Advanced Instrumentation for Transient Reactor Testing

2014 Integrated Research Project
Idaho State, Kansas State, Ohio State, UW-Madison
Idaho National Laboratory, CEA-Cadarache

Michael Corradini, Project Lead; G.Imel, ISU, J.Roberts, KSU;
T.Blue, OSU; M.Anderson, UW; K.Davis, INL, J.F.Villard, CEA

May 20th, 2017
Motivation: Ability to monitor fuel behavior in real-time will provide more information on the fuel rod state, help provide a better understanding of the physics of fuel behavior under transients

Scope: Develop and demonstrate innovative measurement diagnostics for real-time in-situ monitoring to support transient reactor testing.
Our team is developing specific innovative measurement diagnostics for real-time in-situ monitoring in support of transient reactor testing in three key program elements:

- Develop concepts that lead to next generation fuel motion monitoring system; i.e., advancements in spatial and temporal resolution for hodoscope imaging.
- Develop instrumentation to support in-pile transient testing that includes temperature measurements, local fast and thermal neutron flux measurements.
- Demonstrate these novel instrumentation measurement methods in a reactor environment using university TRIGA reactors.

Key Personnel

G. Imel, ISU; J. Roberts, KSU; T. Blue, OSU; M. Corradini, M. Anderson, UW; K. Davis, INL; J. F. Villard, CEA

Program: Integrated Research Project
IRP-NE Budget: $3m

Key Milestones & Deliverables

Task 1
- Modeling of TREAT for hodoscope optimization
- Improve HB design w MSND design development

Task 2
- Design, fabricate, test MPFD for use in TREAT
- Design, fabricate, test Diamond TC sensor
- Design, fabricate, test Distributed TC sensor
- Fabricate and test HTIR, Ultrasonic TCs, TC probe

Task 3 and 4
- Out-of-pile testing of these instruments in transient
- In-reactor (TRIGA) testing of these instruments

Technology Impact

Currently transient reactor testing involves hodoscope measurements with post-test fuel examination. This diagnostic development seeks to provide in-situ real-time monitoring of local fluxes and temperatures.

Provide TREAT In-situ Real-time Measurements for Transient Fuel Testing
Project Organization

Advanced Instrumentation for Transient Reactor Testing
IRP Organization

IRP Project Lead
Michael Corradini (UW)

IRP University Partners
Idaho State Univ.
 George Imel
Kansas State Univ.
 Jeremy Roberts
Ohio State Univ.
 Tom Blue/Ray Cao
UW-Madison
 Mark Anderson

IRP Laboratory Partners
Idaho National Lab
 Kurt Davis
CEA-Cadarache
 Jean-Francois Villard

External Advisory Board
DOE/INL: S.Schuppner,
 D.Wachs, C.Jensen

Industry Experts: Areva,
 GE, NRC, NuScale,
 Terrapowr, Westinghouse

Task Areas & Investigator Distributions:
Task I: Real-Time Imaging: G.Imel (ISU)***, P.Ugorowski (KSU)***,
 J.Roberts (KSU), T.Unruh (INL), M.Anderson (UW)
Task II: Sensors: M.Anderson***, J. Blanchard, J.Ma (UW), T.Blue
 (OSU), D. McGregor (KSU), J.Daw (INL)
Task III: Out-of-Pile Tests: T.Blue (OSU)***, M. Anderson (UW)***,
 D.Knudson (INL), B.Chase (INL)
Task IV: In-Pile Tests: D. McGregor (KSU)***, M.Anderson (UW)***,
 B. Agasie (UW), J.Roberts (KSU), K.Davis (INL)
Task V: Transient Test Design: M.Corradiini (UW)***, G.Imel (ISU),
 *** Indicates Team Leads or Co-Leads
Task I:

- Improve modeling (MCNP) of the flux at the hodoscope plane with million particles to ensure better quality flux predictions.
- Figure below shows the X-Y flux plot with the flux measured in # of neutrons/cm².
- Use Filtered Back Projection technique to ascertain source distribution from the flux obtained analytically.

Alternate option being investigated is to use the MAMMOTH code from INL for transient simulation (ongoing).
Task II:

- Support fission chamber development through measurement verification of the fissile material deposits produced at partner, KSU.
- Cross-calibration measurements of KSU samples has been made with the back-to-back (BTB) fission chamber.
- Efforts are made towards reducing noise of the system for increased accuracy of calibration measurements.
- Progress made towards fabricating a smaller BTB fission chamber (OD 0.8125 in.) to access the center of the AGN-201 reactor, which has the higher neutron flux.

(Left) BTB cross-calibration spectrums between two KSU fissile samples. (Above) New BTB fission chamber design and current fabrication progress.
KSU highlights over project period:

- Development of three, unique approaches for fast-neutron detection
 - Hornyak evolutions with better geometry
 - Microstructured semiconductor neutron detectors
 - Proton-recoil gas scintillator
- Design of a hodoscope mock-up for testing technologies and simulating measurements
- Preliminary study of micro-pocket fission detector (MPFD) integrity with reactor pulses

HORNYAK EVOLUTIONS

Goals: better light collection and reduced Cherenkov noise.

