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Chapter 1: Introduction

The coastal ocean is bounded by the shoreline and the 200m isobath, and is

a common experimental setting for field robotics. This is the most biologically

productive area of ocean and is subject to the majority of natural and industrial

disasters [39]. Its proximity to the shore and coastal communities adds to a variety

of economic, military, and energy research areas under development. The increased

demand for advancement in all of these coastal research areas predicates the need

to better understand the dynamics of this environment.

An area of particular coastal interest is in wave energy extraction. The increas-

ing demand for alternative energy sources has created new opportunities for this

constant and powerful energy source. However, its appeal is curbed when compared

to the cost of deployment and maintenance of Wave Energy Converters (WEC).

One goal of the National Northwest Marine Renewable Energy Center (NNM-

REC) ALFA project aims to explore new avenues to increase the cost-effectiveness

of WEC maintenance by employing autonomous robotic platforms to inspect, mon-

itor, and intervene. Field experiments are currently carried out in various areas of

research at the NNMREC North Energy Test Site (NETS) two nautical miles off

the Oregon Coast (as shown in Fig. 1.1).

One challenge for robotic maintenance of the WECs is proper station-keeping

under the influence of a surface wave field. Wave forces in the intermediate depths
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Figure 1.1: NNMREC is a partnership between the U.S. Department of Energy,
Oregon State University, the University of Washington, and the University of
Alaska Fairbanks. NNMREC operates and manages NETS and SETS among other
facilities.

of the coastal ocean will displace a robot throughout the majority of the water

column. These forces decay exponentially from the water surface (as shown in

Fig. 1.2), and sufficient depths yield negligible disturbances [14]. Because of this

decay, as well as their cyclic nature, wave forces are often neglected in robotic path

planning. In field applications where there is a low operational depth, a persistent

wave climate, and strict localization constraints, such as those found at NETS,

this assumption can quickly break down.
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Figure 1.2: A visualization of the flow field velocity at various depths beneath a
monochromatic wave. These vector lengths are not to scale and are intended to
conceptualize the direction and decay with depth of wave forces.

Robotic inspection and manipulation tasks often require some form of sensory

observation, be it acoustic, visual, etc., which has an associated computation time.

These observations are paired with positional, or localization, data. Wave-induced

disturbances lend to increased sensor drift which hinder the quality of robotic

observations, such as those needed to close SLAM loops in [29] and [11].

Traditional Proportional Integral Derivative (PID) control techniques can be

used to counter wave displacements, but reaction times for marine robots are slow

relative to the changing wave forces. Given the periodicity of waves, feedforward

techniques should be explored. This thesis outlines how Model Predictive Control

(MPC) can reduce an underwater robot’s position error when station-keeping under

the influence of ocean waves. A wave field is decomposed to component velocities

and used as input to the model. Using this model, an optimized control input is

calculated over the desired time horizon. This optimized control is shown to resist

wave displacement by using thruster force to counter impending disturbances.
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The main novelty presented in this thesis is a robotic control method that can

estimate and compensate for future wave action. This is demonstrated through

simulations of an underwater robot performing station-keeping above an interme-

diate water bathymetry under the influence of a strong sea swell. The calculated

control actions are optimized to actuate an underwater robot’s thrusters in an an-

ticipatory fashion so that the vehicle remains nearly stationary as the waves pass

over it. This provides an increase in the quality of robotic observations in shallow

ocean water, as well as reducing the risk of equipment damage while deployed.

MPC reduces an underwater robot’s position error in a station-keeping applica-

tion when compared to traditional feedback control. Additionally, the algorithm

is shown to be resistant to sensor noise of the observed wave field. Thus, the goals

of this thesis are to:

• Determine the most effective prediction horizon for MPC in ocean waves

• Measure performance improvement from MPC over PD control

• Measure MPC resistance to noisy wave field observations

The remainder of this thesis is organized as follows: the problem background

and some related work is highlighted Chapter 2. Next, the MPC method is de-

scribed and outlined in Chapter 3, which includes the system model and algorithm

specifics. Chapter 4 presents results of determining effective prediction horizons

and analyzes system performance against a simulated wave field with noisy obser-

vations. Finally, concluding remarks are provided in Chapter 5.
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Chapter 2: Background

This chapter is organized as follows: an introduction to wave energy and extraction

methods is given in Section 2.1. Section 2.2 gives background information on

the linear wave mechanics used to model the simulated wave field. Section 2.3

introduces Model Predictive Control (MPC) and related work on the topic. Lastly,

Section 2.4 serves as a literature review, highlighting marine robotic advancements

in path planning (Sec. 2.4.1), localization (Sec. 2.4.2), perception, (Sec. 2.4.3), and

applied systems (Sec. 2.4.4).

2.1 Wave Energy

The world’s oceans can produce close to 2TW – roughly twice the current global

usage – of usable wave energy [17]. Compared to solar and wind sources, wave

energy is relatively predictable and available on a consistent basis. Some chal-

lenges facing wave energy extraction are: poor scaled economics, a high rate of

infrastructure wear, and unclear effects to the coastal geomorphology [21]. All of

these are active areas of research in the field.

According to Linear Wave Theory (LWT), the energy (EL) in one water wave-

length (L) is the sum of its potential and kinetic energies [14]. After some deriva-
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tion, it is reduced to:

EL = 1/8ρgH2L. (2.1)

Though simplified, (2.1) illustrates a noteworthy point that neither the average

potential nor kinetic energy per unit area depends on water depth, but instead is

simply proportional to the squared wave height term (H). The rate at which

energy is transferred is the energy flux. For LWT, it is the rate at which work is

being done by change in energy density of a fluid over a vertical face [14].

Wave energy conversion as a whole is a young industry with many competing

converter designs. Point absorbers are small devices that freely oscillate at the

water surface, expanding and contracting some working fluid. An attenuator is a

jointed body that floats parallel to the wave direction, generating energy from the

relative motion at the joint. An Oscillating Water Column (OWC) device uses

differences in atmospheric pressure to force trapped air through a turbine as it is

forced out by wave action [17]. The arrays to be deployed at NNMREC test sites

are yet to be determined; however, they will all require similar mooring and anchor

systems. Thus, immediate robotic testing for ALFA is within reason.

Robotic maintenance of Wave Energy Converters (WEC), such as the platform

detailed in [28], is an active area research. In fact, MPC techniques have been

explored by the wave energy community as a way to optimize WEC power gener-

ation. As shown in [8] and [43], MPC can incorporate actuator limits and system

constraints to provide optimal energy capture while benefiting from a variable pre-

diction horizon. Wave prediction modeling is also an active area of research. In
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[32], Ling provides a method of real time WEC force estimation, showing accu-

rate predictions for horizons up to 15 s. This method is noteworthy since it does

not require a network of sensors to provide wave information, as is often carried

out. In [13], Colby uses an artificial neural network to estimate wave forces from

a hydrodynamic model as inputs to an evolutionary algorithm to optimize WEC

geometry.

2.2 Wave Mechanics

According to LWT, a wave field in a random sea is composed of a superposition

of sinusoids. Once decomposed, each sinusoid can then be analyzed as a single

monochromatic wave with unique period (T ), amplitude (a), and phase offset (φ)

[39, 14]. For reference, this thesis instead uses the term wave height (H), which

is simply twice the amplitude (H = 2a). LWT assumes fluid flow is irrotational,

incompressible, and inviscid, thus allowing for potential flow [7]. In practice, LWT

is not only easily implemented, but has also been shown to produce accurate results

[14]. Thus, LWT is often employed for a reliable primary analysis before other

nonlinear theories, and it forms the wave action model used in this thesis.

