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method (called “Beach Wizard”) is presented with which the nearshore subtidal
bathymetry can be accurately estimated based on video-derived observations of wave roller dissipation and
variation of the intertidal shoreline, and/or radar-derived observations of wave celerity. Using many
consecutive images, these observed properties are compared with numerical model results, and through a
simple, optimal least-squares estimator approach the estimated bathymetry is adjusted gradually for each
image in order to improve the fit between model output and observations. The key advantages of the
technique are that it is based on multiple sources of information (i.e., different remote sensors and/or data
products), depends on only a few free parameters (to which the model results are insensitive), and shows
good skill. Herein, the technique is applied to a synthetic case and two sets of field data from sites at Duck, NC
(USA) and Egmond (The Netherlands). The method, which may be extended with observations of other
properties from other sources than the three described in this paper, can deliver coastal state information
(i.e., simultaneous updates of bathymetry, waves, and currents) with high temporal and spatial resolution
and can be used in conjunction with or instead of in-situ measured data.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Information on the evolving state of the nearshore zone – in terms
of the bathymetric variability, surfacewaves, and circulationpatterns –
is crucial to shoreline management, protection of the hinterland
against flooding, recreational safety, and naval operations. Obtaining
this information from in-situmeasurements is oftennot feasible due to
costs, logistic limitations, hostility of the surf zone, or the need to
obtain the data on short notice.

As an alternative, sophisticated numerical models combined with
limited in-situ and remote-sensing data may be used to estimate the
state of the nearshore zone. Numerical models that predict the
hydrodynamics of these environments are reaching the level of
complexity and numerical efficiency needed to resolve the 2- and 3-
dimensional wave and flow processes over features such as rip
channels and sandbars. When provided with accurate bathymetry and
raulics), PO Box 177, Delft, The
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forcing conditions, the prediction skill of these hydrodynamic models
is good (e.g. Sutherland et al., 2004; Van Rijn et al., 2003). Models that
couple the hydrodynamics with sediment transport and bathymetric
evolution are also nearing operational form (e.g. Lesser et al., 2004).
However, forecasts from state-of-the-art surf zone models signifi-
cantly degrade for prediction horizons exceeding several days,
especially when bathymetry is complex and dynamic due to evolving
rip channels or other forms of variability. Therefore, one of the most
severe limitations in the accurate prediction of waves and currents is
the lack of accurate and up-to-date bathymetric information.

Improvement of the model skill, and hence, lengthening of the
predictive horizon, may be expected from assimilating observations in
near real-time. In that sense, remotely sensed data are of particular
interest, because they are synoptic and can be obtained without
interference with the environment and with generally less logistical
effort. Parameters of interest in the nearshore can be extracted from
remotely sensed video (e.g. Holland et al., 1997; Aarninkhof and
Holman, 1999) and radar (e.g. Bell, 1999; McNinch, 2007), and include
surface currents (Chickadel et al., 2003), wave breaking distributions
(Lippmann et al., 1996), wave run-up (Aagaard and Holm, 1989),
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shoreline position (e.g. Plant and Holman, 1997; Aarninkhof et al.,
2003), nearshore topography (Lippmann and Holman, 1989; Holman
et al., 1991; Holland and Holman, 1997; Van Enckevort and Ruessink,
2003a,b), and wave properties (Harbitz, 1994a,b; Stockdon and
Holman, 2000). For a recent review on video applications see Holman
and Stanley (2007). Although these methods have largely been
developed for shore-based applications, airborne platforms have also
demonstrated similar capabilities (e.g. Dugan et al., 2001, Piotrowski
and Dugan, 2002).

With respect to bathymetry estimation, Stockdon and Holman
(2000) used video imagery to obtain the dominant wave frequency
and the cross-shore component of the wave number (i.e. the wave
phase speed) and used the linear dispersion relation to obtain the local
depth. The method performed best outside the surf zone and for low-
amplitude swells (i.e. for conditions where linear theory applies). This
technique of phase speed based bathymetric inversion was pioneered
by Williams (1946), Johnson (1949) and Fuchs (1953) who used time-
lapsed aerial photography, and has also been applied by Greidanus
(1997) using synthetic aperture radar, Bell (1999) using X bandmarine
radar, and Leu et al. (1999) using SPOT (satellite) images.

Inpreviouswork directly related to the present effort, Aarninkhof et al.
(2005a) presented a technique to estimate cross-shore bathymetry from
time-averaged video imagery using a simple linear relationship between
erosion and accretion on the one hand, and the difference between
modelled and measured wave roller energy dissipation on the other.
Aarninkhof et al. (2005a) demonstrated that the technique is capable of
reproducing the dominant morphological changes during the first year of
a shoreface nourishment project at a multiple barred beach at Egmond,
The Netherlands. The rms error in the estimated bed elevations was
approximately 40 cm for the two cross-sections that they considered.
Errors on the order of 10 to 20 cmwere found at the seaward face of the
bars and increased up to 20 to 40 cm near the bar crest. Maximum
deviations of up to 80 cmwere found in the trough regions, where wave
dissipation informationwas absent.

