IRPhEP Benchmark Development Guidance for TREAT-IRP Activities

John D. Bess

Idaho National Laboratory

TREAT-IRP Kickoff Meeting Idaho Falls, ID November 19-20, 2015

Idaho National Laboratory

Outline

- TREAT, What's (Neutronically) Important
- > MOOSE Crossing
- IRPhEP Recommendations
- Optimally Picking the Low-Hanging Fruit

TREAT, What's (Neutronically) Important

Brief Overview of TREAT

Detectors in Biological Shielding

Overview of Basic Core-Only MCNP Model

Incomplete but Used for Basic Scoping Studies

Peak-to-Average Power per TREAT Assembly

	•		~ D	-	-	с н		V	2		NI .	~		c			Α	в	с	D	Е	F	G	н	J	К	L	м	Ν	ο	Ρ	R	S	Т	U
1	7	7		E	F		1	ĸ						5		1	0.014	0.023	0.699	0.701	0.707	0.708	0.703	0.697	0.698	0.007	0.697	0.694	0.697	0.696	0.689	0.681	0.689	0.023	0.014
-	2	2			E E		F	×	F F	r c	г с			r c		2	0.024	0.724	0.718	0.725	0.724	0.713	0.691	0.671	0.701	0.009	0.700	0.670	0.688	0.708	0.719	0.721	0.720	0.736	0.024
2	2 E	E		E	E		F	×	F		F E	E				3	0.759	0.755	0.778	0.792	0.774	0.734	0.713	0.540	0.736	0.011	0.737	0.540	0.713	0.735	0.776	0.798	0.788	0.776	0.793
4	F	F	FF	F	CS	FF	F	×	F	F	FC	- C		F		4	0.800	0.817	0.859	0.884	0.850	0.620	0.815	0.828	0.841	0.012	0.843	0.832	0.819	0.624	0.858	0.896	0.878	0.846	0.847
5	F	F	FF	F	F	FF	F	X	F	F	F	F	E E	F	E E	5	0.868	0.896	0.952	0.993	0.997	0.976	0.993	0.992	0.955	0.013	0.957	0.997	1.000	0.986	1.009	1.009	0.974	0.927	0.916
6	F	F	F CT	F	F	FF	F	X	F	F	F	F	F C	F	FF	6	0.944	0.975	1.043	0.818	1.142	1.158	1.153	1.120	1.044	0.014	1.045	1.124	1.162	1.170	1.157	0.832	1.066	1.006	0.984
7	F	F	FF	F	F	FF	F	X	F	F	F	F	FF	F	FF	7	1.009	1.047	1.125	1.201	1.259	1.282	1.268	1.210	1.098	0.016	1.101	1.216	1.277	1.296	1.276	1.222	1.148	1.075	1.045
8	F	F	CT F	F	cc	FF	F	X	F	F	FC	c	FF	СТ	FF	8	1.063	1.106	0.886	1.285	1.351	1.015	1.349	1.268	1.109	0.018	1.112	1.274	1.359	1.025	1.368	1.306	0.904	1.134	1.096
9	F	F	FF	F	F	FF	F	X2	F	F	F	F	FF	F	FF	9	1.104	1.153	1.249	1.350	1.420	1.443	1.413	1.302	1.067	0.012	1.070	1.309	1.424	1.459	1.439	1.373	1.274	1.179	1.132
10	F	F	FF	F	F	FF	F	mS	F	F	F	F	FF	F	FF	10	1.127	1.181	1.284	1.389	1.465	1.494	1.465	1.347	1.066	mS	1.068	1.354	1.477	1.511	1.485	1.413	1.309	1.206	1.154