Using LWT, a field of random sea waves, not unlike an electrical signal, can

be decomposed to its component frequency spectra by way of a Discrete Fourier

Transformation (DFT) [21]. DFT solvers will output frequency coefficients with

associated energies correlating to signal amplitude. The phase information can be

extracted by taking the arctan of the imaginary over the real part of each term.
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For further details on Fourier spectra of wave fields, see [17].

In this thesis, the input wave field is assumed to be provided to the vehicle

as an array of wave period, wave height, and phase offset (T,H, φ). Component

wavelengths (L), wave numbers (k), and frequencies (ω) are solved for by way of

the dispersion relation [14]. Applying superposition, the wave field time series is

then constructed by a water surface wave equation (3.10).

Beneath each component monochromatic wave, wave-induced particle displace-

ments occur in a cyclical fashion. In deep water waves where depth is greater than

approximately half of the wavelength (d > L/2), these displacements follow circu-

lar paths. As d decreases, the paths become more elliptical until they are nearly

horizontal in the surf zone [14]. Associated particle velocities and accelerations can

be derived from these trajectories. As stated earlier, the magnitude of these ve-

locities and accelerations decay exponentially through the water column such that

they are negligible (< 0.04%) at a depth, d ≈ L/2 [14]. The per-wave, at-depth so-

lutions to these velocity and acceleration equations are used as the primary inputs

to the modeled system dynamics.

2.3 Feedforward Control

Robotic control is an area of research under constant development. For trivial

tasks, traditional feedback (PID, or PD) control remains widespread because of

its ease of implementation and low computational cost. In applications requiring

more precision; however, more advanced learning-based control methods have been
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developed [30]. For the scope of this paper, it is assumed that the basics of feedback

control are well understood and are not the focus of this background section.

Feedforward control describes a control method where a predefined command

signal is passed to an actuated plant from an external source [9]. This differs

from feedback control, as feedforward does not inherently adjust the command to

account for its effect on the system output [37]. Model Predictive Control (MPC)

seeks to synthesize the two by combining the forward estimation ability of a well-

defined model with the error checking of feedback control.

MPC uses a dynamic model to forecast system behavior and optimizes that

forecast to produce the best decision [42]. The robustness of this model is the

centerpiece of MPC, as it must allow for accurate estimations of future states along

a prediction horizon. MPC then can optimize an action by way of minimizing some

global cost function.

MPC gained popularity in the late 1970s, particularly in chemical process in-

dustries, because of an impulse function which required less a priori information

[9]. This results in little or no hand tuning of controller gains. MPC in state space

form has also been explored. This is beneficial and allows for well known state space

techniques to be extended to multivariable processes and systems with stochastic

noise in measured variables [9]. In this thesis, model dynamics are developed in

state space to take advantage of these formations.

Applying MPC for underwater robotics is a promising option, as the combina-

tion of model dynamics and cost function minimization requires minimal tuning of

controller gains. In [27], energy efficient paths for a glider are generated by min-
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imizing costs across stratified, spatially-distributed currents using an A* search

heuristic, or an overshooting estimate. In [33], MPC with a least squares cost

function is used to optimize sawtooth paths for an underwater glider with an em-

phasis on real-time execution. This cost minimization technique is similar to that

used in this thesis. Both approaches show the value in state estimation for robotic

path planning, but do not incorporate wave disturbances.

2.4 Underwater Robotics

Underwater vehicles can be classified into one of two generic categories: manned

and unmanned vehicles. Unmanned Underwater Vehicles (UUV) are often labeled

as synonymous with Autonomous Underwater Vehicles (AUV). For the scope of this

thesis, the term AUV will be used for an untethered unmanned vehicle. The term

Remotely Operated Vehicle (ROV) will be used to describe a tethered unmanned

vehicle whose operation may or may not be teleoperated [12]. No manned vehicles

will be discussed.

The term “glider” may on occasion be used to describe a type of AUV. Gliders

such as the Slocum shown in Fig. 2.1 are designed to move efficiently through the

water column by changing their weight [2]. Successive pitch adjustments up and

down result in a sawtooth subsurface flight profile with no external propulsion.
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Figure 2.1: A Webb Research Slocum Glider. This AUV uses only a buoyancy
differential and small attitude adjustments to achieve an ultra low-wattage (0.5-
1.0 Watts) and long range mission profile.

2.4.1 Path Planning

One of the more active areas of research in Field Robotics is optimal path plan-

ning. Planning methods combine discretized graphs, heuristic search, and dynamic

programming which, when properly balanced, give close to optimal results at a re-

duced computational cost [30]. Underwater robotics is no different, albeit with its

own unique challenges. One such challenge is vehicle localization in an environ-

ment absent GPS and long range wireless transmissivity. Relative measurements

can be provided by onboard sensors and corrected for uncertainty. The method
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employed by Galceran et al. [19] uses a 2-phase approach to produce a sonar

generated bathymetric map. In it, a standard mow-the-lawn pattern is employed

using an a priori input to distinguish the seafloor into regions of low and high

slope with a user-influenced gradient. Once the map is split, the planar regions

are covered exhaustively with a path generated in a Travelling Salesman (TSP)

manner while high-sloped regions are ignored as obstacles. After, the high-slope

regions can then be covered with a slicing algorithm, where the vehicle travels in a

spiral fashion along greedily linked adjacency points. Localization is provided by

an onboard Doppler Velocity Log (DVL) and Inertial Measurement Unit (IMU)

while submerged, and GPS while at the surface. The vehicle path is adaptively

replanned for uncertainty using a Stochastic Trajectory Optimization Motion Plan-

ning (STOMP) method to account for errors from its ground true position.

Some sampling techniques are analysed in [35] and compared with a priori-

tized cost-evaluation function. This function balanced three mission metrics: col-

lected samples, energy consumption, and mission duration. Their results showed

that in almost all sampling scenarios, a stratified random spiral pattern is the

most effective sampling method. This method is similar to that employed by the

GIRONA 500 AUV in [19] to measure high-slope areas. In [5], an informed path

planning method is applied to a Slocum Glider, where the vehicle can maximize

user-weighted information gain while avoiding high-traffic areas during specific

time windows, traveling there only at night. The recursive algorithm uses a “di-

minishing returns” approach, rewarding travel to unexplored nodes. This work is

expanded upon in [6] with a Branch and Bound (B&B) search algorithm which
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chooses the best path for the glider based on a probabilistic model of measure-

ment quality expected. This model is a generalization of the Gaussian probability

distribution of [41] of whether a point in space adds to the “informativeness” of

the scalar field being sampled. The specific goal of the algorithm is to find the

path which minimizes the average variance reduction in the Gaussian Process (GP)

model. The results show that though exhaustive search is optimal in an infinite

horizon, this is not computationally efficient. By limiting the horizon and using

B&B to keep track of these searches, costs are cut dramatically. The authors also

suggest using a heuristic to increase the lower bound more quickly.

Another interesting path-planning solution for a Slocum Glider is presented by

Smith et al. in [48]. Here, the unique glider dynamics are considered in creating

an algorithm which will traverse areas of high interest, adjust its sampling den-

sity accordingly, and avoid areas of strong and/or variable currents. Unlike other

underwater vehicles, a glider performs poorly when running a traditional mow-the-

lawn pattern due to poor navigational accuracy and reliance on dead reckoning.

Instead, a glider “flies” in a zigzag pattern, one where its sampling density is di-

rectly related to its pitch angle. In this approach, an expert-imported interest

domain and water current data from a Regional Ocean Modeling System (ROMS)

feed are input to the algorithm which is subjected to field trials. The most usable

results were those of a trial in the Southern California Bight, where the algorithm

scored 20% better than a precomputed trajectory. Simulator results on an A*

derivative are carried out by Fernández-Perdomo et al. in [18] show that account-

ing for ROMS-generated ocean currents in path generation leads to reduced overall
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travel times.