Aarninkhof et al. (2005b) presented the extension of this method
to two horizontal dimensions using the Delft3D modelling system
(Lesser et al., 2004) and compared to pilot cases at Monterey, CA, USA
and again at Egmond. While this extended method demonstrated the
potential to accurately estimate complex bathymetry, the data-
assimilation scheme was ad hoc. The limitations of the method were
that it required knowledge of some parameters that are typically
unknown, that only one input data stream could be utilized (i.e. the
video-derived wave dissipation estimates), and that the results
showed large deviations from ground truth in the bar troughs and
near the shoreline. Finally, a recent example of bathymetry estimation
via data assimilation is given by Scott and Mason (2007) who
integrated an estuarine morphodynamic model with observations of
the nearshore morphology (intertidal bathymetry in their case) using
similar data-assimilation techniques to those used herein. Their
method improved the predictive performance of their model at
Morecambe Bay, England

The objective of this study is to describe and demonstrate an improved
data-assimilation scheme (hereafter called BeachWizard). In applications
to twofield siteswewill showthat the schemeprovides robust, reasonably
accurate, and smooth estimates of the seasonal and storm-induced
variationsof thebathymetry.Ourapproach to this is toderivean improved,
statistically optimal 2DH assimilation method, extend the number of
remote-sensing data sources fromone tomultiple sources, and reduce the
number of free parameters relative to the model of Aarninkhof et al.
(2005a,b). The sources that are added are video-derived intertidal
bathymetry and radar-derived wave celerities. In addition, the uncertain-
ties in the bathymetric estimates are quantified. Preliminary results from
this method were presented in Cohen et al. (in press).

The new method is validated against a synthetic case and applied
to two field sites: one at Duck, NC (USA) for a short-term (10 day)
hindcast and the other at Egmond, The Netherlands for a long-term
(18 month) hindcast. This paper is outlined as follows: in Section 2 the
data-assimilation model formulation is given. The model is verified
with a synthetic example in Section 3. Section 4 describes the field
data sources and in Section 5 the model is applied to two field cases,
followed by the Discussion and Conclusions.

2. Data-assimilation model formulation for bathymetric updates

The model formulation uses an optimal least-squares estimator
(Bouttier and Courtier, 1999) to update the bathymetry. It needs the
prior state of the bathymetry hprior (and its uncertainty σprior) as well
as new estimates of bathymetry hobs which we will obtain indirectly
from remote-sensing observations (and their uncertainty σobs). The
updated bathymetry can then be computed as

hupdate ¼ hprior þ a hobs � hprior
� � ð1Þ

where all quantities are functions of space unless otherwise noted.
The optimal weighting α of the prior and observed estimates is given
by

a ¼
r2prior

Ts
Dt r

2
obs þ r2prior

 !
; ð2Þ

which will have values between 0 and 1. This weighting term balances
the impact of the uncertainties in the prior bathymetry and in the
observations. While the formulation is clearly similar to Kalman's
(1960) weighting, this equation is used here in a time-update scheme,
which means that the same observation is used for every time step in
the simulation. Since these observations are not statistically indepen-
dent, the value of σ2

obs needs to be multiplied by a factor Ts /Δt, where
Ts is the simulation duration for a given image and Δt the numerical
time step. Finally, the uncertainty of the updated depths can be
computed simultaneously with Eq. (1) as

r2update ¼ a
Ts
Dt

r2obs: ð3Þ

where the updated values in Eqs. (1) and (3) will become the prior
values in the next time step.

As mentioned above, we do not have direct observations of the
bathymetry. Instead, we have remote-sensing observations of wave
celerity and/or time-averaged image intensity, and we have prior
estimates of these quantities obtained from a forward hydrodynami-
cal model and the prior estimate of the bathymetry. Thus, wemust use
an inverse model to relate the remotely sensed observations to the
bathymetry. Using the chain rule

h� hobs ¼
df
dh

� ��1

f � fobsð Þ ð4Þ

where fobs is an observed (measured) local quantity and f is a
computed quantity. Here f may be read as wave dissipation, wave
celerity and/or measured (intertidal) bathymetry. Using Eq. (4), the
time-update scheme (1) becomes

h t þ Dtð Þ ¼ h tð Þ � a

df
dh

df
dh

� �2

þd2
f � fobsð Þ ð5Þ

where variables in Eqs. (1)–(3) with subscript “update” are at time
level t+Δt and all variables with subscript “prior” are at time level t.

Instead of the derivative df
dh

� ��1
we have used an inverse transfer

function (Menke, 1989) with a noise level δ, which ensures that the
denominator does not go to zerowhen the derivative is zero. Note that
we are not inverting the co-variance matrix that describes the
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sensitivity of variables at one location to variables at other locations,
but instead we only consider the main diagonal terms which describe
co-located data inputs and model outputs. Continuous results are
enforced through the forward wave modelling with the hydrodyna-
mical model Delft3D. Using the above formulation the update scheme
will converge gradually to the correct bathymetry driven by an
arbitrarily large model–data mismatch. If α were constant and non-
zero, the convergence would be exponential. The weighting term
damps this convergence based on the quality of the observations. We
must estimate this term in the face of both potentially poor knowledge
of the remote-sensing system error characteristics and knowledge
that the physical process model itself contains error. Thus, we have
implemented the inversion scheme such that a large model–data
mismatch will reduce the value of α. We do this by allowing a large
mismatch to increase the uncertainty in the observed data (we don't
trust it because it is far from the solution that we already have). The
balance is that the correct bathymetry is approached quasi-linearly.

