INL/MIS-17-41427

Approved for public release; distribution is unlimited.

Validation of Rattlesnake, BISON and RELAP-7 with TREAT

Expert Group on Multi-physics Experimental Data, Benchmarks and Validation (EGMPEBV)

Mark D. DeHart, PhD Deputy Director for Reactor Physics Modeling and Simulation Nuclear Science and Technology Directorate Idaho National Laboratory

TREAT – The Transient Test Reactor Facility

TREAT Advanced Multi-Physics Simulation

- Current benchmark efforts are based on data available from M8CAL calibration measurements from early 1990s
- Parallel work in progress to model Multi-SERTTA, which is being designed as the first test capsule.
- Development of methods to handle cross section challenges
 - 3-D effects base cross sections generated using Serpent 2
 - Strong neutron streaming in hodoscope slot and air channels
 - Strong absorption near control rods
 - Complex models

Modeling and Simulation Challenges

- Slotted hodoscope assembly
- S Control/shutdown rod pair
- C Compensation/shutdown rod assembly
- T Transient rod pair
- **MK** Experiment locations (Note: other experiment
- III locations and configurations possible)

Status of MAMMOTH R&D

- MAMMOTH has successfully been used to simulate M8CAL transient simulations based on power data.
- Cross section methods have been developed to overcome difficulties with TREAT streaming paths.
- Current efforts are focused on calculation of PCF and TCF terms that were measured in the M8 calibration series (from steady state and time-dependent energy deposition simulations).
 - These results will lead to confidence in ongoing Multi-SERTTA simulations being performed to allow understanding of transient response of system.

daho National Laboratory

- Improved hodoscope streaming calculations
- Sensitivity/uncertainty work supporting M8CAL validation
- These are coupled fuel/transport calculations

 multi-physics
 experiment simulations

TREAT's mission is to deliver transient energy deposition to a target or targets inside experiment rigs.

FIG. 5. Plot of TREAT reactor power and energy for hypothetical RIA-type transient resulting in 1400-MJ pulse with a 72-msec FWHM capable of depositing 1200 kJ of energy per kg of fuel (290 cal/g).

M8CAL Simulation with MAMMOTH

- Successful modeling of historical transients from M8CAL measurements with slotted core and in-core calibration vehicle.
 - transient power measurements
 - fission wires

Item	Date	Wire Identification	Core Slot	Axial Peak: Absolute (f/g) (x10E13)	Total Energy in Irradiation, MJ	Measured Coupling Factor (f/g U-235-MJ) (x10E12)	Control Rod Configuration	Approprimate Initial (Critical) Rod Position, in.		
								Control/Shutdown	Transient	Wire Holder
1	10/19/90	L91-8-10	Full	1.42	667	1.79	В	Fully Withdrawn	18.5	Unfiltered
2	8/24/92	L91-60-1	Half	0.958	576	1.40	A	22	Fully Withdrawn	Unfiltered
3	11/20/92	L91-8-1	Half	0.968	576	1.41	A	22	Fully Withdrawn	Unfiltered
4	2/ 8/93	L91-8-6	Half	0.819	480	1.44	A	22	Fully Withdrawn	Unfiltered
5	2/12/93	H91-8-1	Half	0.972	576	0.503	A	22	Fully Withdrawn	Filtered
6	3/ 2/93	L91-8-16	Half	1.26	576	1.84	В	48	11.5	Unfiltered

Item	C/R Config.	Wire ID	Measured PCF	Predicted PCF	Error (%)
1	В	L91-8-10	1.79	1.204	-32.7
2	А	L91-60-1	1.40	1.190	-15.0
5	А	L91-7-1	0.503	0.439	-12.7
6	В	L91-8-6	1.84	1.24	-32.6

TREAT Detector Locations

Coupling Factors

- Historical operations lacked detailed 3D kinetics capabilities for experiment design and execution.
- Those operations relied on a "Power Coupling Factor" and "Transient Correction Factor" (TCF)
- Measurements were performed using both fission wires and fuel pin(s) representative of the fuel to be tested in a transient.
- PCFs were determined for both wires and fuel pin(s)
- PCF = power per gram of test sample, per unit of TREAT power
 - PCFs were expressed in different units the form of the expression was irrelevant as long as used consistently:

$$\frac{fissions/g_{U_{235}}}{MJ_{core}}, \frac{J/g_{U_{235}}}{MJ_{core}}, \frac{fissions/g_{fuel}}{MJ_{core}}, \frac{J/g_{fuel}}{MJ_{core}}$$

Typically PCFs were measured at a low-level steady-state (LLSS) power, 80-100 kW.

Coupling Factors

- Because of core changes during a transient (principally rod motion and changes in the neutron spectrum due to non-uniform temperature increases), the PCF changes with time.
- A TCF was used to correct for those changes to obtain an effective PCF for a fuel experiment.
- To determine a TCF, it was assumed that there is a proportionality of fissions in both test fuel pins and fission wires:

$$\frac{PCF_{pin,transient}}{PCF_{pin,LLSS}} = \frac{PCF_{wire,transient}}{PCF_{wire,LLSS}}$$

• Rearranging:

$$PCF_{pin,transient} = PCF_{pin,LLSS} \cdot \frac{PCF_{wire,transient}}{PCF_{wire,LLSS}}$$