Path optimization is a pivotal aspect of robotic path planning. In general,

the amount of information gain should be maximized while considering some cost

function, often times the mission duration. This approach is shown in [49] where

a sampling path is designed to track a specific oceanographic point of interest

and update accordingly. Expanding upon this in [47], Smith et al. applied an

Ecomapper AUV to autonomously track and move along Oceanographic Fronts.

These fronts are gradients in the ocean water properties and are directly affiliated

with plankton populations. The algorithm employed uses a prior estimation of the

front locations and then aims to sample the front by repeatedly crossing the AUV

through it. New waypoints are generated as the front status is ascertained and

compared to GPS readings. The next waypoint is generated to either cross the

front again or continue searching, whichever is more efficient. The results showed

that preplanned routes were shorter than the adapted routes. This is because the

algorithm tended to work conservatively, using a cubic spline which overestimated

the front curvature. Otherwise, the vehicle moved well along waypoint contours.

Another efficient path planning approach is the hybrid Fast Marching (FM)

method, or FM*, employed in [40]. This approach uses an A* search heuristic to

find a continuous path through a discretized, static world, converting grid meshes

to save on computation time. In addition, the algorithm accounts for the vehicle

kinematics and adapts the trajectory for underwater currents. The simulator re-

sults are promising but presented without any field trials, listing that as an avenue

for future work.
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2.4.2 Localization

A central focus in greater robotics is the Simultaneous Localization And Mapping

(SLAM) problem. This arises when a robot either does not have access to a map of

its environment or it cannot determine its position in an a priori map [51]. SLAM

techniques attempt to generate a map of the environment while simultaneously

localizing a robot within it. It is a difficult and costly problem to solve as maps

and relative positions must be estimated throughout. SLAM challenges in a marine

environment are amplified as robots rarely remain stationary for very long and

sensor observations are often noisy.

Efficient area coverage and good SLAM performance in navigation; however,

are conflicting objectives. To provide efficient coverage, redundant overlapping

trajectories need to be minimized while still accounting for vehicle/sensor “drift”

over time. In [29], Kim and Eustice introduce an active visual SLAM method of

perception-driven navigation which balances exploration and revisitation using a

reward function. They used a visual saliency method to compute image scores

and schedule revisits accordingly. The saliency score assumes that visual SLAM

treats images unequally, a fair assumption especially underwater, where the spatial

distribution of desired features is not consistently apparent. As a set of waypoints

is generated, a reward for that path is computed based on its overall saliency. The

reward is then compared with the cost of travel and the robot then moves.

Results for [29] are presented in a simulator and through HAUV field trials in

a ship hull inspection role for the SS Curtiss. The AUV plans paths autonomously
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and then revisits waypoints to close loops and minimize navigation uncertainty by

comparing features at its “drifted” position with prior features. This uncertainty

horizon controls how opportune revisits are and directly affects the strategy cost.

This work is expanded upon in [11] where the loop-closing navigation uncertainty is

probabilisticially modeled using GP regression. This approach combines sampling-

based plans with information filters to quickly search many paths given a utility

function. Trials were again carried out on SS Curtiss and results were compared

to [29]. The proposed method showed an improved path length with uncertainty

levels similar to the “best possible” deterministic model.

Active SLAM as presented in [29] and [11] is effective in a hull inspection

application as it can use previously recorded features to adjust for uncertainty. In

a bathymetric mapping application; however, this is not a preferred approach as

the seafloor is often largely featureless. In [4], Barkby et al. employ an efficient

and featureless bathymetric SLAM with a Rao-Blackwell particle filter and GP

Regression for depth uncertainty loop closures. This method overcomes feature

dependency by generating a particle-based 2D depth map from successive identical

point clouds of bathymetric observations. To save memory, the entire point cloud

is not saved; the backtraceable trajectory of each child point is recorded to a parent

map in a process called Distributed Particle Mapping (DPM). Each observed state

is removed from the particle filter and tracked by a single shared extended Kalman

filter. A bathymetric map can be input or initialized to zero. The algorithm was

tested on a Sirius AUV, a JASON ROV, and a Sentry AUV at different locations,

showing consistently small particle set sizes and generating similar maps to Ultra



17

Short Base Line (USBL) data at a minimum computation time.

Figure 2.2: A Bluefin Hovering Autonomous Underwater Vehicle, or HAUV, as
referenced in [29] and [26]. This vehicle was used along with a Didson sonar to
reconstruct the S.S. Curtiss hull draft.

2.4.3 Perception

Another active area of research in Field Robotics is interpreting real-world obser-

vations. Underwater environments increase the difficulty of robotic perception due

to their unique characteristics. A plethora of methods on this topic have been

published, and each carries its own applied merits and detriments. In [38], Pa-

padopoulos et al. use a SCOUT Autonomous Surface Vehicle (ASV) with off-the
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shelf sensors to obtain reconstructions for partially-submerged structures in rough

sea conditions. The ASV used a LiDAR Camera to collect data above the wa-

ter line, where the vehicle travelled around the target in a circle, recording data

in a point cloud. This data is then passed through an Iterative Closest Point

(ICP) minimizing algorithm and then filtered to reconstruct the observed surface.

Additionally, the vehicle used a sonar emitter to collect data below water. The

results, although not novel in their approach, are still interesting in their low cost

execution. Another interesting takeaway was that this method did not require

a pre-computed trajectory, like SLAM techniques. This allowed the vehicle to

reconstruct slow-moving structures and even watercraft.

In addition to presenting the aforementioned path-planning techniques in [19],

the authors also detail their surface reconstruction method. In it, the sonar sen-

sor populates a triangular mesh grid with points and normal obtained as gradient

samples of a minimized volumetric indicator function. When minimized, the sur-

face can then be extracted as a zero level set using surface contours. The normals

are estimated using a Hoppe Method, which fits a plane in a local k-neighborhood

around each point. Another interesting approach is outlined in [15], where the

authors attempt to use a Starbug AUV as a “mule” to transfer data from non-

communicating submerged sensor nodes. A path is plotted from node to node

using a TSP solver with uncertainty and the nodes are found using computer

vision. This approach looks for a specific color range and maintains the object

camera center while data is up/downloaded.

Lighting issues, camera contrast, and blurring all hinder camera operation in



19

an underwater application. By needing only non-orthogonal captured raw camera

point sets, the method devised by Campos et al. in [10] is widely applicable. The

process employs Restricted Delaunay Triangulation (RDT) meshing which takes a

small set of points and iteratively constructs a course-to-fine triangle surface. This

is done online and is shown to be able to process corrupted point sets with loose

input requirements and a low memory footprint. RDT selects the points which lie

in a local neighborhood and logarithmically filters out any outliers. Any intersec-

tions between local segments is answered and generates a finalized Local Bivariate

Quadric (LBQ) surface. Results are presented on a number of different multi-beam

sonar experiments on sources with varying complexities and added noise sets. The

method is also experimented on an optical stereo multi-view seafloor reconstruc-

tion. Though the algorithm struggled with vertical walls at shallow observation

heights, the post-processed results were still robust despite a high number of out-

liers.