This uncertainty in the observed data σobs
2 will be defined as the

ratio of two quantities. The first is the sum of the measurement error
and the difference between the modelled and observed quantity, and
the second is the square of the gradient with respect to depth, or

r2obs ¼
e2 þ f � fobsð Þ2

df
dh

� �2

þd2
; ð6Þ

where ɛ is the measurement error for a given source (in units of the
quantity of that source) and δ is again the noise level. This equation
states that the uncertainty is large when the difference between the
modelled and observed quantities are large (i.e. the computational
bed level must deviate considerably from ground truth) or the
gradient is small (the quantity is not dependent on the local depth;
hence, it gives no reliable information about the bed level).

This assimilation model (5) is generalized for multiple sources as

h t þ Dtð Þ ¼ h tð Þ � a
XS
i¼1

df i
dh

df i
dh

� �2
þd2i

fi � fi;obs
� �

; ð7Þ

where the index i indicates the source. For the present application we
have limited the number of sources to three: wave roller energy
dissipation, wave celerity, and intertidal bathymetry. These sources
may be extended with any measurable quantity that can be expressed
as a differentiable function of depth, such as percentage of breaking or
wave height.

The uncertainty per source σobs,i
2 is given by Eq. (6) with subscript i

on all variables, and the total uncertainty in observations (in units of
bed level) is the ensemble of the uncertainties of the individual
sources or

r2obs ¼
1PS

i

1
r2
i;obs

� � ; ð8Þ

where the double reciprocal is applied so that the source with the
smallest uncertainty is locally dominant. Eqs. (2) and (3) remain the
same for multiple sources.

The assimilation scheme is applied to consecutive (in time) sources,
e.g. a sequence of video or radar images fromwhich the observedwave
properties and their uncertainties are derived. Initial values of hprior
and σprior at the start of the first simulation are also required, which
can be derived from a previous assimilation run, a recent bathymetric
survey, or a best guess. The simulation for a source at a given time uses
the updated bathymetry froma previous simulation as a starting value.
The uncertainty in this bathymetry is also taken from the previous run,
except that the uncertainty is increased as a function of the (calendar)
time that has elapsed between images because of possible morpho-
logical changes. In otherwords, the certaintywe have obtained using a
set of data should degrade over time when no new data are available.
The uncertainty increase between the end result of one simulation and
the start of another is heuristically modelled as a sigmoid function,
which is equivalent to an exponential approach toward σevo with an
initial taper so that the increase in uncertainty is not large over a short
time after the last data was applied.

r2 tj
� � ¼ r2 tj�1

� �þ r2evo � r2 tj�1
� �� �

tanh2 3
Tr

tj � tj�1
� �� �

: ð9Þ

Here j is the index of the run (image), and tj the Julian day. The time
scale Tr controls the rate at which the computed uncertainty is
dominated by morphological change and evolves into the natural
uncertainty σevo. The time scale constant must depend on the
magnitudes of sediment transport rates that are responsible for
beach evolution and, hence, must vary with the wave height or
currents. For instance, near sand bars, Tr is on the order of days, while
offshore it may approach zero if there is no expected bathymetric
change over the analysis time period. However, we will use a constant
value of 5 days, which is representative of the average conditions. We
have chosen σevo to be identical to the initial prior bathymetry (σprior)
at 1 m, which eliminates one parameter and corresponds to an upper
limit in the bar variability at Duck (see Fig. 6 of Plant et al. 1999).

The method has only one free parameter, the simulation length Ts,
as opposed to the scheme proposed by Aarninkhof et al. (2005a,b),
which involved two free parameters per source. The present method
also needs the measurement error field ɛi, which is a property of the
remotely sensed data and consequently is not a freely tunable
parameter. Also, as mentioned above, the model needs an initial
(best guess) bathymetry and an initial uncertainty. We will perform
sensitivity tests for these parameters in the Discussion section. In the
present formulation we have done away with the concept of a virtual
buffer layer of suspended sediment as used in Aarninkhof et al.
(2005a,b). This choice implies that the present model does not
necessarily conserve mass, although this constraint could be included
straightforwardly by forcing the incremental updates to have a zero
spatial mean. Moreover, if there is a known change in mass due to a
beach nourishment, this could be imposed on the solution.

