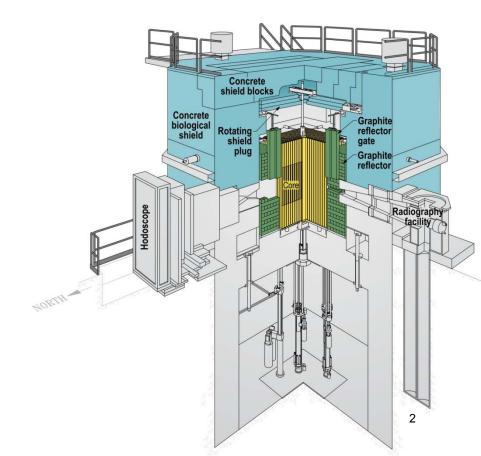


# Task 2 Desired Stakeholder Outcomes

Nick Woolstenhulme


IRP Kickoff Meeting, Nov 19-20, 2015



### Background

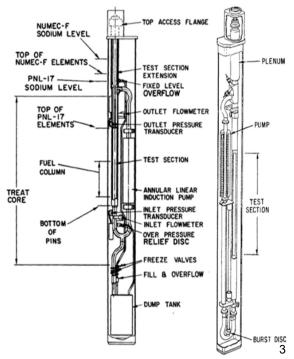
#### Nuclear Energy

- Development of advanced nuclear fuels will require nuclear transient testing
- Resumption of operations at the Transient Reactor Test facility (TREAT) at the Idaho National Laboratory is planned for this testing
- TREAT is a dry reactor
  - Driver fuel: Zircaloy-canned blocks of urania dispersed in graphite
  - Test assemblies handled in shielded cask
- Tests typically displace driver fuel assemblies to create experiment cavity
  - Each fuel assembly is 10cm × 10cm in cross section
  - 122cm of active core length
- 4 slots with view of core center, 2 in use
  - Fast Neutron Hodoscope
  - Neutron Radiograph





### Background


#### Nuclear Energy

#### TREAT is well suited to self-contained drop-in test devices

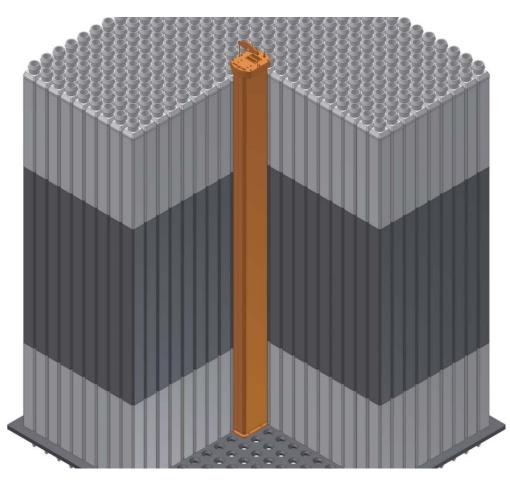
- Installation, testing, and withdrawal in a matter of days
- Enables support for different-environment test devices (e.g. water or sodium)
- Assembly and disassembly in shielded hot cells
- Test device geometry limited by core volume and shielded handling casks
  - Loop handling cask 25cm diameter X 387cm long
- TREAT's historic testing focused on sodium-cooled fast breeder reactor specimens
  - Highly successful with package-type sodium loops
  - Piping primary containment, sheet metal leak-tight secondary enclosure
  - Pumps, heaters, instrumentation, all contained within enclosure

#### Similar package-type devices are envisioned for future testing

- Water, steam, inert gas, sodium in "static capsules"
- Recirculating water loops
- Recirculating sodium loops