Interpreting the novelty of each observation is equally important as making the

actual observation. In [20], Girdhar et al. use an online topic modeling approach

to compute the “surprise” score of an observation. Applied, a vehicle could explore

an environment as a tourist might explore a new city: stop and observe if new,

move along if not. Using this method, an underwater robot was able to recognize

and record different species of coral while having its speed controlled by mapping

this “surprise” score through a sigmoid function.
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2.4.4 Combined Systems

By combining these path-planning and surface reconstruction techniques, a number

of useful applications similar to the bathymetric mapping in [19] can then be

performed. Another such application is modeling and inspecting the hull of a

berthed ship as detailed in [24], [25], and [26]. Hollinger et al. seek to construct

closed 3D meshes from sonar-induced point clouds and measure the uncertainty on

the closed mesh using non-parametric Bayesian regression. Specifically, the method

applies a GP implicit surface with augmented input vectors for uncertainty and

use a probabilistic path planner to minimize uncertainty while maximizing the

mesh coverage. Here, the surface uncertainty is a generalization of the probability

distribution of whether a point in space is in fact on the mesh surface. The input

vectors can be supplied in various ways; in this thesis, they are supplied by way

of an initial coarse survey over the ship hull. [26] uses a similar Poisson surface

reconstruction method for sonar imaging and 3D mesh modeling as [24]. The path

planning is slightly different; however, as it uses a computationally inexpensive

TSP/RRT solver to create a probabilistically complete and asymptotically optimal

solution.

In [23], Hollinger and Sukhatme apply their prior work in [24] and [25] to a

feature mapping role. Here, a YSI EcoMapper AUV is used to dive Puddingstone

Lake, CA and generate dense bathymetric maps using a sidescan sonar. Their ap-

proach again models uncertainty in the form of a GP, where the actively planned

path seeks to maximally reduce the variance while accounting for onboard budget



21

constraints. Paths are then selected greedily. In addition, they allow for dives to be

adaptively replanned as more information becomes available to the vehicle. These

re-planned dives are computed offboard and communicated to the vehicle after a

human operator checks for safety. Results show that their planned path shows

substantial improvement over standard lawnmower patterns and show limited im-

provement when adaptively re-planning, showing an 8% reduction in uncertainty

over the first re-planning cycle and no improvement over the second re-planning

cycle. They cite reducing the computational cost of adaptivity as an avenue of

future work.

Figure 2.3: A YSI EcoMapper AUV as referenced in [47] and [23] which along with
a side-scanning sonar was used to construct dense bathymetric maps of the floor
of Puddingstone Lake, CA.

Ocean currents often lead to untethered AUV’s such as the Slocum suffering

from increasing positional uncertainty over their mission profiles. If the vehicle is

equipped with a DVL and the water depth is shallow enough (d . 200 m), then

localization becomes significantly more trivial. In the mid-water column, which is
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the submerged space outside the DVL bottom lock range, the vehicle relies solely

on dead reckoning to localize itself. In [34], Medagoda et al. propose a novel

method of using a vehicle’s DVL as an Acoustic Doppler Current Profiler (ADCP)

to instead measure water current relative to the vehicle. Applied, this can constrain

the positional error to the initial current velocity uncertainty at the sea surface. In

addition, if bottom lock is achieved at any point, the velocity history is constrained

to 2σ by fusing the dead reckon and current estimates. The method is validated

using field data from a Sentry AUV, where DVL and USBL inputs to the AUV

are blacked out while the vehicle performs a series of lawnmower patterns. Results

show that with no prior info about the true water currents, positional errors with

the USBL are within 600m at 17 km (3.5%) for 8 hours and 8 km at 84 km (9.5%)

at 20 hours.

Onboard vehicle sensors are often used to compensate for accumulated position

error. Another active avenue for autonomy in marine robotics; however, is the use

of in situ data to allow for active replanning and to guide sampling decisions. A

model is described in [46] which uses a Wave Glider AUV. Its goal is to learn a

linear predictive regression model which inputs environment data to predict glider

speed. The appeal is to use this data for better offline objective planning. Their

results concluded that the dominant contributors to glider speed predictions were

the significant wave height and peak wave period. This is not surprising, as they

are the dominant contributors to orbital velocities in the surf zone [14]. Their work

is expanded upon in [36] using a GP-based approach to mixed results.

This approach is expanded upon in [22] where Hitz et al. attempt to use the
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onboard sensor data as the adaptive path planned threshold criteria. They employ

a receding horizon path planner to reduce the uncertainty around this specific

criteria, which generates optimal sampling paths connecting highlighted sites along

a user-defined vertical transect plane. The uncertainty model is GP-derived and

uses no a priori information on initialization. They provide simulator and field

results on an ASV tracking toxic cyanobacteria. The vehicle traveled 18 km and

showed reduced uncertainties of 68% when compared to non-adaptive techniques.

Though there is no ROV involved, the multi-robot approach in [16] proposes

a novel solution to the ship-hull inspection problem. The three robots, a small

quadcopter and two magnetic crawlers, employ a three phase approach. First,

the Pelican Quadrotor gives a top level scan of the interior of a cargo bay us-

ing computer vision to find the more compromised areas. Second, a lightweight

magnetic robot crawls along the walls using a Monte Carlo localization method

and an onboard camera to inspect the coating corrosion and any cracks in the

hull. Finally, the heavier Magnetic Autonomous Robotic Crawler (MARC) crawls

along the walls with a similar localization method but uses an ultrasound sensor

to measure any irregularities in the material thickness of the vessel. The work

is preliminary and many locomotion, point cloud, and multi-agent improvements

are suggested. Otherwise, it is an interesting solution, especially if paired with an

outer hull-inspecting ROV.

A novel multi-robot approach is presented in [31] where a group of ten Slocum

and Spray gliders are used to autonomously sample an area for oceanographic data.

The different gliders have different sampling profiles; the Spray gliders patrol the
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outside loop of a rectangle while the Slocum gliders make three loops through the

inside of it. Paths are generated to maintain equal intervehicle spacing within each

loop, with gliders adaptively shortening or expanding as necessary. The algorithm

also can adapt for an adjusted number of gliders within each loop. Results show

that the system provided excellent coverage of the area while maintaining rela-

tively good vehicle spacing, which further improved the sampling coverage. Strong

currents were found to be an issue but one that the system adapted for reasonably

well.

Wave-induced station-keeping is explored in [45] and [44] where a dynamic

Kalman filter is created to synthesize onboard sensor data to provide an estimate

of wave-induced disturbances. This filter fuses ground speed from the Doppler

Velocity Log (DVL), relative water speed from the an ADCP, and attitude from an

IMU among other sensors to produce an estimate of the fluid velocity. This method

highlights some of the difficulties of in situ wave parameters. One drawback of

their experiments was the need for a subsurface sensor network to provide wave

parameters to the controller. The work in this thesis seeks to improve on these

results by providing improved cost minimization techniques and emphasizing real-

time control execution.
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Chapter 3: Method

This chapter is organized as follows: Model Predictive Control (MPC) is further

detailed in Section 3.1, where the global cost function and minimization technique

is explained. Section 3.2 gives background information on the robot modeled in this

work and explains the force balance equations. Section 3.3 expands these equations

into State Space form, readable by the simulator. Next, Section 3.4 details how

the simulator constructs a wave field and how wave forces are extracted and input

to the state estimator. Lastly, Section 3.5 synthesizes the cost function and wave

field model into the MPC algorithm.

3.1 Model Predictive Control

The term Model Predictive Control (MPC) does not refer to a specific strategy,

but a variety of methods that all in some way incorporate the following [9]:

• Modeled state estimator along some time horizon

• Cost function to minimize a control sequence

• Receding horizon as optimized control is carried out

MPC requires a model of the system dynamics that can estimate future states

from a current state and set of control inputs along a time horizon. The model in
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this case includes the vehicle dynamics and thruster forces, along with a distur-

bance matrix to model the wave disturbances on the system. By thresholding the

thruster forces within the minimization function, the need for tuning gains, such as

in PID control, is removed [42]; however, the number of steps in the prediction hori-

zon must be judiciously chosen. Too little time will not allow for the full dynamics

of the system to be accounted for while too much time will be computationally

intensive.