The assimilation model is implemented in the Delft3D morpho-
dynamical model and can be run alone or in parallel with a physics-
based morphology model. For the present purpose, modelled
morphological evolution due to sediment transport is turned off in
order to focus on the assimilation results. Delft3D computes the
spatial distribution of the roller energy dissipation and wave celerity

(the properties f), as well as the derivatives
df
dh

across the model
bathymetry using the observed wave and tide conditions (water level,
wave height, peak period, and wave angle). This is done in the wave
roller routine (Roelvink, 1993; Reniers et al., 2004), which concur-
rently solves the energy equations of the organized wave motion and
the roller motion using the expressions for the wave and roller energy
dissipation given by Baldock et al. (1998) and Reniers et al. (2004),
respectively. We refer to Reniers et al. (2004) for details of the model
equations. However, since the derivative of roller dissipation with
respect to depth cannot be computed analytically, we have used the
derivative of the organizedwave dissipationwith respect to depth as a
proxy. This replacement will introduce a small spatial offset (since the
dissipation of organized wave dissipation triggers the development of
the roller) but on the scales we are interested in here this is allowable.
The details of the computation of the derivatives are given in
Appendix A.

Each simulation runs in stationary mode, which means that the
water level and offshorewave conditions are assumed constant for the



Fig. 1. Top row: evolution of the computed bed level (solid line) and target bathymetry (dashed line); second row: difference between computed bed level and target; third row:
computed (solid line) and “measured” (dashed line) roller dissipation; bottom row: computed (solid line) and “measured” (dashed line) celerity. The columns indicate four time
instances (t /Ts=0, 0.25, 0.5 and 1).

Fig. 2.Merged plan view roller dissipation rate map of Egmond station Jan van Speijk of
13/12/1999 at 10:00 GMT. The shoreline is at the bottom of the figure and white bands
indicate areas of wave breaking.
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duration of the simulation (about 2 h maximum). The boundary
conditions therefore consist of tidal elevation, offshore Hrms wave
height, peak period, and mean direction. In hindcast mode these
quantities can be derived from nearby gauges and buoys. Depending
on data availability, for some simulation runs data from only a single
source are used, and while in other runs concurrent data from
multiple sources are used. In order to properly compute the bed
evolution, it is necessary to perform a large number of sequential
simulation runs (on the order of 50 to 100 in our applications) for a
diverse set of combinations of wave conditions and water levels so
that the driving force for the bed update can be applied all along the
sub- and intertidal bathymetry.

3. Verification with synthetic case

The assimilation model is validated against a synthetic case of a
longshore uniform, barred bathymetry taken from the Boers (1996) fixed-
bed flume experiments, which were a scaled-down version of the large-
scale LIP experiments (Arcilla et al.,1994). From the set ofwave conditions
we have selected case 1C (with wave parameters Hrms=0.073 m,
Tm01=2.25 s), which has a high incident wave steepness and wave
breaking occurring both over the bar and near the shoreline.

First a target run is performed on the actual bathymetry and the
steady-state result is taken as the “measured” celerity and roller
energy dissipation profile, co and Do, respectively. All other informa-
tion (including the bathymetry, but not the offshorewave condition) is
discarded. The aim is to use the assimilation model starting from an
initially plane slope and using the known wave boundary conditions
and then determine whether the actual barred bathymetry can be
recovered.

Even though the “measured” data is perfect, the model is run with
measurement error values of ɛD=0.2 W/m2 and ɛc=0.25 m/s, which is
about 10% of the maximum value of Do and of the mean value of co,
respectively, and is a realistic noise level. After the hydrodynamics
reach a steady-state the bottom update routine is invoked at t /Ts=0.
Fig. 1 shows the evolution of the computed bed level (top row, solid
lines) towards the target (dashed lines) for four time instances. The
update is driven by the difference between the computed (solid lines)
and “measured” (dashed lines) roller energy dissipation (third row)
and celerity (bottom row). These differences are seen to decrease over
time as the solution converges. This is confirmed by the evolution of
the differences in the computed bed level and the target bed level in
the second row, which decrease over the duration of the simulation by
a factor of 10. The differences do not go to zero due to the inclusion of
the measurement errors and the finite length of the simulation Ts.

4. Real world data sources

4.1. Roller energy dissipation

Estimates of wave roller dissipation are derived from plan view
Argus video time-exposure images of breaking intensity. Oblique
time-exposure images, sampled from one or more video cameras that
cover the area of interest aremerged and rectified into a synoptic, plan
view image (e.g. Fig. 2). The dissipation quantification procedure
largely follows Aarninkhof et al. (2005b) and assumes that video
intensity is a proxy for wave roller dissipation (see the Discussion
section regarding the impact of errors in this assumption.)

To obtain a roller dissipation map from an image, a four-step
approach is followed. First a background intensity level is removed
from the individual camera images so that the darker, offshore areas
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(where no wave breaking occurs) correspond to zero video intensity.
Secondly, in order to obtain smooth wave dissipation maps covering
multiple cameras, we correct for differences in contrast between
individual cameras. Then, the individual camera views are merged
into a plan view, roller dissipation map Iv which typically covers a
coastal stretch up to a few kilometres alongshore. Finally, the
corrected image intensities are scaled such that they are a quantita-
tively correct measure of roller dissipation. To that end, we normalize
Iv so that the total normalized intensity in the model domain is equal
to unity, and scale the normalized intensity map with the incoming
wave energy flux to obtain a video-derived measure of roller
dissipation Do

D0 x; yð Þ ¼ Iv x; yð ÞR
x

R
y Ivdxdy

 !Z
y
Ecgcoshdy ð10Þ

where the wave energy at the offshore boundary of the model is
defined as, E=1/8ρgHrms

2 , cg is the wave group velocity, and θ is the
wave angle of incidence with respect to shore normal. The resulting
roller dissipation map for one time instance is shown in Fig. 2.