FAST-SENSITIVE MSNDs

Original plan: actinide (e.g., 237Np) reactant, with predicted \sim3% intrinsic efficiency.

Improved plan: hydrogenous reactant (paraffin), with predicted nearly double the efficiency (for mono-directional, fission-spectrum neutrons, assuming sufficient LLD)

Need further information on expected source and background!

eff ~ 3.3% for S/N of 100 relative to assumed gamma background

eff = 5.4% for LLD of 700 keV
Fuel Rod Transient Experiment

SER-22-16-1/Custom

3300 W heating from 500C

- 2700W, 80s
- 3300W, 195s
- 830W, 300s
- 225W, 300s

Temperature [°C]

Heater Power [W]

0 100 200 300 400 500 600 700 800 900 1000

0 500 1000 1500 2000 2500 3000 3500

Dead End

Hot Zone

Cold Zone

Filled w/ HT Cement

0.5625

1.0000

15.0000

22.0000

1.7500

4.0000

1.0000

1.0000

1.0000

1.0000
OSU Objectives

- Task IIC: Fiber Optic Temperature Sensors
- OSU is tasked with testing innovative fiber optic temperature sensors for measuring temperature profiles in the TREAT testing vehicle

Key Accomplishments

- Determined the radiation limits of distributed temperature sensing in commercial silica fiber
- Innovated silica fiber sensors to produce distributed temperature measurements up to 1000°C
- Mechanically ruggedized silica fiber for TREAT
- Invented a new type of sapphire optical fiber that can read out distributed temperature measurements
- Modeled the time response of optical fiber sensors
Advanced Instrumentation for Transient Reactor

T. Blue, R. Cao, B. Wilson; OSU

Current OSU Research / Experiments

• Investigating the accuracy of optical fiber sensors in a nuclear environment (i.e. effects of gamma heating)
• Developing radiation hard optical fibers and fiber sensors for long term use in nuclear reactors
• Developing a sapphire optical fiber and sensor capable of producing distributed temperature measurements to temperatures up to 1600 C
Distributed Fiber Sensor Testing

Improvement in fabrication and design has increased short term sensing to ~1000°C & long term sensing to ~800°C

<table>
<thead>
<tr>
<th>Color Code Key</th>
<th>Green Claim made before IRP began work</th>
<th>Red Work completed by IRP</th>
<th>Black Work currently ongoing in IRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Inquiry</td>
<td>Updated Matrix showing current status of Fiber testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spatial Limit</td>
<td>Fiber Length [2-20 m]</td>
<td>Bend Radius (signal) [> 5 cm]</td>
<td>Strain Sensitivity</td>
</tr>
<tr>
<td>Temporal Limit</td>
<td>Acquisition Rate [0.2 - 250 Hz]</td>
<td>Labview Limiting [Currently ~5 Hz displayed]</td>
<td>Sheathing Impact [25ms time delay]</td>
</tr>
<tr>
<td>Resolution Limit</td>
<td>Software Limit [0.64 - 2.56 mm]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Accuracy & Precision</td>
<td>Luna Quoted Specs [± 0.4-1.6 °C]</td>
<td>Check Luna Specs</td>
<td>-</td>
</tr>
<tr>
<td>Mechanical Failure</td>
<td>Handling/Ben Limit</td>
<td>Tension Limit</td>
<td>Coating Removal</td>
</tr>
<tr>
<td>Thermal Failure</td>
<td>Temp Gradient [30°C/cm - 500°C/cm]</td>
<td>Molecular Mobility [Temp > 700-800°C Initial Anneal]</td>
<td>Melting Point [1713°C]</td>
</tr>
<tr>
<td>Chemical Failure</td>
<td>Coating Influence</td>
<td>Gaseous Influence</td>
<td>Carbon Coating</td>
</tr>
<tr>
<td>Radiation Failure</td>
<td>Gamma Site Creation [Minimal to null]</td>
<td>Gamma Excitement [300-500 nm absorption band]</td>
<td>Neutronic Damage [Damage increases 300-500 nm bands]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluence Limit [No observed impact on sensor signal strength]</td>
</tr>
</tbody>
</table>
Advanced Instrumentation for Transient Reactor

J.Bredemann, M.Anderson, P.Brooks; UW

• Objectives
 – Understand failure mechanisms at high temperatures and look to solutions to allow for increase in maximum sensing temperature and sensor lifetime
 – Quantitatively investigate the limitations of fiber sensing (acquisition rate, time response, accuracy and precision of temperature data, sheath impact, etc.)
 – Experimentally examine the impact of radiation dose on the fiber sensing ability

• Achievements
 – Developed an initial heat treatment procedure to increase short term maximum temperature sensing from 800°C to ~1000°C and stable, long term maximum temperature sensing from 700°C to 800°C
 – Experimentally measured time response of sheathed fiber to be ~25ms
 – Experimentally demonstrated successfully temperature sensing inside of a nuclear reactor core at low temperatures (<100°C) and have shown that minimal if any degradation of sensing signal occurs for long reactor radiation exposures

• Current research
 – Performing attenuation testing of irradiated fibers to investigate quantitative impact of radiation damage and potential temperature effects unique to the fibers (up to 1000°C)
 – Compare several techniques for possible further increase of fiber sensor maximum temperature sensing (high temperature calibration, potential software upgrades, etc.)
Improvement in fabrication and design has increased maximum short term sensing by \(~150^\circ C\) and long term sensing by \(~100^\circ C\).