The optimization objective is to find the sequence of input control actions to

the state estimator that minimizes some global cost function. Cost functions can

be formulated by balancing one or several metrics, e.g. mission duration, energy

consumption, or number of sampled observations [30, 5]. Given the station-keeping

objective, the cost function employed in this work is the sum of squared distances

between the desired and predicted states added to its input control over the current

horizon, or:

J =
N∑
k=1

[Υtarget −Υk(uk)]
2 + u2

k, (3.1)

and

u∗
1:N = arg min

u1:N

J(u1:N), (3.2)

where N is horizon length, k is the current time step in the N horizon, Υtarget

is the desired state, Υk(uk) is the state at time k from input uk, and u∗
1:N is the

optimized control input that minimizes the cost, J .

The control action is then optimized by evaluating the Jacobian, which is the

derivative of the cost with respect to the control action. The Jacobian is minimized
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as the optimal control action is approached. At each optimization step, a new set

of control actions is generated by perturbing the previous set according to the

Jacobian. The new control action effects are then estimated along the horizon.

This is repeated until a set of control actions that minimizes the cost function

is calculated as in (3.2). This gradient descent method of cost evaluation and

optimization is similar to that used by Medagoda et al. in [33].

3.2 Vehicle Model

For the scope of this thesis, the term Remotely Operated Vehicle (ROV) will be

used to describe a tethered unmanned vehicle whose operation may or may not

be teleoperated [12]. The ROV modeled for this work is the SeaBotix vLBV300

shown in Fig. 3.1. In simulation, the ROV is not teleoperated and performs control

actions autonomously. In addition, the terms “ROV”, “vehicle”, and “robot” are

used interchangeably.

The ROV has six vectored thrusters controlling motion along five degrees of

freedom. For the scope of this work, only the surge and heave directions, or forward

(global x) and vertical (global z) axes, are considered. See Fig. 3.1 for reference.

The vehicle is assumed to be a rigid body, and irrotational in the water flow.

Since its size is well below the wavelength, its drift motion is assumed to follow

that of a particle. Vehicle dimensions, mass parameters, and thruster forces are

provided in Table 3.1. Moment of inertia and center of gravity data was provided

by the CAD model shown in Fig. 3.2 input to Dassault Systèmes SolidWorks [50].
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Table 3.1: Vehicle Parameters used in Simulation

Parameter Symbol Value
Density of Seawater ρsea 1030 kg/m3

Incident Area, x Ai,x 0.156 m2

Incident Area, z Ai,z 0.273 m2

Moment of Inertia, x Ixx 0.62 kg m2

Moment of Inertia, z Izz 1.60 kg m2

Dry Mass mdry 22.2 kg

Added Mass, x madd,x 8.1 kg

Added Mass, z madd,z 36.7 kg

Drag Coefficient, x cd,x 0.84

Drag Coefficient, z cd,z 1.06

Max Thruster Force Tmax 29.7 N

Thruster Angle, Forward θf 35◦

Thruster Angle, Aft θa 45◦

Thruster Angle, Vertical θv 20◦
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Figure 3.1: A SeaBotix vLBV300 ROV similar to the one modeled in this work.
Along with IMU and DVL sensors, the vehicle has six angled thrusters which
control it along five degrees of freedom: heave (vertical z), sway (lateral y), surge
(lateral x), roll (rotation around x), and yaw (rotation around z).

Added mass values were provided by the same model input to Ansys AQWA [1].

Drag coefficient data was provided by the manufacturer.

The differential equation defining ROV motion is:

Mv̇a = Fthrust + Fd + Fg + Fc, (3.3)

where M is a mass term containing the dry and added masses, mdry and madd, va

is the absolute velocity of the vehicle with respect to the inertial reference frame,

Fthrust is the ROV thruster force, Fd is the drag force from the water, Fg is the

force of gravity, and Fc is the Coriolis force. By assuming that the Coriolis force
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Figure 3.2: A CAD model of the robot used to generate mass and hydrodynamic
properties from SolidWorks and AQWA, respectively.

is negligible and that the vehicle is neutrally buoyant, the Fc and Fg terms are

neglected. Substituting inertia and drag relations, (3.3) becomes:

mdryv̇a +maddv̇r = Fthrust +
1

2
ρseaAicd|vr|vr, (3.4)

where vr is the velocity of the vehicle relative to the water, which acts on the

added mass term of M in (3.3). The added mass term is used to measure the

inertia of the volume of water displaced by the vehicle. Substituting heave, surge,

and particle velocity components, (3.4) becomes:

mdry +madd,x

mdry +madd,z


ẍ

z̈

 =

Fthrust,x

Fthrust,z

+

madd,x

madd,z


v̇p,x

v̇p,z

 +
ρsea

2

Ai,xCd,x
Ai,zCd,z


|ẋ− vp,x|(ẋ− vp,x)

|ż− vp,z|(ż− vp,z)

, (3.5)

where vp is the particle velocity at a time and position beneath a monochromatic

wave. For added reference, va = vr + vp, and v̇a,x = ẍ, v̇a,z = z̈.
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3.3 State Space Form

The differential equations are now rewritten in state space form solvable by the

simulator. This takes the form:

Υ̇ =

[
ẋ ẍ ż z̈

]T
= AΥ + Bu + D, (3.6)

where

AΥ =



0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0





x

ẋ

z

ż


, (3.7)

Bu =
Tmax
mdry



0 0 0 0 0 0

cosθf cosθf −cosθa −cosθa 0 0

0 0 0 0 0 0

0 0 0 0 −cosθv −cosθv





u1

u2

u3

u4

u5

u6


, (3.8)

and

D =



0

v̇p,x

mdry
+

ρseaAi,xCd,x

2(mdry+madd,x)
|ẋ− vp,x|(ẋ− vp,x)

0

v̇p,z

mdry
+

ρseaAi,xCd,z

2(mdry+madd,z)
|ż− vp,z|(ż− vp,z)


. (3.9)
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The u vector in (3.8) refers to motor inputs of each of the vehicle’s six vectored

thrusters: u1 and u2 are the forward thrusters, u3 and u4 are the aft thrusters, and

u5 and u6 are the vertical thrusters.

3.4 Wave Field Model

The bathymetry and wave climate selected for analysis is similar to that of the

National Northwest Marine Renewable Energy Center (NNMREC) North Energy

Test Site (NETS) in the coastal Pacific Ocean two nautical miles out of Newport,

Oregon [32]. The operational depth at NETS is approximately 50m. The wave field

used in this work was verified using AWAC acoustic measurement data deployed at

NETS from August to October 2013. Each 40min time series was recorded at 2Hz.

Figure 3.3 provides three sample excerpts of wave data from that time. The times

chosen are during more elevated sea states in the early autumn when stronger sea

swells are expected as the oceanographic climate transitions into winter.

The wave field used by the simulator is the set of eight different periods, heights,

and phases (T,H, φ) detailed in Table 3.2. It was constructed to appear qualita-

tively similar to a real wave field at NETS during the winter transition. The

superimposed wave field shown in Fig. 3.4 is constructed by the water surface

wave equation shown below:

η(x, t) =
∑ H

2
cos(kx− ωt + φ). (3.10)
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Figure 3.3: Four second sample sets of AWACS acoustic heave data from NETS,
2013. The simulated wave field is built with similar wave heights and gradients.