4.2. Intertidal bathymetry

Intertidal beach bathymetries are generated with the Intertidal
Beach Mapper (IBM, Aarninkhof et al, 2003). The IBM determines the
three-dimensional beach surface between the low-tide and high-tide
shoreline contours bymapping a series of beach contours derived from
video images and sampled throughout a tidal cycle (see also Plant et al.,
2007). IBM delineates a shoreline feature from time-averaged video
imagery on the basis of the visual contrast between the sub-aerial and
sub-aqueous parts of the beach. The corresponding shoreline elevation
is estimated from the tide and wave conditions at the time of image
collection. Validation of IBM against a dataset of GPS-surveyed
shorelines has shown that mean vertical model deviations increase
with increasing distance from the video station and are less than 15 cm
along the Egmond area (Aarninkhof et al., 2003).

Application of IBMover a single tidal cycle yields a dataset of shoreline
sample points with variable sample spacing. The alongshore sample
distance ranges from 1 to 15 m, depending on the pixel resolution, and
varies inversely with distance from the video station. The cross-shore
sample distance varies between 1 and 20 m and is governed by the local
beach slope, thewater level change between successive video images, and
the possible occurrence of emerging intertidal bars. Shoreline sample
points are interpolated to a grid with a cross-shore spacing of 2 m and an
alongshore spacing of 20 m.
Fig. 3. Single radar image (Sept. 28, 2005), radar located onshore at center of semi-circle.
Waves appear as bright linear features. The shoreline is at the bottom. The dotted box
denotes the location of the minigrid.
4.3. Wave celerity

Wave celerities can be estimated from video pixel time series (e.g.
Stockdon and Holman, 2000) or from marine radar image sequences
(e.g. Bell, 1999). In the present applicationwe obtained wave celerities
using radar, but only at the Duck, NC (USA) location. The raw radar
data consists of a sequence of 640 images collected at 0.73 Hz. The
footprint of each image is a semi-circle of 1200 m radius centered at
the base of the FRF pier (see Fig. 3). Image sequences were collected
once per hour over a period of 5 days. Further details of the radar
system and data collection can be found in Lentine (2006).

In order to estimate wave celerities from these data, the raw image
data is first converted from the range and azimuth coordinates in
which it was collected to the Cartesian grid corresponding to the
model domain. Spatial maps of the cross-shore component of wave
celerity are obtained from the Cartesian data using the Complex
Empirical Orthogonal Function method (Wallace and Dickinson, 1972;
Stockdon and Holman, 2000). These maps are processed first by
counting the number of outlier values that exceed a threshold value,
defined as the sum of the alongshore mean celerity and one
alongshore standard deviation. We found that the results for the
entire set of maps had a bimodal distribution. Either a map had few
percent outliers or the map had a large percentage of outliers. Poor
quality maps were identified by the number of outliers exceeding 30%,
and were not used further. Gaps left by any removed data in the
remaining maps were filled in by interpolation. For the assimilation
method an additional criterion imposed was that only celerity maps
demonstrating quasi-alongshore uniformity were considered. This
was done by calculating the cross-shore average of the ratio of the
alongshore standard deviation to the alongshore mean celerity. The
value of this quantity should not exceed 30%. An example of raw (with
outliers removed) and interpolated celerity maps is shown in Fig. 4.

5. Application to field cases

5.1. Duck, NC, USA

The model was applied to the (so-called “minigrid”) area north of
the pier of the U.S. Corps of Engineers Field Research Facility (FRF) at
Duck, NC (USA) for the period of 21–29 September 2005. This micro-
tidal beach (tide range of less than 1 m) on the Mid-Atlantic coast is
exposed to swell from hurricanes to the south and north-east storms.
The nearshore morphology typically includes one or two sandbars.

Threedifferentdata sourceswereavailable for validationof thepresent
assimilation approach: video-derived wave roller dissipation and inter-
tidal bathymetry, and radar-derivedwavecelerity.Usingapproximately50
time-exposure images, dissipation maps were constructed following the
procedure described above. A set of 4 intertidal bathymetries was also
generated based on time-exposure images over the period 26/09/2005
until 29/09/2005. In addition, six wave celerity maps covering both sides
of the FRF pier were used from the period of interest. The measurement
errors were chosen at ɛD=20 W/m2 for the dissipation, ɛc=1 m/s for the
celerity, and ɛS=0.5 m for the error in the intertidal bathymetry,
respectively. The first two values are about 10% of the maximum of the
observed property, and the latter error is an upper limit of the error found
by Aarninkhof et al. (2003).