11	F	F	FF	F	F	FF	F	Z2	F	F	F	F	FF	F	FF	1:	1.130	1.184	1.285	1.395	1.477	1.513	1.503	1.421	1.218	0.059	1.221	1.428	1.515	1.530	1.496	1.417	1.310	1.207	1.156
12	F	F	CT F	F	CC	FF	F	F	F	F	FC	CC	FF	СТ	FF	1	1.115	1.163	0.937	1.369	1.455	1.111	1.518	1.489	1.416	1.368	1.421	1.497	1.530	1.122	1.473	1.390	0.953	1.187	1.140
13	F	F	FF	F	F	FF	F	F	F	F	F	F	FF	F	FF	13	1.084	1.129	1.220	1.316	1.400	1.457	1.492	1.503	1.493	1.487	1.499	1.512	1.506	1.474	1.419	1.337	1.242	1.153	1.110
14	F	F	F CT	F	F	FF	F	F	F	F	F	F	F CT	F	FF	14	1.039	1.077	1.157	0.917	1.303	1.358	1.406	1.443	1.463	1.472	1.468	1.451	1.419	1.375	1.322	0.934	1.180	1.101	1.064
15	F	F	FF	F	F	FF	F	F	F	F	F	F	FF	F	FF	1	0.983	1.009	1.077	1.136	1.161	1.171	1.242	1.308	1.352	1.371	1.356	1.317	1.254	1.188	1.181	1.159	1.102	1.035	1.008
16	F	F	FF	F	CS	FF	F	F	F	F	FC	CS	FF	F	FF	10	0.923	0.936	0.987	1.027	1.005	0.755	1.036	1.104	1.181	1.220	1.186	1.112	1.048	0.767	1.027	1.052	1.012	0.961	0.948
17	F	F	FF	F	F	F CS	F	F	F	CS	F	F	FF	F	FF	17	0.876	0.871	0.900	0.927	0.924	0.902	0.907	0.712	1.009	1.068	1.014	0.718	0.920	0.921	0.949	0.956	0.928	0.899	0.903
18	Ζ	F	FF	F	F	FF	F	F	F	F	F	F	FF	F	FZ	1	0.027	0.835	0.832	0.848	0.864	0.874	0.873	0.877	0.932	0.966	0.939	0.887	0.890	0.898	0.896	0.883	0.866	0.868	0.028
19	Z	Z	FF	F	F	FF	F	F	F	F	F	F	FF	F	z z	19	0.016	0.026	0.804	0.808	0.834	0.860	0.880	0.900	0.922	0.934	0.928	0.913	0.903	0.893	0.879	0.860	0.850	0.027	0.017
	cc CS CT F MS X X2 Z2 Z2	C C T T S S r r Z Z Z Z Z	Comp Contro Transi Standa Nultis I8" Ac I8" Ac I8" Ac I8" Ac I8" Ac	ensa ol/SI ent ard F SERT ccess ccess d Du d Du	ation hutdo Rod I Fuel A TA To s Holo s Holo umm	Rod I own F Guel A Asser est Ve e Dun e Dun (Asse (Half	Fuel Rod F Asser nbly ehicle nmy nmy embl -Asse	Asse iuel mbly e Asse Half y emb	emb Ass y emb f-Ass bly	oly emb oly sem	oly		P	<u>0\</u>	98 98	er 3% er 1	D 6 F m %	ist Re: . F Lo	ril ac Re ⁻ os	bu to fle t	r ect	on or		0 0.153 0.306 0.459 0.612 0.765 0.918 1.071 1.224		Minim 10% 20% 30% 40% 50% 60% 70% 80%	um			D	et	ec	cto	ors	5
																								1.3//		90%							÷.,		
	NEN	TOF																						1.530		waxim	um			B	io	0	ai	ca	1
					T																		1							-			3.		1.0
1-UN						\Box			dah	οN	atio	na	Lapo	orator	/															C	hi		di	nc	N.
4			S)																									-	>	J		CI	u	II.	1