Component wavelengths (L), wave numbers (k), and frequencies (ω) are solved

for by way of the dispersion relation [14] below:

ω2 = gk tanh(kd), (3.11)

where g is the acceleration due to gravity, d is the water depth, k = 2π/L, and

L =
gT 2

2π

[
(tanh ω2d

g
)3/4

]2/3

. (3.12)

Because of the 2-dimensional analysis along only surge and heave motions, wave

angles are set to zero [21].
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Table 3.2: Wave Field Parameters used in Simulation

Component Wave 1 2 3 4 5 6 7 8
Wave Period, T , s 10 8 12 11 6 7 9 25
Wave Height, H, m 1.8 0.9 1.6 1.3 0.4 0.5 1.1 0.7
Phase, φ, rad -π

2
-π

4
-5π

8
4π
13

- π
15

π
3

- π
18

-7π
4

Figure 3.4: A time series of the wave profile over the 240 s simulated time window
constructed using the parameters listed in Table 3.2.

Prior to any forward state estimation or any simulated vehicle motion, the wave

action, or particle velocities and accelerations (vp and v̇p), are calculated for the

robot’s current position in time and space. For the lateral (x) case in intermediate

water this is:

vp,x =
HgT

2L

cosh 2π(z+d)
L

cosh 2πd
L

cos(kx− ωt + φ), (3.13)

and its derivative is:

v̇p,x =
gπH

L

cosh 2π(z+d)
L

cosh 2πd
L

sin(kx− ωt + φ). (3.14)
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The particle velocity for the vertical (z) direction in intermediate water depth is:

vp,z =
HgT

2L

sinh 2π(z+d)
L

cosh 2πd
L

sin(kx− ωt + φ), (3.15)

and its derivative is:

v̇p,z = −gπH
L

sinh 2π(z+d)
L

cosh 2πd
L

cos(kx− ωt + φ). (3.16)

These velocities and accelerations are calculated for each wave and summed by

superposition in the function getParticles shown in Algorithm 1.

Because the vehicle length is much smaller than the component wavelengths,

its displacement is assumed to follow that of a particle. This assumption allows

for the fluid velocity to be modeled as an instantaneously uniform flow field where

the drag force is defined by the quadratic drag law:

Fd =
1

2
ρsea|vr|vrCdAi, (3.17)

where Fd is the fluid drag force, ρsea is the density of seawater, vr is the veloc-

ity of the vehicle relative to the water, Cd is an experimentally determined drag

coefficient, and Ai is the incident Area normal to the fluid flow [21].
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Algorithm 1 MPC for ocean wave station-keeping where t is a time vector, λ
contains all relevant wave spectra data, and Υ represents states in time and space.
1: procedure MPC( t, λ, robot, Υtarget )
2: n← 1
3: η ← loadSeaState( t, λ, Υinitial )
4: while n < simulatorOff do
5: input ← getForecast( t, robot, λ, Υtarget, n )
6: robot ← moveRobot( t, robot, λ, input, n )
7: n← n+ 1

8: function getForecast( t, robot, λ,Υtarget, count )
9: i← 1

10: N ← t.Horizon / t.Discretization
11: Ji, ui, Υi ← initializeInput( robot )
12: δ ← initializeDelta( )
13: while i < maxIterations and δ > exitCriteria do
14: ui+1 ← ui − δ
15: for k ∈ [ 1, 2, ..., N ] do
16: vp, v̇p ← getParticles( t, Υi(k), λ )
17: Λ← vp, v̇p
18: Υi+1(k)← stateEstimate( t, robot, Λ, un+1(k) )
19: Ji+1(k)← getCost( Υtarget, Υi+1(k) )
20: δ ← getJacobian( Ji, Ji+1, ui, ui+1 )
21: ui ← ui+1

22: Ji ← Ji+1

23: Υi ← Υi+1

24: i← i+ 1

25: return ui+1

3.5 MPC Algorithm Layout

The MPC algorithm shown in Algorithm 1 requires four inputs. The first, t, is

a time object containing the overall time vector and horizon and discretization

parameters. The second input, λ, is an object containing all relevant wave spectra

data. The third input is the robot object, which contains the vehicle dynamics,
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states, and error history. The last input, Υtarget, is the target state.

Once all inputs are passed through, MPC runs by first generating the initial

sea state at loadSeaState from the wave spectra data in λ. Then, and until

some cessation criteria, getForecast generates the optimized motor inputs for

each thruster while moveRobot passes those inputs and moves the robot one step

forward along that control vector.

In getForecast, the function initializeInput generates initial cost, con-

trol, and state vectors, or Ji, ui, and Υi respectively. The initial control vector,

ui, is a set of PD control actions along the N horizon. initializeDelta creates a

value, δ, to perturb ui and generates a new input, ui+1, which is then evaluated.

First, the wave forces along the input trajectory, vp and v̇p, are calculated through

getParticles. Next, vp, v̇p, and the control vector, ui+1 are passed in to sta-

teEstimate which estimates the resulting predicted state, Υi+1. Lastly, Υi+1 is

evaluated with respect to the target state, Υtarget in getCost by way of the cost

function in (3.1).

After the cost, Ji+1, is evaluated over the entire N horizon, the function get-

Jacobian evaluates the Jacobian, or ∂J/∂u, and returns a new δ value. This

value translates the rate at which cost changes with respect to a change in control

inputs, and a δ value growing smaller implies that a control vector is nearing a local

minimum. At the end of each evaluation, if δ does not meet some exitCriteria,

a new input vector is generated and the process is repeated. If it does; however,

the optimized control vector, ui+1, is returned and the robot moves forward along

that trajectory.
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Chapter 4: Results

One challenge when implementing MPC is determining a preferred prediction hori-

zon. Section 4.1 details how the horizon that balances solution accuracy with com-

putation time is selected for this work. Section 4.2 evaluates the controller with

the chosen prediction horizon against a standard PD controller in the same wave

climate. Finally, in Section 4.3, sensor observation noise is inserted to the MPC

and is compared with the deterministic PD controller.

For all simulations, the robot was to maintain a depth of z = −15 m below the

surface, or Υtarget = [0,−15]. The simulator is designed to simulate wave forces at

any depth; however, simulations were not run at varied depths as the scaled results

offered little additional insight. The exitCriteria for an optimized trajectory used

in Algorithm 1 was set to 5mm. Visualizations of simulator data are provided by

MATLAB figures as shown in Fig.4.1.

4.1 Determination of Prediction Horizon

The desired prediction horizon for MPC should reasonably balance computation

time against position error. This is a discretionary characteristic as certain im-

plementations may have stricter tolerances than others. In this work, simulations

were run with a horizon ranging from 0.2 s to 3.0 s. Table 4.1 shows total RMS
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Figure 4.1: Simulator visualization of a displaced robot (the bold “X”) attempting
to reach the target state (the faded “X”). Wave field profile data is provided as well
as current vehicle state and velocity vector.

errors and computation times per horizon.

Table 4.1: Performance of Various Simulated Horizons

Horizon, s 0.2 0.4 0.8 1.0 1.6 2.0 3.0
εRMS, m 5.02 2.11 0.79 0.65 0.29 0.05 9.0E-6
t̄Calc/step 1.38 0.42 0.08 0.19 6.51 18.24 84.38

Based on the information in Table 4.1, two potential choices for prediction hori-

zon are 0.8 and 1.0 s. Both offer low error at reasonable computation times. For

the results presented in this work, the chosen horizon time was 0.8 s as it yielded

only a 6 cm difference in error for less than half the total computation time.
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With regards to the 1.0 s horizon, it is worth noting that the 240 s long time

vector used in simulation is just longer than the 233.2 s run time needed. This

presents challenges when considering real-time implementation of this method.