The spatial domain of the numerical model spans from 200 to 1200m
in the y-direction (alongshore) and from 100 to 900 m in the x-direction
(cross-shore) in the local FRF coordinates. However, the present analysis
will focus on the minigrid area, where independently surveyed bathy-
metric data are available. The assimilation startswith an arbitrarily chosen
bathymetry from October 1994, i.e. prior information that is more than a
decade out of date. The model is run for consecutive intervals with a
duration of 1 or 2 h, depending on the time interval between images. At
the offshore boundary, short wave energy and peak period (group speed)
are imposed using buoy observations at 8 m of water depth. The lateral



Fig. 4. Left: radar-derived celerity map and right: celerity map after interpolation.
Values of the celerities are in m/s. The shoreline is to the left.
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boundaries are prescribed by the Neumann boundary condition A

Ay ¼ 0
� �

(Roelvink andWalstra, 2004). The tide level is assumedconstant over each
simulation run and is providedby the tide gaugemounted on the pier. The
flow and wave model were calibrated on Duck 1994 data. From this
calibration, a breaking parameter γ=0.65 (using the definition by Battjes
and Stive, 1985) is derived.

The results are shown in Figs. 5 and6. The timehistoryof theHm0wave
heights (Fig. 6, top panel) shows that the period included one major and
one minor storm. The assimilation is performed using 50 stationary runs
divided over the interval of which five are shown in Fig. 5, and are
indicated by the dots and the plus symbol in Fig. 6. The dots are runswith
wave dissipation images; the plus symbol indicates one of the runs with
both wave dissipation and celerity images. In Fig. 5 the bathymetric
evolution is shown for two cross-sections (at y=800 and y=1100m in the
local FRFcoordinate system)with theuncertainty (Eq. (2)) indicatedby the
error bars. The updated bathymetry (solid red line) evolves from the initial
1994 bathymetry (dashed red line), to the bathymetry measured on 21
September 2005 at the start of the simulationperiod (solid blue line). This
final bathymetry shows significant alongshore variability and is also,
presumably, evolving slowly in time.

The top two rows of panels in Fig. 5 show that the bathymetry first
adjusts in the area where there is wave dissipation, which is near the
shore since the waves are low. Due to many successive images the
error estimates (with an initial value at the start of the simulation of
σprior=1 m) decrease most where dissipation occurs, since this is the
region that is sensitive to bathymetry changes. Periods of low wave
heights (top row of Fig. 6) result in slight increases in the update error,
since it is assumed that the actual bathymetrymay evolve (Eq. (9)), but
there is no dissipation information available to reduce this source of
uncertainty. The storm of the 25th of September provides wave
dissipation information in the region x=200–400 m so that the
bathymetry can be updated confidently there (Fig. 5 third row). The
celerity information updates the bathymetry furthest offshore, and
also reduces the uncertainty (fourth row). The bottom row of panels in
Fig. 5 shows the end result over this simulation period. At the cross-
section at y=1100 m the modelled and measured bathymetry agree
very well except in the trough at x=250 m. The error estimate
generally makes an accurate prediction of the maximum differences
between the updated and independently measured bathymetry (an
overestimate of the uncertainty at locations offshore of the bar is due
to our lack of consideration of the spatial variability of bathymetric
evolution, which is much lower than our assumed error). At the
y=800 m cross-section the measured bar at x=175 m is not predicted
in the right location but shifted landwards in the form of a terrace and
lies outside the error bands. If the bathymetry is Gaussian-distributed
64% of the ground-truth data should fall into this band.

The bottom panel of Fig. 6 shows the rms errors in the entire
domain and in sub-domains of the inner and outer surf zone and the
shoaling zone. The overall error (solid line) and the error in the outer
surf zone (dashed line) are decreasing quite steadily over the
simulation period. The error in the inner surf zone (dash-dotted
line) is constant and increases temporarily after the storm (because
the observations are insensitive to the bathymetry at this time, while
we assume that the true bathymetry continues to evolve). The error in
the shoaling zone (dotted line) decreases only slightly. Overall the
total rms error is reduced from 0.8 to 0.3 m.

The utility of the assimilation scheme is further evaluated using
the Brier Skill Score, defined by

BS ¼ 1�
P

hm tendð Þ � hobsð Þ2
P

hm t0ð Þ � hobsð Þ2
¼ 0:85 ð11Þ

where hm(tend) and hm(t0) are the final and initial model bathymetries,
and hobs is the ground-truth bathymetry of September 21. This score is
higher than the reported score of 0.3 by Scott and Mason (2007) for a
different type of coastal bathymetry. It shows that for this case we can
resolve 85% of the difference between the initial and true bathymetries
using only a short span of data.

5.2. Egmond, The Netherlands

The second application involves the assessment of the evolution of
subtidal bathymetry along a 2 km coastal stretch at Egmond (The
Netherlands) over an 18 month period starting December 1999
(Aarninkhof et al., 2005b). Egmond Beach is situated on the northern
part of the central Dutch coast and is characterized by two shore-
parallel subtidal nearshore sandbars. The meso-tidal (ranging
between 1.4 and 2 m) beach is exposed to a wave climate with a
yearly mean wave height Hmo of 1.2 m and a mean period Tm of about
5 s, showing considerable seasonal fluctuations.

