Idaho National Laboratory

TREAT Sodium Loop: Status Update

October 7-8, 2015

Clint Baker

Outline

- Document Recovery
- History
- Mk-III Loop
- Key Sodium Loop Technologies
- 3D Modeling
- The Future

Document Recovery

- Mk-II and especially Mk-III loops
 - Drawings
 - System Design Descriptions (SDD)
 - Operating and Maintenance Manuals (OMM)
 - Fabrication specifications
 - Design requirements documents
 - Final design disclosure documents
 - Memorandums
 - Safety Analysis Reports (SAR)
 - Experiment final reports
 - External reports (conferences etc.)

History (Mk-I onward)

Mk-I loop

- One 4"x4" grid position in TREAT core
- Annular flow path for molten sodium
- Faraday-type conduction pump

Mk-II loop

- Two grid positions (4"x8") in TREAT core
- Flow path for molten sodium was through vertical parallel legs.
- Single annular linear induction pump (ALIP)
- More instrumentation, a larger test section, higher operating temperature and pressure, better remote handling capabilities
- Several Mk-II model designations, ending with Mk-IICB, whose changes were for improvements in fabricability, inspectability, and attachment of loop outfitting

History (Mk-I onward)

- Mk-III loop was a lengthened version of the Mk-IICB loop
 - ~37 inches longer
 - Usually two ALIPs
- Two experiment sponsors
 - ANL Reactor Analysis and Safety (RAS) Division
 - Hanford Engineering Development Laboratory (HEDL)

Mk-III Loop

- Three Mk-III model designations
- Mk-IIIA, Mk-IIIB, Mk-IIIC
 - Differed only in the capacity and/or dimensional size of their test sections
 - The bulk of the Mk III loop structure was common to all three loops

Mk-III Design Features & Characteristics

Parameter	Value
Design pressure at temperature	34.5 MPa at 538°C (5000 psi at 1000°F)
Initial pressure proof test	43.1 MPa at 538°C (6250 psi at 1000°F)
Static pressure (pre-transient)	≤ 710 kPa (103 psi) abs, at temperature
Test section inlet temperature (pre-transient)	≤ 400°C (752°F)
Volume of sodium	≈ 2 liters
Mass of sodium	≈ 1.25 kg
Sodium flow velocity	≤ 7 m/s (23 ft/s)
Sodium flow rate	≤ 1.2 liter/s (19.4 gal/min)
Burst disc design pressure (P)	$30\% \le P \le 90\%$ of loop rated pressure (± 5%) (1500 $\le P \le 4500$ psi) (at ≤ 500 °F)
Mass of loop	115 kg (253 lb)

7

Mk-III Loop Instrumentation

MARK III LOOP THERMOCOUPLE LOCATIONS

Mk-III Loop Instrumentation

Key Sodium Loop Technologies

Annular Linear Induction Pump (ALIP)

Pressure Transducer

Permanent Magnet Flowmeter

3D Modeling (Mk-IIIA Loop)

The Future

- Design of Mk-IV loop should be based upon the Mk-III loop
- Room for advancement materials, fabrication techniques, instrumentation
- Maintain compatibility with legacy equipment and the TREAT core
- More demanding design requirements are likely increased temperature, flow rate, length, etc.
- Disposition pathway for sodium should be considered during the design phase

Questions and Answers (Open Forum)