• Or,

$$PCF_{pin,transient} = PCF_{pin,LLSS} \cdot TCF.$$

Coupling Factors

• For the actual transient, a relationship between core energy and energy in the experiment was assumed as:

$$E_{pin} = E_{core} \cdot PCF_{pin,LLSS} \cdot TCF,$$

- Note that fuel pins were never subjected to a transient only fission wires
- To measure PCF_{wire,transient}, for high power transients without wires melting:
 - Fission wires (usually a zirconium-uranium alloy) were typically LEU
 - HEU wires could be used but had to be enclosed in a filter
- Hence, measurements were performed for
 - $\ PCF_{\text{pin,LLSS}}$
 - $\ \mathbf{PCF}_{wire,LLSS}$
 - $\text{PCF}_{\text{wire,transient}}$
- And TCF was calculated as PCF_{wire,transient}/PCF_{wire,LLSS}

Historical Approach for TREAT Calibration

- 1. Heat balance measurements (calorimetry) were used to determine steady state power at one or more flux levels prescribed CR positions, core at thermal equilibrium (after ~6-7 hours) at a prescribed power.
- 2. A sample fuel rod(s) was placed within TREAT, and a steady-state test was performed for a set amount of time. The test rig was then removed and the number of fissions/sec/gm determined by destructive analytical chemistry techniques or gamma scan => PCF_{pin,LLSS}. <u>Core not at thermal equilibrium.</u>
- Fission wires of uranium alloy were irradiated at steady state and also assayed to obtain burnup data => PCF_{wire,LLSS}
- TREAT would be operated in transient mode with a second set of fission wires with the planned transient => PCF_{wire,transient}
- 5. Power deposition in the experiment estimated from pin PCF and wire TCF
- 6. If power did not meet experiment requirements, the transient was modified as appropriate then return to step 4.
- 7. Finally the test rig was placed in the test volume within TREAT and the prescribed transient test was performed.

- Modeling problems
 - PCF defined as fissions/(g-U235 MJ-Reactor).
 - Wrong Q value (202.27 MeV/fission) denominator of PCF
 - Calculations indicate Q = 171-175 MeV/fission prompt local energy deposition
 - Add ~9 MeV/fission in-core from decay heat @ 10 sec, Q ≈ 182
 - Also found 1982 ANL document that indicates that temperature and control rods can influence the detector response and samples
 - For control rod position B, a significant flux change is seen relative to calibration position A for a given detector position.

- Modeling problems
 - Data for the H91-8-1 irradiation gives a max temperature of 115 C and critical 23 C. If calibration was performed at 23 C, the detector is biased ~5.7% (without CR effects)
 - B(n,α) reaction which is measured by the DIS-SS chamber should have changed by ~24% (flux ratio of ~76% relative to that at 23 C) for Rod position B measurements - consistent with ANL estimates.
 - Two simulations were performed based on different locations of the detector to obtain a range of possible flux ratios.
 - Assuming the detector was in its closest position to the core, a flux ratio of 0.752 was calculated
 - Assuming the detector was situated farther out in the instrument hole in the biological shield, a flux ratio of 0.77 was calculated.
 - L91-8-10 → 1.204*(202.27 MeV/182 MeV)/0.752
 - = 1.74
 - Measured value was 1.79

• Correcting for Q value, rod position and temperature effects, as appropriate

Item	Wire ID	Measured PCF	Correction Type	Revised Prediction of PCF	Error (%)
1	L91-8-10	1.79	Q value, Rod position B, Temperature	1.74	-2.79
2	L91-60-1	1.40	Q value, Temperature	1.39	-0.71
5	H91-7-1	0.503	Q value, Temperature	0.487	-3.02
6	L91-8-6	1.84	Q value, Rod position B, Temperature	1.88	+2.17

- Fission distribution in 122 cm (48") wires
 - Where was the fission measured to calculated PCF?
 - M8CAL report indicates they looked at the "Peak" PCF.
 - There are a few points that are near the peak.
 - Possible that a data fit was performed and used to estimate the peak?

Conclusions from M8CAL Measurements

- The quality of data is not appropriate for full validation.
 - Critical information is not available (e.g., detector positions)
 - TREAT measurements and data acquisition were never designed for multi-physics validation nor for 3D simulations.
 - How doyou factor in uncertainties for original measurements given the complexity of the responses.
- "We have learned how to characterize some of the calibration issues and have developed confidence in our methods. This consistency of the measured data with bias-adjusted calculations gives us confidence in our ability to calculate PCFs. However, confidence and validation are not the same thing, and it is difficult to call this a validation of the method, because of the need to introduce bias factors that were calculated, not measured. Instead, validation calculations must be performed in a manner similar to the actual measurements, by performing simulation of detector responses for heat balance, LLSS and transient runs. We need better data to be able to do true validation."
 - M. D. DeHart, B. A. Baker and J. Ortensi, "Interpretation of Energy Deposition Data from Historical Operation of the Transient Test Facility (TREAT)," INL/JOU-17-41863, submitted to Nucl. Engr. Design May 2017
- TREAT will start providing that opportunity within a year.

Startup Testing Timeline and MAMMOTH

Support core characterization work and reactor physics experiments

- Specify and procure gamma spectrometer, gross beta counter, fission and flux wires, fabricate wands
- Rod worth measurements
- Support planned ATF calibration experiments
- Develop power coupling and transient correction factors
- Develop neutron flux, power, and temperature profile throughout the experiment calibration vehicle
- Map neutron flux profile throughout the core, varying temperature
- Map the reactor power profile throughout the core, varying temperature
- Map the temperature profile throughout the core, , varying power
- Measure beta and neutron lifetime
- Measure negative temperature coefficient
- Measure neutron spectrum as a function of temperature in core center (spectroscopy)

Experiment Schedule to Support Validation

Idaho National Laboratory