During the 18 month period, the bathymetry was surveyed twice
per year, typically along 50 cross-shore profiles with 100 m spacing
alongshore. The measured depth is estimated to have an error of less
than 15 cm. Offshore wave conditions were measured with a
directional wave buoy at IJmuiden, located approximately 15 km to
the south. Approximately 15% of the data was missing, of which half
could be replaced by values from an identical buoy approximately



Fig. 5. Computed (solid red line), measured (solid blue line) and initial (dashed red line) bathymetries for two transects at y=800 and y=1100m for five time instances given in Fig. 6.
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75 km to the north. Offshore tidal levels are found from interpolation
in water level data collected at tidal stations located 15 km north and
south of Egmond.

At this location two data sources are available for assimilation
during the modelled period: dissipation and intertidal bathymetry
from video. We use the 100 wave dissipation maps as generated and
used in Wijnberg et al. (2004), collected from 13/12/1999 until 20/07/
2001. Intertidal bathymetry files are constructed from the intertidal
bathymetries derived fromvideo, using two sets generated by Caljouw
(2000) and Nipius (2002). Due to variations in the spatial extent of the
two datasets, only the overlapping area of a 1360 m coastal strip
centered around the Egmond lighthouse and enclosed by the
elevation contours at 0 m NAP and +0.9 m NAP could be used. The
overall Egmond dataset obtained consists of 27 intertidal beach
bathymetries over the period 15/06/1999 until 22/09/2001.

A model domainwas set up similar to that of Wijnberg et al. (2004).
The flow model grid spans from −1400 to 1400 m in y-direction
(alongshore) and from −100 to 1200 m in x-direction (cross-shore) in
the local Argus coordinate system. The grid sizes Δx and Δy are 5 and
20 m respectively. The model is run for each 2 h period where remote-
sensing information is available. The simulation starts with a bathy-
metry measured on 14 and 15 September 1999. At the offshore
boundary, short wave energy and peak period (group speed) are
imposed, the lateral boundaries are prescribed by the Neumann
boundary condition. Wave directions are calculated by a SWAN model,
which is laterally extended with respect to the flow grid, to avoid
boundary disturbances on the flow grid. The model and instrument
error settings were the same as was used in the Duck hindcast.

Fig. 7 shows the results of the Egmond application for one cross-
shore array (at y=10 m in the local coordinate system and
corresponding to JARKUS (Dutch acronym for “Annual Coastal
Surveys”, see e.g. Van Koningsveld and Lescinski, 2007). The actual
bathymetry was measured only five times during the simulation
period. The measured bathymetry is indicated in blue (solid line) and



Fig. 6. Top panel: Time history of the offshore Hm0 wave height. The dots indicate the pictured time instances with only wave dissipation images. The plus indicates an instance with
both wave dissipation and celerity field images. Bottom panel: the rms error between computed and measured bathymetries. The solid line is the error in the entire domain between
x=150 and x=500 and y=800 and y=1200 m. The dash-dotted line is the error in the inner surf zone (150bxb200m), the dashed line is the error in the outer surf zone (200bxb300)
and the dotted line is the error in the shoaling zone (300bxb500 m).
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the computed bathymetry in red (solid line). Initial values of both are
shown with dashed lines. The computed uncertainty estimates are
shown as the red error bars.

Again, the assimilation approach yields bathymetric updates that
converge toward the independently measured values (Fig. 7). In the
deeper regions (seaward of x=700 m) the bathymetry is less dynamic.
No useful assimilation data in this region is available, so the model
does not update the bathymetry. The model-predicted errors (Fig. 7)
vary in a manner similar to that seen in the Duck example. The error is
smallest around the bar tops. Errors in the deeper regions (troughs
and offshore) remain larger, because of the lack of sensitivity to the
data in these areas. In order to decrease these errors, inclusion of a
third data source (for instancewave celerity) would be needed. For the
model period, unfortunately no such data were available.

The 2-D results (Fig. 8) show that the rms error over the entire model
domain is about 0.5 m. The largest differences between the measured
and computed bathymetry occur seaward of the shoreline, where the
depth is overpredicted. The former approach (Aarninkhof et al., 2005b,
not shown) resulted in an rms error of about 1.5 in the same model
domain, which was due to much larger deviations in the deeper regions
and just seaward of the shoreline. This shows that the current assimilation
method has improved the performance near the shoreline by including
intertidal bathymetry as an assimilation source in the model. Also, the
performance near the shoreline is improved because the overall
performance in the bar-trough region is improved and the accumulation
of errors towards the beachhas decreased. Still, themodel skill is lowest in
these shallow areas.