* Courtesy Mark DeHart (INL)

MOOSE Crossing

MOOSE

CROSSING

Modeling TREAT with MAMMOTH

- MAMMOTH built via MOOSE framework (Multi-physics Object Oriented Simulation Environment)
- MOOSE allows implicit coupling of MOOSE animals
- > MAMMOTH is the MOOSE-based multi-physics reactor analysis tool.

At present, TREAT core simulation efforts rely on BISON (fuel performance), Rattlesnake (timedependent neutron transport) and MAMMOTH.

- LWR-type pin experiments are being evaluated using RELAP-7 as well.
- Note that MAMMOTH is a single executable code with multiple personalities all coexisting.
- All codes are based on FEM – MOOSE routines perform all solutions.
- All data from all codes is available to the solver(s) used.

TREAT Modeling and Simulation (M&S)

- > Unfortunately, advanced modeling and simulation isn't.
- Based on an advanced concept, the process to adapt that concept to a complex real-world problem requires time in terms of effort and testing.

Everyone has them

- The desired outcome of MAMMOTH M&S will be to simulate the complex interactions occurring in a TREAT experiment, driven by the coupled physics of a temperature-limited or controlled transient.
- The first phase of this approach has been to develop the core transient simulation capability that couples RATTLESNAKE, BISON, and cross section generation.
- A parallel, independent effort studied burnup of fuel pins during a reactor cycle, followed by a rapid transient.

Minimum Critical Core

Coupled Physics in MAMMOTH

0.603

Temperature (K) **↑**

- Reactivity increase (boron removal) between 0.01 and 0.1s
- Reactivity decrease is due to temperature feedback

Thermal Flux 🗲

IRPhEP Recommendations

International Handbook of Evaluated Reactor Physics Benchmark Experiments

March 2015 Edition

- 20 Contributing Countries
- Data from 143 Experimental Series performed at 50 Reactor Facilities
- Data from 139 are published as approved benchmarks
- Data from 4 are published in DRAFT form
- Handbook available to OECD member countries, all contributing countries, and to others on a case-by-case basis

Idaho National Laboratory

http://irphep.inl.gov/ http://www.oecd-nea.org/science/wprs/irphe/

INTERNATIONAL BENCHMARK PROGRAMS

BETTER POLICIES FOR BETTER LIVES

Idaho National Laboratory

NEA

Benchmark **Benchmark Evaluation Process Future Use** Experiment · Data Advanced Modeling and Simulation Externally Available Technical Journals & Reports Analytical Methods Evaluation Development, Validation, Process Internal Reports Letters & Memos and Verification Identify **Reactor Design** Short-Term Preservation and Licensing Verify Logbooks Peer Review Training Evaluate (National and -> ---Drawings • Compile International Criticality and Reactor Safety Analysis Experts) Calculate Experimenter's Annotated Fuel Cycle and Related Document Copy of Published Reports Comprehensive Activities Source of Externally Range of Applicability and Peer Reviewed Integral Experimenters (Retired or Experiment Design Working on Other Projects) Benchmark Data Nuclear Data Refinement Facilities Awaiting D&D

Baseline Assessment of TREAT for Modeling and Analysis Needs

- ➢ INL/EXT-15-35372
- > October 2015
- > One-Stop-Shop
 - * Drawings
 - * Materials
- Modeling and simulation
- > NOT A BENCHMARK
 - But still very useful
 For doing a benchmark

Steps in Benchmark Completion

- Generate detailed TREAT MCNP models
- Perform model simplifications
 - Develop benchmark models
 - Compute biases and bias uncertainties
- Evaluate experimental uncertainties

- Prepare draft benchmark report
- Internal review
- Independent review (IRPhEP)
- IRPhEP Technical Review Meeting
 - * April
- Publish IRPhEP Handbook

September/October

Typical Measurement Types for IRPhEP

- Critical/ Subcritical
- Buckling/ Extrapolation Length
- Spectral Characteristics
- Reactivity Effects
- Reactivity Coefficient Data

- Kinetics Measurements Data
- Reaction-Rate Distributions
- Power Distribution Data
- Isotopic Measurements
- > Miscellaneous

If it was worth measuring, then it is worth evaluating.

Key Items of Interest (i.e. Lessons Learned)

- Can submit evaluation by parts
 - Criticality 1st year
 - Additional measurements 2nd-3rd years
 - This allows for feedback earlier in a multiyear process

daho National Laboratory

- Reduce statistical uncertainty or evaluated results will be worthless
- Split up major core configurations into separate reports
 - *TREAT-FUND-RESR-001
 - ✤-002, -003, -004, etc.

