

Task 2 Desired Stakeholder Outcomes

Nick Woolstenhulme

IRP Status Meeting May 24-25, 2016

Task 2 (Sodium Loop Benchmarking)

Nuclear Energy

Stakeholder outcomes from Kickoff Meeting

Historic Sodium Loops

- Identify a few tests and configurations of interest
- Recover geometric information and build models
 - INL's support needed to dig out old documents, etc.
- Compare to test data
 - Pre-test loop checkout
 - Transient test
- Use tools/methods useful for state-ofart modelling of sodium loops
 - Leverage for modern MK-IV design
 effort

- \rightarrow A series of HEDL (FFTF) based TREAT tests surveyed and prioritized
- → HOP 1-6A identified, data reports with test train drawings delivered
 - INL standing by to help dig out more data as gaps emerge

Task 2 (Water Loop Benchmarking)

Nuclear Energy

Stakeholder outcomes from Kickoff Meeting

Future Water Loops

- No historic examples, must construct an "affordable" prototype of the TWERL
 - INL will eventually build a true-to-design TWERL prototype with superalloy piping, custom pump, etc. to verify design and operation
- Prototype should be "true to the essence" of the TWERL
 - Compact, upright, small internal volume, no pressurizer, pump/system curves
 - Something akin to the secondary enclosure is desirable
 - Modularity (ability to install other types of test train)

- → TRTL design is proceeding nicely and appears very mature, surprisingly few compromises were made
 - TRTL even uses Inconel in the test section pipe
 - Pump availability crisis was averted
- TRTL design is remarkably similar to the TWERL
 - Overall, very pleased with the state of the design, in fact, it moved me to produce some art (next slide)

Nuclear Energy

Task 2 (Water Loop Benchmarking)

Nuclear Energy

Stakeholder outcomes from Kickoff Meeting

- Heated rod simulant should be pursued if feasible
 - Heating rates need not simulate that
 possible in TREAT
 - Single rod test train recommended
 - Only the most basic test train features and instruments need to be included
 - Other test train concepts can be installed later if scope remains
- Run the loop through its paces, gather data, benchmark against models
 - INL has primarily used RELAP5-3D to model TWERL thus far, other tools could be used and compared

- Aggressively pursuing this prospect
 - Heating rates have been targeted at very fast ramps up to CHF, homemade novel heaters needed, one off-the-shelf heater as a backup paln
 - TRTL is modular and capable of more, but the tests run for this IRP will be one short rodlet
 - TRTL has several instruments common to TWERL

Task 2 (Water Loop Benchmarking)

Nuclear Energy

Stakeholder outcomes from Kickoff Meeting

IRP team should have two plans

- One assuming that INL does not receive near-term project funding for TWERL detailed design
- Another [hopefully more likely] scenario where INL is well funded to continue design and can stay in-sync with OSU during the IRP and TWERL design processes

- → Unfortunately, this is plan we are on, TWERL detailed design in FY17 looks hopeful, but its not a sure bet
 - We will keep a list of little lessons learned during TRTL design and construction so that they can be incorporated into TWERL later

Task 2 Conclusions

Nuclear Energy

Only a few concerns

- Task 2 water loop is a challenging project to design, fabricate, install, shakedown, operate, model, and document in these few short years
 - Additionally, some considerable goals have been targeted which, if realized, will be quite impressive indeed (for example: ATF-cladding transient CHF measurements)
 - Some backup plans exist (risk mitigations), but it is recommended to continually track emergent opportunities and differentiate them as either <u>wants</u> or <u>needs</u>
 - Make the tough prioritization decisions early in the project (write them down)
- One of this IRP's greatest strengths is how far-stretching and broadly collaborative it is
 - Despite this strength, we must continue to ensure that the core team is in tight communication
 - Equally challenging, we must resist the urge to get too distracted with programmatic opportunities (again need to differentiate wants from needs)

But overall, very impressed

- Looks very promising that the outcomes of this IRP will be very relevant
- Remarkable progress has been made in just six months

One Last Random Thing

Nuclear Energy

Argonne National Laboratory

IDAHO FACILITIES IDAHO FALLS, IDAHO

P. O. BOX 2528 IDAHO FALLS JA 2-4400, EXT. 2281

June 8, 1959

TREAT OPERATIONS .. EXT. 2201 FILE 1.2.9.2 R WITHDRAWAL CARD REQUIRED FOR REMOVAL

Idaho Division

RED

To: J. F. Boland From: G. A. Freund TREAT Fuel Assemblies Subject:

Attached to this memo is a list of the various types of TREAT fuel assemblies, the numbers made of each type and their planned disposition as of this date. In addition about 100 graphite-urania blocks are being stored by Special Materials at Lemont.