Nuclear Energy

Task 2 Desired Stakeholder Outcomes

Nick Woolstenhulme

IRP Status Meeting Nov 6-7, 2017

Task 2.1 (Sodium Loop Benchmarking)

Nuclear Energy

Initial Stakeholder Outcomes

■ Historic Sodium Loops

- Identify a few tests and configurations of interest
- Recover geometric information and build models
 - INL's support needed to dig out old documents, etc.
- Compare to test data
 - Pre-test loop checkout
 - Transient test
- Use tools/methods useful for state-ofart modeling of sodium loops
 - Leverage for modern MK-IV design effort

Observations from current meeting

- Efforts to build CFD models of HOP 1-6A mostly complete, final runs forthcoming
- Mentor-student collaborations seem fruitful, especially including on-site (ORNL) period
- Previous "behind schedule" state (due to data availability issues) has been recovered
- In hindsight, HOP 1-6A was not ideal, but has helped formulate lots of lessons learned for future designs, tests, etc. beyond this IRP

Task 2.2 (Water Loop Benchmarking)

Nuclear Energy

Initial Stakeholder Outcomes

Future Water Loops

- No historic examples, must construct an "affordable" prototype of the in-pile loop TWERL (TREAT Water Environment Recirculating Loop)
 - INL will eventually build a true-to-design TWERL prototype with superalloy piping, custom pump, etc. to verify design and operation
- Prototype should be "true to the essence" of the TWERL
 - Compact, upright, small internal volume, no pressurizer, pump/system curves
 - Something akin to the secondary enclosure is desirable
 - Modularity (ability to install other types of test train)

Observations from current meeting

- Slight schedule delay on long lead procurements appears to have been recovered
- The TRTL is assembled and ready for its shakedown tests

Task 2 (Water Loop Benchmarking)

Nuclear Energy

Stakeholder outcomes from Kickoff Meeting

- Heated rod simulant should be pursued if feasible
 - Heating rates need not simulate that possible in TREAT
 - Single rod test train recommended
 - Only the most basic test train features and instruments need to be included
 - Other test train concepts can be installed later if scope remains
- Run the loop through its paces, gather data, benchmark against models
 - INL has primarily used RELAP5-3D to model TWERL thus far, other tools could be used and compared

Observations from current meeting

- An appropriate commercial heater test progression has been determined for commissioning tests
- The novel heater approach will follow, excited to see how well it works
- Benchmark models and modelers seem to be ready for the for the real data
- All of task 2's hopes and dreams rest on successful shakedown of the TRTL

And some other random observations

Excited to hear that min crit SS benchmark is on its way

- Will pave the way to other larger core history benchmarks (M2, M3, NCState)
- And set the foundation for new core benchmarks (effectively creating TREAT's 94 CIC)
- Don't lose sight of the transient benchmark as well
 - Was always high risk, but its an important pioneering thought experiment for the entire community
- No major showstoppers identified for task 3 instrument tests in TREAT
 - Will require close communication between INL and IRP team (don't let the collaboration die after this meeting or failure will be inevitable)
 - Although not at this meeting, keep Colby Jensen in the loop so that he can keep things synchronized with other instrument-related initiatives
- Keep up the good work, for all three tasks this last year will be the "defining moment"