Optimally Picking the Low-Hanging Fruit

Current Known Benchmarking Efforts

> NCSU ♦ FY16 NEUP *****M2 and M3 **Transient Experiments** > OSU ♦ FY16 IRP **♦ To Be** Discussed

≻ INL

- Minimum Critical Mass Core Loading
- M8CAL Core Loading
- Criticality and Rod Worths
- Yet to identify a good intermediate core loading

What is Most Relevant Today

Numerous experimental series performed in TREAT during its years of operation

- Physics testing
- ♦ LWR fuel
- Graphite fuel
- LMFR fuel
- *6604 reactor startups
- *1469 core loadings
- 2885 transient runs

Core configuration and control rods positions adjustable

Only experimental campaigns with upgraded core *M8CAL

* AN-CAL

These experiments also have most available documented data

M8CAL

- Current core loading
- High fissile pins but low fissile monitor wires
- Low-Level Steady-State (LLSS) runs and transients
- > With and without neutron filters

daho National Laboratory

14-WHT01-24

Summary of M8CAL TREAT Operations

Core Configuration	TREAT Transient Number	Date of TREAT Operation	Control Rod Configuration	Wire Number	Test Train	Identification	Wire Holder	TREAT Energy, MJ	Hodoscope Operation?
Full-slotted		10/16/90 10/17/90	В		Fueled	Low-level, steady-state (LLSS) irradiation providing background signal for the hodoscope (NO FUEL)		437	Yes
Full-slotted		10/19/90	B	L91-8-10	Unfueled	LLSS	LO3	667	Yes
Full-slotted	2811	10/25/90	B	L91-8-11	Unfueled	Full Heat Balance Transient	LO3	655.4	No
Full-slotted	2812	10/26/90	В	L91-8-12	Unfueled	Heat Balance Transient (Partial)	LO3	404.7	No
Full-slotted	2815	11/14/90	Ď	L91-8-13	Unfueled	8-s Period Transient	LO3	996.0	Yes
Full-slotted	2816	11/15/90	D	L91-8-14	Unfueled	8-s Period Transient (Partial)	LO3	661.8	No
Half-slotted		8/24/92	A	L91-60-1	Unfueled	LLSS	LO3	576	No
Half-slotted	6/8 B	8/26/92	A		Fueled	LLSS for hodoscope background signal measurement (NO FUEL)			Yes
Half-slotted	2858	8/31/92	C	L91-8-2	Unfueled	Heat Balance Transient (Partial)	LO3	423.1	No
Half-slotted	2862	9/23/92	С	L91-8-3	Unfueled	Full Heat Balance Transient	LO3	655.0	Yes
Half-slotted	2864	10/14/92	D	L91-8-4	Unfueled	8-s Period Transient	LO3	1868.4	Yes
Half-slotted	2867	10/27/92	D	L91-8-7	Unfueled	30-s Period Transient	LO3	1956.7	Yes
Half-slotted	2868	10/29/92	С	L91-8-8	Unfueled	30-s Period Transient (Partial)	LO3	1198.6	No
Half-slotted	2869	10/30/92	С	L91-8-9	Unfueled	30-s Period Transient (Partial)	LO3	602.1	No
Half-slotted	2871	11/10/92	D	L91-8-15	Unfueled	30-s Period Transient (with power roll-over)	LO3	1999.8	No
Half-slotted	2873	11/19/92	D	L91-8-5	Unfueled	80-s Period Transient	LO3	1797.8	Yes
Half-slotted		11/20/92	A	L91-8-1	Unfueled	LLSS	LO3	576	Yes
Half-slotted		1/29/93	Â	T-433 T-462	Fueled	LLSS		480	Yes
Half-slotted		2/8/93	A	L91-8-6	Unfueled	LLSS	LO3	480	Yes
Half-slotted		2/12/93	A	H91-8-1	Unfueled	LLSS	M2CAL	576	No
Half-slotted	2874	2/17/93	D	H91-8-2	Unfueled	8-s Period Transient	M2CAL	1807.1	No
Half-slotted		3/2/93	В	L91-8-16	Unfueled	LLSS	LO3	576	Yes
Half-slotted		3/5/93	A	H-316 H-307	Fueled	LLSS		480	Yes