Standard Deviation:
- \(\pm 5^\circ C\)
- \(\pm 0.66\%\)
<table>
<thead>
<tr>
<th></th>
<th>TC (K-type)</th>
<th>HTIR-TC</th>
<th>RTD (Pt)</th>
<th>Diamond Thermistor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range</td>
<td>-200~1350 °C</td>
<td>800 °C ~ 1800 ° C</td>
<td>0~1000°C</td>
<td>200°C~700 °C Further Test to 1500 °C</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>054mV (01350°C), 41 µV/° C</td>
<td>0.11713.01mV (251242°C), 12.56 µV/° C</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Sensitivity Coefficient</td>
<td>N/A</td>
<td>N/A</td>
<td>500°C : 0.00119</td>
<td>500°C : 0.025</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>700°C : 0.0090</td>
<td>700°C : 0.015</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Max error (°C): 4.0 at 1000°C</td>
<td>At 1240 °C</td>
<td>500°C: ± 2.8°C</td>
<td>Need to be measured</td>
</tr>
<tr>
<td></td>
<td>9.0 at 1200°C</td>
<td>1234.15 ~1248.72 °C</td>
<td>700°C: ± 3.8°C</td>
<td></td>
</tr>
<tr>
<td>Stability</td>
<td>Drift: at 1000 °C, 5 ° C</td>
<td>0.0002 ° C/sec at 1240 °C</td>
<td>Drift Rate typically < 0.001 ° C</td>
<td>Need to be measured</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>< 0.003 ° C 100 hours at 1070 ° C</td>
<td></td>
</tr>
<tr>
<td>Response Time</td>
<td>Smaller diameter, faster. 1/16 size, Time constant (63.2%) τ = 0.4 sec Steady state reading: 5τ</td>
<td>Similar to TC (K-type) 1/16 size.</td>
<td>-Longer than TC, depends on the physical size and design.</td>
<td>Diamond only 1×1×0.3 mm : 100 µs. Depends on physical size</td>
</tr>
<tr>
<td>Radiation Resistance</td>
<td>15° F change 2.21x10^17 n/cm² 0~1000 ° C : 5: x10²⁰ nvt</td>
<td>4.5x10^25 n/cm², E>0.10 MeV, 1200 ° C</td>
<td>Fast neutrons (E> 1.0Mev) cause the transducer output sensitivity shift.</td>
<td>Detector performance good to 1.3x10^15 n/cm². Leakage current decrease after irradiation. Need to be measured</td>
</tr>
</tbody>
</table>
Advanced Instrumentation – Diamond Thermistor

T.Kim, J.Bredemann, M.Anderson, P.Brooks; UW

Diamond

0.3mm

3mm

Diamond

Metal Pad
Mo + Pt
(50nm, 250nm)

3mm

Ni wire diameter: 0.202mm

TC

Alumina tube

Thermistor Operation Test (Sheath metal tube)
INL Sensors – TC Probe

Thermal Conductivity Probe: Received probe and are using several ceramics to test accuracy over a range of thermal conductivities and temperatures.

<table>
<thead>
<tr>
<th>Material</th>
<th>Conductivity [W/m K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium Oxide</td>
<td>5</td>
</tr>
<tr>
<td>Boron Nitride [UHP]</td>
<td>100</td>
</tr>
<tr>
<td>Boron Nitride [SiO matrix]</td>
<td>15</td>
</tr>
<tr>
<td>Al-B hybrid</td>
<td>28</td>
</tr>
<tr>
<td>Alumina</td>
<td>28</td>
</tr>
<tr>
<td>Zirconia</td>
<td>2</td>
</tr>
<tr>
<td>Aluminum Nitride</td>
<td>180-130 (20C - 300C)</td>
</tr>
<tr>
<td>Silicon Nitride</td>
<td>28-16 (20C-1000C)</td>
</tr>
<tr>
<td>Macor Machinable Glass</td>
<td>1.46</td>
</tr>
</tbody>
</table>
INL Sensors

- HTIR sensor is under test at UW out-of-pile
- INL Ultrasonic TC fabricated (three probes)
 - Inconel with 1 sensing region
 - Inconel with 5 sensing regions
 - Moly with 1 sensing region
- All were shipped to UW and testing underway
- Cross-comparison with other sensors
Task III: Out-of-pile testing has begun with selected sensors (ongoing spring and summer)
- MSND and MPFD results at KSU
- HTIR and Fiber optic results at OSU and UW
- Diamond-diode at UW
- Combined TC sensors in test canister

Task IV: Safety case is developed to present to Reactor Safety committee for review and approval (summer)
In-pile testing with HTIR, Fiber-Sensor, Ultrasonic Thermometry, and Diamond Thermistor (summer - fall)