

# COLLEGE OF ENGINEERING

## Task 2.1 Update

Dr. Brian Woods and Tommy Moore

WORKING GROUP MEETING SPRING 2017
ARGONNE NATIONAL LABORATORY
CHICAGO, IL

### Outline

- Task 2.1 Overview
- January Meeting Overview and Outcome
- STAR-CCM+ Modeling
- Preliminary Results
- Conclusions and Future Work



## Task 2.1 Description

| Task#  | Description                                                 | Owner      |
|--------|-------------------------------------------------------------|------------|
| 2.1    | Sodium Loop                                                 |            |
| 2.1.1  | Survey literature of existing sodium test data              | B. Woods   |
| 2.1.2  | Select two candidate problems                               | B. Woods   |
| 2.1.3  | Organize and document data for two candidate problems       | B. Woods   |
| 2.1.4  | Identify and review industry needs for sodium loop data     | B. Woods   |
| 2.1.5  | Down-select to one problem for benchmark evaluation         | B. Woods   |
| 2.1.6  | Preliminary modeling with industry tool Star CCM+           | K. Weaver  |
| 2.1.7  | Preliminary modeling with NEAMS code Nek5000                | D. Pointer |
| 2.1.8  | Comparison of experimental data & model results for problem | B. Woods   |
| 2.1.9  | Benchmark level evaluation of problem                       | B. Woods   |
| 2.1.10 | Evaluation of uncertainties in selected problem             | B. Woods   |
| 2.1.11 | Submission of benchmark for peer review                     | B. Woods   |



### Task 2.1 Schedule



### January Task 2.1 Meeting Overview

- Purpose of meeting
  - Determine the necessary models to create to perform the benchmark
- What is the purpose of the benchmark?
  - Make sure the physics around the pin are well understood
- How to achieve this?
  - Detailed model of the test section
- What challenges might arise from this sort of model?
  - Gap between wire wrap and flow tube is very small, causes test section to essentially become a spiral when heated up.



### January Task 2.1 Meeting Outcome

- Mike Steer, David Pointer, and Tommy Moore in attendance with appearances by Wade Marcum and Brian Woods
- Path Forward
  - Begin with a commercial code as a scoping study to see if a single pin model will be sufficient for Nek5000 model
  - Need to determine the flow splits through each flow tube as a boundary condition for the Nek5000 model
  - Use a porous body model for the flow tubes to model the fuel pins and wire spacers
  - Simpler and quicker than explicit modeling of these features
  - Also provides a good baseline of knowledge for future Nek5000 modeling



**Oregon State** 

## STAR-CMM+ Modeling - Geometry

- HOP 1-6A Geometry imported from SolidWorks model
  - Had to create a fluid model in SolidWorks to be imported
- Parts from this geometry can be imported in future Nek5000 model



### STAR-CMM+ Modeling - Mesh

- Polyhedral and Prism Layer Mesher
  - 7 cells in the prism layer
  - Base cell size of 1 mm
- Lower Bend 612741 Cells
- Lower Plenum 206580 Cells
- Flow Tube A 542657 Cells
- Flow Tube B 538936 Cells
- Flow Tube C 535602 Cells
- Upper Flow Region 724013 Cells
- Total 3160529 Cells



Inlet to Test Section



May 29, 2017







**Loop Outlet** 



# STAR-CCM+ Modeling – Physics Values, Initial and Boundary Conditions

### Physics Values

- Steady State
- Reynolds Averaged Navier Stokes (RANS) with kepsilon model for turbulence modeling
- Segregated Flow model
  - Best used for incompressible flow



### Initial and Boundary Conditions

- Initial velocity set to zero throughout the loop
- Approximate average value of inlet mass flow rate set to 0.1 kg/s























- Inlet Boundary Condition -.01 kg/s
- Flow Tube A 0.03346 (33.46 %)
- Flow Tube B 0.03295 (32.95 %)
- Flow Tube C 0.03356 (33.56 %)

0.17732





0.0000

### Conclusions and Future Work

- Flow through each flow tube is similar for steady state
- A transient case with a heat flux could provide more information about differences in flow tubes
- More meshing studies will provide confidence in results
- Additional inputs for porous body regions will provide better results
- Preliminary modeling overextending schedule one quarter, but have room to catch up this summer with Nek5000 modeling taking place at ORNL during a ten week internship