Summary of AN-CAL TREAT Operations

Date of	Simulated	Test	Identification	TREAT	Monitor Wire	Location of Wire in	Hodoscope
TREAT	Primary	Train		Energy, MJ	Number	Unfueled Calibration	Requirement
Operation	Container					Train	
2/5/91	Stainless	UCT	LLSS (Wire)	722.4	AN-48-1	North	Horizontal Scan
	Steel (SST)				AN-3x2-1	East	
					AN-3x2-2	South	
					AN-3x2-3	West	
5/21	SST	UCT	Heat Balance	219.2	AN-48-3	North	
			(HB) (full)		AN-3x2-15	East	
					AN-3x2-16	South	
					AN-3x2-17	West	
5/23	SST	UCT	HB (partial)	144.5	AN-3x2-18	North	
5/24	SST	UCT	HB (partial)	74.91	AN-3x2-19	North	
5/28	SST	UCT	SBLOCA (1) (full)	1001(*)	AN-3x2-12	North	
5/29	SST	UCT	SBLOCA (1)	631.7	AN-3x2-13	North	
			(partial)				5.
5/30	SST	UCT	SBLOCA (1)	311.2	AN-3x2-14	North	
			(partial)				
6/11	SST	UCT	SBLOCA (2)	894.2	AN-48-2	North	Operational
			(full)		AN-3x2-4	East	
					AN-3x2-5	South	
					AN-3x2-6	West	
6/27	SST	UCT	SBLOCA (2) (partial)	568.0	AN-3x2-7	North	
6/28	SST	UCT	SBLOCA (2)	279.1	AN-3x2-8	North	
-,			(partial)				22
7/31	SST	UCT	SBLOCA (3)	847.5	AN-3x2-26	North	
			(full)				
8/8	SST	UCT	LOPA (full)	976.1(*)	AN-3x2-23	North	
8/9	SST	UCT	LOPA (partial)	597.8	AN-3x2-24	North	
8/12	SST	UCT	LOPA (partial)	304.8	AN-3x2-25	North	
8/14	SST	UCT	HB (partial)	144.5	AN-3x2-27	North	
8/15	SST	UCT	TOP (full)	959.0(*)	AN-3x2-9	North	Operational
8/16	SST	UCT	TOP (partial)	580.3	AN-3x2-10	North	
8/20	SST	UCT	TOP (partial)	314.8	AN-3x2-11	North	
8/20	SST	UCT	LLSS (Wire)	720.0	AN-48-5	North	Vertical Scan
9/25	T22	FCT	LLSS (Fuel)	480.0	741-10-5	10/14	Horizontal Scan
2/21/02	Aluminum	UCT		720.0	AN 49 4	Mosth	Horizontal Scan
3/31/92	Aluminum	UCI	LLSS (WITE)	/20.0	AIN-48-4	Fort	Horizontal Scan
					AN-3+2-20	South	
					AN-3x2-21	West	
4/24/92	Aluminum	FCT	LLSS (Fuel)	299.7			Horizontal Scan

(*) Clipped transient with power tail.

* Courtesy Vishal Patel (CSNR)

Transient 2857 (Natural, Unshaped)

* Courtesy Vishal Patel (CSNR)

Transient 2860 (Shaped)

TREAT-IRP Best Path Forward

Goal:

- 2 steady-state and 2 transient tests
- Steady-state cores

- M8CAL and AN-CAL (pick a loading from each)
- IRPhEP benchmark evaluations

> Transient tests

- Pick transient test that corresponds with selected steady-state core loadings
- Natural and a shaped transient for diversity
- Expand existing IRPhEP evaluation work

Stretch Goal:

Can use knowledge and expertise to further evaluate M8CAL and AN-CAL experiment suites

Conclusions

- Determine what is neutronically important per measurement type
- Ongoing progress in MOOSE modeling and simulation
 - nd Viceous
- Established IRPhEP format for neutronics benchmark development
- M8CAL and AN-CAL experiments easiest option for most impactful benchmark development

Extra Slides

Transient Example

۰.

transient rod drive actuator assembly

NOTES:

Joints must have no sharp offset

Moly solid lubricant or Mobil SHC 460 synthetic grease used in assembly of all joints

Dimensions in inches

Idaho National Laboratory

- #C# Compensation/Shutdown Rod Assembly
- #T# Transient Rod Pair
- #S# Shutdown Rod Pair

U