One solution is to recalculate the next optimized trajectory not at each 0.2 s time

step, but one or multiple steps later. In practice, the robot would use the first

two or three inputs from the optimized control vector instead of just the first,

while simultaneously calculating the next trajectory. This would lead to fewer

calculations but may increase overall error due to sensor drift.

Another result worth noting is the long run times from the shorter horizon

controllers (0.2 and 0.4 s). They showed poor performance, resulting in significantly

larger tracking error and requiring more calculation time than the chosen horizon

of 0.8 s. This is due to an induced "myopia" where: 1) the robot does not properly

account for its own inertia and 2) the robot does not take proper advantage of

changes in flow direction. The initial guess for optimized trajectories is the PD

control along the horizon. Therefore, the initial guess for the lower horizons is so

inaccurate that the optimizer uses many more steps to generate a trajectory.

As expected, the longer horizons yield reduced errors at the expense of com-

putation time. None of the later three time horizons (1.6, 2.0, and 3.0 s) were

considered because of unreasonable time costs. An obvious avenue for future work

is to implement more efficient optimization and programming techniques to further

increase the planning horizon.
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Figure 4.2: Position error time series in global x and z coordinates when comparing
a traditional feedback controller with a model predictive controller. Note the axis
scale difference. As shown, MPC returns error values 74% lower than PD Control.
RMS error values for these results are shown in Fig 4.3.

4.2 MPC Performance

Another set of simulations was run where a robot employing an 0.8 s horizon MPC

was compared against one using a traditional PD controller. Both were tested

under the influence of the same wave field. Additionally, a free-floating, non-

actuated robot disturbed by the same waves was simulated and compared for

reference. Figure 4.2 details the positional errors for the PD and MPC controllers

over the length of simulated time and Fig. 4.3 shows the RMS error for each case.

As shown in Fig. 4.2, MPC gives a 74% reduction in position error over PD
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Figure 4.3: RMS errors for the three cases in Section 4.2. The MPC robot showed
a 74% reduction in error compared to another using PD control.

control. This substantial reduction is attained because the robot state estimator

minimizes cost by using thrusters in an anticipatory action. In practice, the robot

would thrust "against" the wave to reduce net displacement. Without any forward-

looking state estimation, the PD controller can only choose a direct trajectory

towards the desired state that is always deviated by the wave action.

In Fig. 4.2, the wave field time series is provided to show the correlation between

wave height, H, which is directly proportional with wave forces in the water column

[14], and position error below the waves. Both the MPC and PD controllers record

little error as H approaches zero, which is expected. As H increases; however, the

PD errors increase at a larger rate than the increase in MPC errors. This again

results from the state estimator’s ability to predict changes in flow direction and

the impending effects of those changes on the robot’s inertia.
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Figure 4.4: MPC thruster inputs in global x and z coordinates over the simulated
time series. The controller does not issue commands that saturate the thrusters
for prolonged periods; however, it is prone to frequent direction changes.

Figure 4.4 shows a time series of thruster inputs in percentages of maximum

thrust. As expected, the controller issues less thrust when the wave action is

reduced. This is a result of the added input term to the cost function minimized

in (3.1). One concern about the inputs shown is that there are frequent changes

in direction. This can potentially lead to unrealistic results as thruster actuation

time was not considered in this work. A better model of thruster dynamics as well

as an updated cost function to penalize large changes in thruster input are both

avenues for future work.
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4.3 Sensor Noise Impact

Simulations were also carried out to compare optimized trajectories to the effects

of simulated sensor observation noise. For this set, Gaussian noise is injected to

the vehicle’s perceived value of particle velocities and accelerations, vp and v̇p.

The wave field parameters were selected instead of other forms of localization

noise because the vehicle Inertial Measurement Unit (IMU), which measures water

pressure, has lower resolution than the Doppler Velocity Log (DVL), thus it is more

likely that the IMU would give inaccurate observations of the pressure field above

it (the wave action) than the DVL with bottom lock would on vehicle localization.

By extension, this assumption allows for the PD control data from Section 4.2 to

serve as a deterministic basis of comparison.

The additive, independent, and identically-distributed Gaussian noise is pro-

vided by the MATLAB function awgn. This function injects noise to the desired

signal according to a Signal-to-Noise Ratio (SNR) which is related to the noise

variance. For this simulation, the wave height, H, was assigned the highest vari-

ance to account for the moderately noisy heave data provided by the deployed buoy

sensors [21]. Noise with a smaller variance is injected into the wave period, T , and

phase terms, φ, to account for error in Fourier coefficients and their resulting phase

transformations.

50 simulations of the MPC Algorithm 1 were run where at each nth step, the

function getForecast is run with a noisy estimation of the wave field. This

outputs a trajectory whose first element is then carried out in the moveRobot
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Table 4.2: Performance of MPC with Noisy Wave Observations

Scenario εRMS, m

Model Predictive Control 0.789

Mean MPC with Gaussian noise 1.737

Feedback (PD) Control 3.096

Drifting Robot 48.434

function. The process is repeated with a new noisy wave field estimation. Table

4.2 shows the RMS errors for MPC with noise against PD, MPC, and drift values.

The MPC with noise shows a mean error of 1.737m with standard deviation of

0.059 and gives a 43.9% reduction in position error over feedback control.
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Chapter 5: Conclusion

This thesis presented a Model Predictive Control (MPC) approach to reducing

underwater robot position error under the influence of water waves. Our method

employed a Linear Wave Theory (LWT) solver to approximate the component fluid

dynamics under a wave field. These fluid flow velocities and accelerations are input

to a model state estimator which predicts robot state along a finite horizon. A set

of control actions which minimizes a cost function is generated and optimized via

gradient descent. Thus, the contributions of this thesis are:

• A feedforward control (MPC) method that can estimate and compensate for

impending wave action.

• Comparison of MPC to PD control for a station-keeping robot disturbed by

the same wave field, where position error was reduced by 74%. The algorithm

was further found to be resistant to noisy sensor observations of wave field

parameters, showing a mean position error 44% lower than the deterministic

feedback control case.

• Determination of the most effective prediction horizon as 4 steps, or 0.8 s

forward as it reasonably balanced solution accuracy and computation time.
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For future work, the dynamics of the system could be expanded to incorporate

all five vehicle degrees of freedom. With this extension, the wave field would

better model a 3-dimensional random sea. Second, the vehicle model could be

expanded to include effects from Response Amplitude Operators (RAO). RAOs

are frequency-domain solutions for a vehicle response to a defined wave field along

all reference axes. Hydrodynamic LWT solvers such as Ansys AQWA are potential

tools for incorporating RAOs for a given vehicle model. With a well-modeled RAO,

neuro-evolutionary possibilities emerge. Thirdly, simplifications were made in this

work to help the robot predict the wave field. Sensor detection for spectral data as

well as their decomposition methods are two areas of interest when implementing

this method. Fourthly, analyses on system dependence on wavenumber should be

worked out using sets of monochromatic waves. This is important so see if there are

any specific harmonics which make the system unstable or uncontrollable. Lastly,

more efficient optimization techniques than gradient descent should be explored.

