

Computational and Experimental Benchmarking for Transient Fuel Testing

Nuclear Energy

OVERVIEW	IMPACT
<u>Purpose</u> : Support the transient fuel testing and Transient Reactor Test (TREAT) Facility Research efforts through comprehensive computational and experimental benchmarking. This includes both reactor physics and thermal hydraulics benchmarking efforts.	Logical Path: TREAT Facility Reator Physics Core Physics Instrumentation
 <u>Objectives:</u> This integrated research project contains four clear objectives: A comprehensive evaluation of existing TREAT Facility neutronics data using next generation reactor core neutronics codes. 	 <u>Outcomes:</u> Each objective will yield its own high-impact outcome: A fully characterized reactor core which may be utilized to support the safety case for the TREAT Facility research and future experiment design analysis efforts.
 A complete thermal hydraulic characterization of existing sodium loop experimental data will be performed and documented. 	A documented basis for developing future sodium flow loops to be utilized within the TREAT Facility.
 The collection of and benchmarking against new experimental thermal hydraulic data of a representative TREAT Facility water flow loop. 	• A documented water flow loop design and demonstration that is representative of a prototypic configuration for the TREAT Facility to provide benchmarking insights.
 A comprehensive instrumentation plan for the TREAT Facility that objectively aligns with the technical and functional requirements needed to maximize impact. 	A documented and demonstrated basis for the selection of in-pile instruments within the TREAT Facility that satisfies steady-state and transient test needs.
DETAILS	RESULTS
Principal Investigator: Wade Marcum	 <u>Results:</u> Completed mechanical drawings of the Transient Reactor Test Loop (TRTL)
Institution:Oregon State UniversityCollaborators:UM, MIT, INL, ORNL, ANL, HTTP, TerraPowerDuration:Three YearsCollaborators:Total Funding Level:\$4,000,000TPOC:Nick WoolstenhulmeFederal Manager:Rob VersluisMorkscope:IRP-NENu15-OR-OSU0701-01Faricipants of first biannual meeting	 Accomplishments: Significant progress on the steady state reactor physics benchmark report Problem description report for sodium benchmark problem underway RELAP and TRACE models are presently being developed for the TRTL against a frozen design. Identified parameter monitoring needs and how needs have been affected by TREAT restart program and upgrades to reactor data acquisition system.