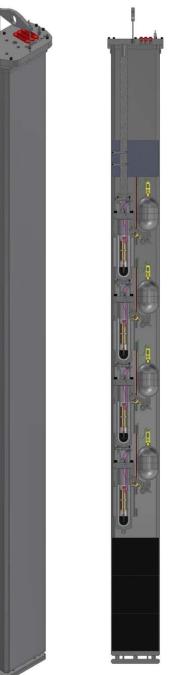


Historic Mk-series Sodium Loop

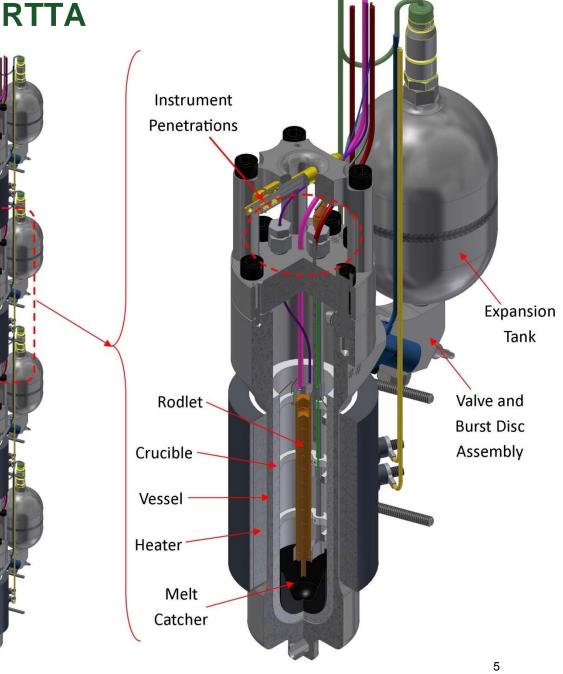



### **Static Environment Vessel**

Nuclear Energy


Static Environment Rodlet Transient Test Apparatus (SERTTA)

- General purpose device <u>without</u> forced convection
- Pre-pressurized and electrically heated
  - Liquid water up to PWR condition (320C 16 MPa)
  - Inert gas or steam
  - Liquid sodium capability envisioned
- Vessels designed with tremendous safety margin
- Several SERRTA "modules"
  - Multi-SERTTA for 4X rodlets
  - Super-SERTTA for full length rods (48")
  - LOCA-SERTTA to be developed




#### Leak Tight Secondary Enclosure

### Multi-SERTTA



4X Rodlet Test Vessels



#### Super-SERTTA

(preliminary concept only)



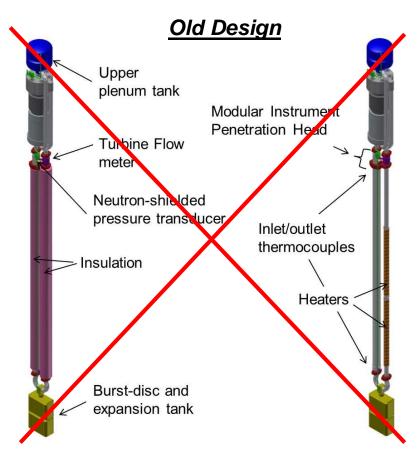






Ample Room for Instrument Penetrations

Single Vessel



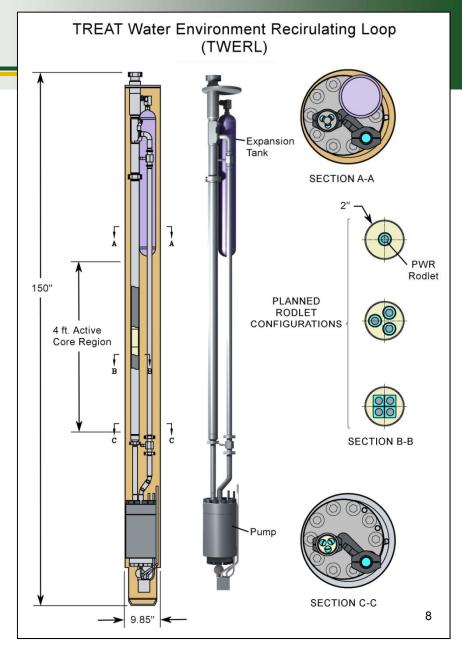

## **Flowing-Water Loop**

Nuclear Energy

# TREAT Water Environment Recirculating Loop (TWERL)

- Based on MK-series concept
- Water pump needed
  - High pressure/temp, compact, no leakage
  - Quotation and rough design received from Teikoku on a custom canned motor pump
- Loop piping superalloy UNS N07718
- FY14's design concept (upon which the IRP was based) has been considerably reconfigured
  - Pump-on-top  $\rightarrow$  pump-on-bottom
  - Much easier to load test train in hot cell
  - Larger core footprint, entirely fills shipping cask

