only sampler that
randomly selects five points for a ranking query and a pure
UCB method that greedily selects a rating query based on the
upper confidence bound. Our experiments used γ = 3 based
on hand tuning for best performance.

To measure performance we use a weighted RMSE (similar
to [16]) over a uniformly distributed set of n = 100 test
points which calculates the RMS error between the predicted
absolute rating uest and the true absolute rating utrue weighted
by the magnitude of the rating, such that high valued points
are weighted higher than low-valued points. We modify the
method used in [16] by weighting the squared error by the
maximum of the predicted and the actual ratings. This ensures
that if the method predicts a high value where the truth is low,
or vice-versa, this will adversely affect the performance score:

WRMS =

√∑
((uest − utrue)2 ·max(uest,utrue))

n
. (14)

Figure 6a shows the WRMS for each method over 100 trials.
We are also interested in how well each method would

select high-value points given a fixed number of observations.
We identified the 15 points with the highest ratings from
the 100 uniform samples of each true function, and after
each observation selection, we queried each method for their
15 highest rated points to compare to. Figure 6b shows
the number of true positive selections. This metric shows
methods that correctly identify the high-value areas, but don’t
necessarily correctly estimate the rating magnitude.

B. Simulated Lake Monitoring Trials

In these experiments, we study the use of our method on
a simulated autonomous surface vehicle (ASV) monitoring a
lake environment. The ASV must travel from a start location
to a goal location while planning a trajectory that balances
the distance traveled with the amount of information sampled
along the trajectory. The goal is to allow the ASV to au-
tonomously plan its mission trajectories while maintaining the
same balance of objectives, distance and information gathered,
that the operator would.

The environment consists of a simulated information field
over a lake, a diverse set of trajectories across it (Fig. 7), and
their associated objective scores (Fig. 8). The information field
is generated using a sum of 2D Gaussians with added Perlin
noise [18]. The information objective score is calculated as
a path integral of the information field along the trajectory.
Two motion planners, STOMP [11] and RRT [12], are used to
provide path diversity. In order to cover the objective space,
the paths are planned using a weighted linear combination of
the objectives as a cost function cost = v1+w∗v2. By varying
w, trajectories in different parts of the objective space can be
created. 200 paths, 100 from each planner, were generated for
each training and test set.

We designed a simulated user that represents a human
operator performing an environmental sampling mission. As
shown in fig. 8, the user wants to score at least 150 on the
information gathering objective. Above that, it attempts to
minimize the distance traversed. Given these non-linear user
preferences, the utility u of a trajectory is encoded by the
following equations:

u =


1, if information < 125

2, if 125 < information < 150

d5− (distance− 450)/50e , otherwise.

For an absolute rating query, the user rated the presented
trajectory on a five-point Likert scale, with 1 being an unac-
ceptable trajectory and 5 being an excellent trajectory [14].
In a relative ranking query, the user is asked to select the
best trajectory from a set of five. These scales and set sizes
were selected as they represent a good balance of gaining
specific information without requiring lengthy consideration



Fig. 7: Two example lake monitoring trajectories from the trajectory pool
are shown superimposed over a simulated objective field representing the
information gained by traveling over each part of the lake. Red areas represent
locations with higher information. The dashed trajectory is longer but gathers
more information.

by a human user. The ratings are linearly scaled to the range
[0, 1] for use in the GP.

We compare our proposed combined method of choosing
between absolute and relative queries (labeled UCBC in plots)
to randomly selecting only absolute queries and to actively
selecting only absolute queries based on the UCB in eqn. 12.
20 learning trials were run with 14 total queries each.

To measure the performance of these methods, after each
query we calculate the rating prediction error of the learned GP
on the trajectories in the test set that would be rated five by the
simulated user. Additionally, we calculate the WRMS error, as
in equation 14. These error metrics measure a method’s ability
to learn the user’s preferred region.

The mean error and WRMS of each method are given in
Figures 9a and 9b. These results show that our method learns
and identifies high-utility trajectories with fewer queries than
methods using ratings alone.

We made several qualitative observations of the algorithm’s
performance during the trials which help explain these results.
As compared with random queries, active learning reduces
the number of queries about uninformative portions of the
objective space. However, in some trials, the learner would fail
to query about a trajectory with a user rating of five, having es-
timated that four was the highest possible rating. Incorporating
relative queries alleviates this issue by allowing a much larger
number of trajectories to be examined. Overall, these results
show that our method can successfully generate highly-rated
trajectories while improving learning times, which can lead
to reduced operator burden and more efficient human-robot
teaming.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we proposed a novel preference-learning
algorithm. We showed that a robot can efficiently obtain a
rich representation of an operator’s preferences by actively
combining simple rating and ranking queries with a GP to
learn the human user’s preferred trade-offs among mission

Fig. 8: Trajectory ratings for the simulated user plotted over the mission
objective space. Markers are colored by rating: red = 1 (a poor trajectory),
yellow = 2, green = 3, cyan = 4, and blue = 5 (an excellent trajectory). The
simulated user wants to gather 150 information samples. Above that threshold,
lower distances are preferred.

(a) Error on paths with a true rating
of five

(b) Weighted RMS error

Fig. 9: Mean GP estimation error and weighted RMS error across 20 trials
for the simulated information-gathering user. The shaded region shows the
standard error of the mean. UCBC is the proposed method that combines
rankings and ratings.

objectives. This representation could be used in a wide variety
of domains, including aquatic robotics, where the dynamic en-
vironment and limited communication necessitate a complete
understanding of mission goals. Our experiments showed that
multiple query types and principled active learning can signif-
icantly improve the convergence rate of preference learning.

Our work suggests several directions for further study.
Large-scale user studies are needed to further define the
learning algorithm’s capabilities and to study how well it
copes with differing levels of user expertise. Additionally,
methods for incorporating other query types, such as complete
demonstrations and fully-ordered rankings into the GP should
be explored to further broaden the method’s capabilities. Com-
plementing this, techniques for identifying relevant objective
features should be examined. Ultimately, this framework and
its underlying principles have the potential to reduce the
cost, time, and operator burden of deploying and controlling
autonomous robots.
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