Continued areas of research in the marine robotics community include au-

tonomous underwater path planning, localization, and perception. Efficient path

planning helps reduce overall mission cost and time by optimizing methods of nav-

igating. Localization issues in an environment absent GPS and long range wireless

transmissivity prioritize the need for well-developed SLAM techniques with min-

imal input. Robotic perception in the underwater domain further complicates

research efforts. In addition, multi-agent research, such as the multi-glider work in

[31], is an excellent demonstration of the value of autonomy in performing oceano-

graphic monitoring.
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Advancements in underwater autonomy will be pivotal in the development of

offshore energy arrays, since low-cost robotic platforms inspecting, monitoring,

and manipulating infrastructure can reduce deployment costs drastically. Over

the course of the NNMREC ALFA project, robust algorithms for these marine

platforms to support WECs will lead to improved scaled economics and further

global wave energy development. As more challenges are addressed, this will help

secure wave energy extraction as the premier sustainable energy source for the 21st

century.
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[21] Y. Gōda. Random Seas and Design of Maritime Structures. Vol. 33. Advanced

Series on Ocean Engineering. World Scientific, 2010.

[22] G. Hitz, A. Gotovos, F. Pomerleau, M. E. Garneau, C. Pradalier, A. Krause,

and R. Y. Siegwart. “Fully autonomous focused exploration for robotic envi-

ronmental monitoring”. In: IEEE International Conference on Robotics and

Automation (ICRA), 2014. 2014, pp. 2658–2664.

[23] G. A. Hollinger, U. Mitra, and G. S. Sukhatme. “Active and Adaptive Dive

Planning for Dense Bathymetric Mapping”. English. In: Experimental Robotics.

Vol. 88. Springer Tracts in Advanced Robotics. Springer International Pub-

lishing, 2013, pp. 803–817. isbn: 978-3-319-00064-0.

[24] G. A. Hollinger, B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme.

“Active planning for underwater inspection and the benefit of adaptivity”.

In: The International Journal of Robotics Research 32.1 (2013), pp. 3–18.



53

[25] G. A. Hollinger, B. Englot, F. Hover, U. Mitra, and G. S. Sukhatme. “Uncertainty-

driven view planning for underwater inspection”. In: IEEE International

Conference on Robotics and Automation (ICRA), 2012. 2012, pp. 4884–4891.

[26] F. S. Hover, R. M. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess,

and J. J. Leonard. “Advanced perception, navigation and planning for au-

tonomous in-water ship hull inspection”. In: The International Journal of

Robotics Research 31.12 (2012), pp. 1445–1464.

[27] V. T. Huynh, M. Dunbabin, and R. N. Smith. “Predictive motion planning for

AUVs subject to strong time-varying currents and forecasting uncertainties”.

In: IEEE International Conference on Robotics and Automation (ICRA),

2015. 2015.

[28] J. Joslin, E. Celkis, C. Roper, A. Stewart, and B. Polagye. “Development of

an Adaptable Monitoring Package for marine renewable energy”. In: Oceans

- San Diego, 2013. 2013, pp. 1–10.

[29] A. Kim and R. M. Eustice. “Active visual SLAM for robotic area coverage:

Theory and experiment”. In: The International Journal of Robotics Research

34.4-5 (2015), pp. 457–475.

[30] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[31] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien, and

F. Zhang. “Coordinated control of an underwater glider fleet in an adap-

tive ocean sampling field experiment in Monterey Bay”. In: Journal of Field

Robotics 27.6 (2010), pp. 718–740. issn: 1556-4967.



54

[32] B. A. Ling and B. A. Batten. “Real time estimation and prediction of wave

excitation forces on a heaving body”. In: ASME International Conference on

Ocean, Offshore and Arctic Engineering (OMAE), 2015. 2015.

[33] L. Medagoda and S. B. Williams. “Model predictive control of an autonomous

underwater vehicle in an in situ estimated water current profile”. In:OCEANS,

2012 - Yeosu. 2012, pp. 1–8.

[34] L. Medagoda, J. C. Kinsey, and M. Eilders. “Autonomous underwater vehi-

cle localization in a spatiotemporally varying water current field”. In: IEEE

International Conference on Robotics and Automation (ICRA), 2015. 2015,

pp. 2091–2098.

[35] A. Mora, C. Ho, and S. Saripalli. “Analysis of Adaptive Sampling Techniques

for Underwater Vehicles”. In: Autonomous Robots 35.2-3 (2013), pp. 111–122.

issn: 0929-5593.

[36] P. Ngo, J. Das, J. Ogle, J. Thomas, W. Anderson, and R. N. Smith. “Pre-

dicting the speed of a Wave Glider autonomous surface vehicle from wave

model data”. In: IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2014. 2014, pp. 2250–2256.

[37] N. S. Nise. Control Systems Engineering. John Wiley & Sons, 2011.

[38] G. Papadopoulos, H. Kurniawati, A. S. B. M. Shariff, L. J. Wong, and

N. M. Patrikalakis. “Experiments on Surface Reconstruction for Partially

Submerged Marine Structures”. In: Journal of Field Robotics 31.2 (2014),

pp. 225–244. issn: 1556-4967.



55

[39] O. M. Phillips. The Dynamics of the Upper Ocean. Cambridge University

Press, 1977.

[40] C. Pêtrès, Y. Pailhas, P. Patrón, Y. Petillot, J. Evans, and D. Lane. “Path

Planning for Autonomous Underwater Vehicles”. In: IEEE Transactions on

Robotics on 23.2 (2007), pp. 331–341. issn: 1552-3098.

[41] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine

Learning. MIT Press, 2006.

[42] J. B. Rawlings and D. Q. Mayne. Model Predictive Control: Theory and

Design. Nob Hill, 2009.

[43] M. Richter, M. E. Magaña, O. Sawodny, and T. K. A. Brekken. “Nonlinear

Model Predictive Control of a Point Absorber Wave Energy Converter”. In:

Sustainable Energy, IEEE Transactions on 4.1 (2013), pp. 118–126. issn:

1949-3029.

[44] J. S. Riedel. “Shallow water stationkeeping of an autonomous underwater

vehicle: the experimental results of a disturbance compensation controller”.

In: OCEANS 2000 MTS/IEEE Conference and Exhibition. Vol. 2. 2000,

pp. 1017–1028.

[45] J. S. Riedel and A. J. Healey. “Shallow water station keeping of AUVs using

multi-sensor fusion for wave disturbance prediction and compensation”. In:

OCEANS ’98 Conference Proceedings. Vol. 2. 1998, 1064–1068 vol.2.



56

[46] R. N. Smith, J. Das, G. Hine, W. Anderson, and G. Sukhatme. “Predicting

Wave Glider speed from environmental measurements”. In: OCEANS 2011.

2011, pp. 1–8.

[47] R. Smith, P. Cooksey, F. Py, G. Sukhatme, and K. Rajan. “Adaptive Path

Planning for Tracking Ocean Fronts with an Autonomous Underwater Ve-

hicle”. In: Proceedings, International Symposium on Experimental Robotics.

Morocco, 2014.

[48] R. N. Smith, M. Schwager, S. L. Smith, B. H. Jones, D. Rus, and G. S.

Sukhatme. “Persistent ocean monitoring with underwater gliders: Adapting

sampling resolution”. In: Journal of Field Robotics 28.5 (2011), pp. 714–741.

issn: 1556-4967.

[49] R. N. Smith, Y. Chao, B. H. Jones, D. A. Caron, P. P. Li, and G. S.

Sukhatme. “Trajectory Design for Autonomous Underwater Vehicles Based

on Ocean Model Predictions for Feature Tracking”. English. In: Field and

Service Robotics. Ed. by A. Howard, K. Iagnemma, and A. Kelly. Vol. 62.

Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, 2010,

pp. 263–273. isbn: 978-3-642-13407-4.

[50] SolidWorks. “User’s Guide”. In: Dassault Systèmes SolidWorks Corp, Con-

cord, Massachusetts (2012).

[51] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT press, 2005.

[52] G. Weiss. Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. MIT Press, 1999.