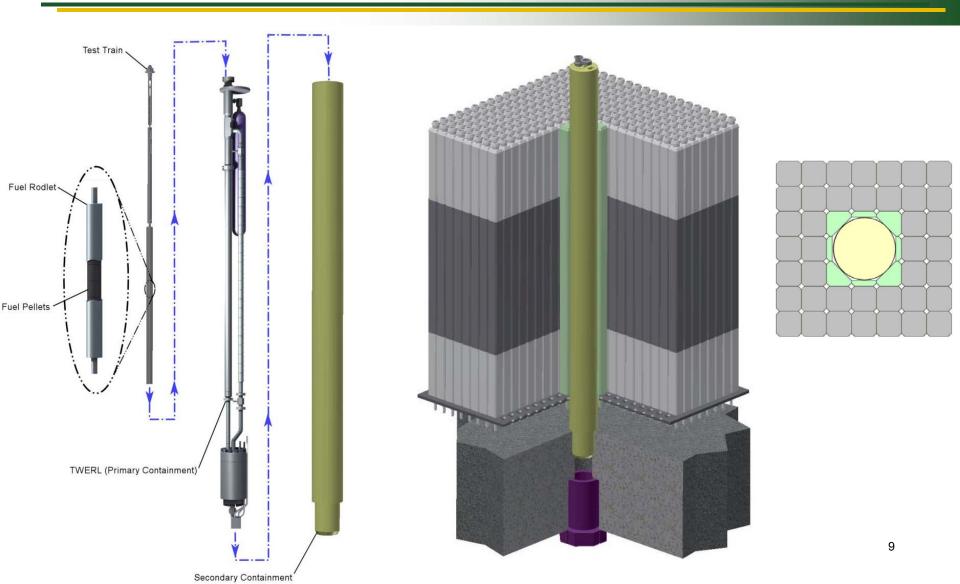





TWERL

**Nuclear Energy** 

#### Pump on bottom design conceptualized, but not complete


- Test train is modular:
  - One rod in a flow tube for highly instrumented test trains
  - Up to three rods in individual flow tubes for concurrent testing
  - Four-rod bundle Test-specific instrument designs
- Detailed design concept underway for a single-rod test train only (for ATF-2)
- New design was described in a recent internal report, but no detailed drawings yet available
  - Further TWERL design work currently unfunded

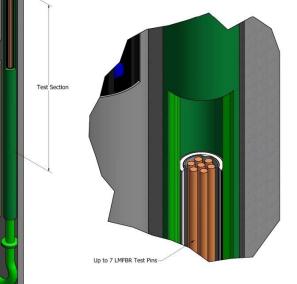




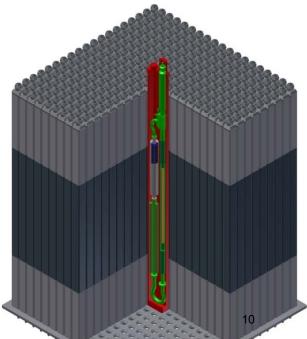
TWERL

#### **Nuclear Energy**






Expansion Tanks


### Sodium Loop

#### **Nuclear Energy**

- Like the historic TREAT, something akin to the MK-II and MK-III loops will be the heart of fast reactor testing
- Up to 7 pins, sodium recirculated by compact annular liner induction pumps (ALIP's)
- Design concept is well established
- Currently working on recovery of historic design/operational basis and identifying hardware needs



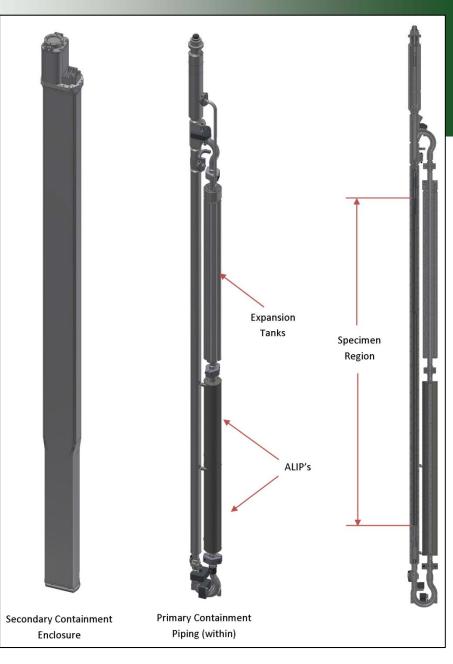
Representation of Historic MK-II loop





# ENERGY Sodium Loop

#### **Nuclear Energy**


#### INL recently recovered several MK-III drawings

Rebuilt design in CAD format (right)

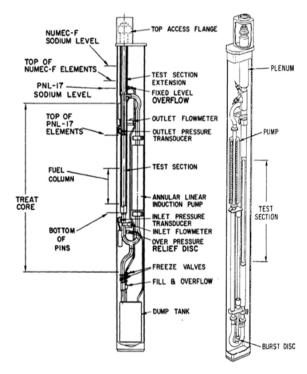
#### Design is remarkably "configurable"

- 1 or 2 pumps, amount of expansion tanks
- 1, 2, 3, 7 pin test trains with instruments
- Top and bottom plenum pins
- Have yet to assemble one complete test, loop, and instrument configuration packages, and link to data from a transient test
  - Work in progress, currently unfunded
- Design update needed for future "MK-IV" sodium loops
  - Modern test and data needs
  - Modern materials and instruments
  - Currently unfunded

#### ALIP technology subject of SBIR grant






### **Task 2 Desired Outcomes**

Nuclear Energy

# Task 2 is focused on creating benchmark cases for loops

### Historic Sodium Loops

- Identify a few tests and configurations of interest
- Recover geometric information and build models
  - INL's support needed to dig out old documents, etc.
- Compare to test data
  - Pre-test loop checkout
  - Transient test
- Use tools/methods useful for state-of-art modelling of sodium loops
  - Leverage for modern MK-IV design effort





### **Task 2 Desired Outcomes**

#### Nuclear Energy

#### Future Water Loops

- No historic examples, must construct an "affordable" prototype of the TWERL
  - INL will eventually build a true-to-design TWERL prototype with superalloy piping, custom pump, etc. to verify design and operation
- Prototype should be "true to the essence" of the TWERL
  - Compact, upright, small internal volume, no pressurizer, pump/system curves
  - Something akin to the secondary enclosure is desirable
  - Modularity (ability to install other types of test train)
- Heated rod simulant should be pursued if feasible
  - Heating rates need not simulate that possible in TREAT
  - Single rod test train recommended
  - Only the most basic test train features and instruments need to be included
  - Other test train concepts can be installed later if scope remains
- Run the loop through its paces, gather data, benchmark against models
  - INL has primarily used RELAP5-3D to model TWERL thus far, other tools could be used and compared

#### IRP team should have two plans

- One assuming that INL does not receive near-term project funding for TWERL detailed design
- Another [hopefully more likely] scenario where INL is well funded to continue design and can<sub>3</sub> stay in-sync with OSU during the IRP and TWERL design processes



### **Task 2 Desired Outcomes**

#### Nuclear Energy

"You learn more at first prototype than at any other point in the design

process" –Greg Roach, Professor of Mechanical Engineering, BYU-Idaho

- In addition to creating benchmark cases, this prototype will INL's first glimpse of the design's performance
- Observations that could be made
  - TWERL is a sealed pressurized system (with precise pressure targets), yet it has no pressurizer.
    - Can the target pressure be achieved in a repeatable manner?
    - What is the effect of slow plenum gas leakage from seals while in storage?
  - What is the best plenum cover gas (leakage from system, absorption into water, inertness)
  - Reliability of loop instruments (pressure transducers, turbine flow meters)
  - How does the system pressure respond as energy is input from the rod?
  - Can the system be operated at near-saturation conditions (BWR), will the pump cavitate, how much energy can be input from the rod before the system becomes unstable?
  - What is the surface temperature of the secondary enclosure during operation?
  - Can the system be maintained at steady state PWR conditions or will temperature slowly climb due to pump heat input



**Nuclear Energy** 

# **Questions?**



### Acknowledgments

#### Nuclear Energy

- **Dan Wachs** Transient Testing Lead
- Bruce Nielson Program Manager
- Rob O'Brien ATF-3 Principle Investigator
- Andy Beasley ATF-3 Experiment Manager
- Heng-Ban, Troy Unruh, Darrell Knudson, Josh Daw, Kurt Davis Instrumentation
- Nick Woolstenhulme Test Vehicle Design & Analysis Lead, SERTTA Lead Engineer
- Greg Housley TWERL Lead Engineer
- **Clint Baker** Hot Cell Prep. and Assembly Engineer, Sodium Loop Lead Engineer
- **Lance Hone, Nathan Jerred** Engineering and Prototyping Support
- John Bess, Connie Hill, Jorge Navarro, Vishal Patel, Cliff Davis Neutronics
- Colby Jensen, Cliff Davis Thermal Analysis
- Spencer Snow Structural Analysis
- Jim Parry, Lee Nelson, Doug Gerstner TREAT Interfaces