6. Discussion

The assimilation model has shown excellent skill in estimating the
nearshore and intertidal bathymetry. The approach also produces
estimates of the uncertainty in the bathymetry, which reflects both
the sensitivity to the data and true bathymetric evolution. These
results depended on the accuracy of several parameter choices that
describe the errors that are inherent to this assimilation problem.
These choices required information in addition to the remote-sensing
data themselves and deserve further discussion.
Parameter settings: The model requires a few initial conditions and
parameter settings. Themeasurement error, ɛi, was unknown and an ad
hoc valueof 10%of themaximumof themeasuredvaluewasused.While
this seems to be a reasonable noise level, we tested the sensitivity of our
results by increasing the error value to 25% of the maximum. Fig. 9
(dashed line) shows avery similar, yetmore gradual reductionof the rms
error in comparison with the original (10%) run (solid line). In essence,
increasing thedata error reduces the impactof thedata and convergence
of the bathymetric update proceeds more slowly.

The simulation length Ts for a given image has a default of 1 h (the
default time between images) with a maximum of 2 h, corresponding
to the maximum duration of hydrodynamic stationarity. The sensi-
tivity of the results to this parameter setting is studied by using a value
of 30 min for the Duck case. The result (Fig. 9, dash-dotted line) is
almost identical to the default run. The effect of the initial condition
σprior (set equal to σevo) is studied by reducing its value from 1 to
0.5 m, which means that the initial bathymetry is taken as more
trustworthy, and may be less sensitive to the input from the remote-
sensed data. The results (Fig. 9, dotted line) are again very similar to
the default run. The model results are thus fairly insensitive to
reasonable settings of the parameter values. This indicates model
robustness and predictive capability. The primary impact of selecting
the correct error parameters would be an improvement in the updated
bathymetric uncertainty.

Dependence on initial bathymetry: We have shown that the updated
bathymetry converges toward the true bathymetry evenwhen an out-
dated initial bathymetry is used to begin the assimilation. It appears,
however, that there can be lasting impacts of an inaccurate initial
bathymetry near the shoreline. This is a result of our neglecting to
consider the spatial co-variance of the updated bathymetry and error.
In comparison to the measured bathymetry the results show that
there are two forms of systematic estimation errors. The first is an
erroneous building of a nearshore terrace in the bathymetric estimate
(at Duck). The second is the erroneous deepening near the shoreline
(“digging”). Both effects are due to the same problem, namely that the
bathymetric adjustment in the subtidal area is governed by the spatial
distribution of wave dissipation. Over a trajectory from offshore to
onshore, the wave dissipation has a history, which is not entirely



Fig. 7. Results of the Egmond application at a cross-shore array (y=10 m) at five points in time during the model period when the bathymetry was measured (from top to bottom: 05/
04/2000, 17/05/2000, 17/09/2000, 18/04/2001 and 18/06/2001). The blue line indicates the measured bathymetry, the red line indicates the computed bathymetry. Dashed lines
indicate the initial situation of both. The model-predicted errors are shown in red bars.
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accounted for by adjusting the bathymetry due to local differences. For
example, if in the true bathymetry a large bar exists, which is not
present (yet) in the computational bathymetry, the model will
correctly react by raising the bar in that area. However, due to the
dissipation over the bar in reality, there will be less dissipation left in
the nearshore area. There, the model will react by increasing the local
depth, which is possibly incorrect, see Fig. 10.

The solution to this problem is to not use dissipation in the extreme
shallow depth where this problem is the largest, but to use another
source such as the celerity of the broken waves. The video data
necessary to do this is presently being collected at Egmond. However,
no such data was available for the period covered in this paper.

Trough behavior: At the end of the Egmond application, the
assimilation model starts to fill in the trough at x=300 m. The cause for
this is that the video images show a “tail” of dissipation landward of the
bar at x=400,whereas the computed dissipation does not. This difference
generates an upward driving force landward of the bar, and thus an
underprediction of the depth in the trough. This tail may indicate the
presenceof persistenthigh-intensity foamon the sea surface,which isnot
associated with active wave breaking and is erroneously attributed to
wave dissipation by the methodology. This problem could be solved by
incorporating a 2D version of the 1D approach by Aarninkhof (2003).

Image selection: The images which are fed to the model are
currently hand-selected. This is a laborious process to reject (video)
images with sun glare and rain drops on the lens. These effects would
give a false indication of areas with high intensity which would be
interpreted as areas with breaking waves. While the system is rather
robust, a “false” image would nudge the updated bathymetry away
from truth and would require a lot (order 10) of “good” images to
nudge the bathymetry back. We note that image selection procedures
are needed because the image-derived estimates of celerity and
dissipation are not provided with accurate data quality estimates. It is
apparent from our systematic approach that quantitatively accurate
error estimates of all inputs would yield improved assimilation results.



Fig. 8. Results of the Egmond application in the model domain on 15 June 2001. The left panel shows the measured bathymetry. The center panel shows the computed bathymetries
with the present model. The difference between the measured and computed bathymetries is shown in the right panel.

Fig. 9. Sensitivity of bathymetric errors to parameter choices. Solid line: default run; dashed line: increased measurement error; dash-dotted line: reduced simulation length; dotted
line: reduced initial uncertainty.
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Fig. 10. Schematic of a barred bathymetry (bottom solid line) and associated dissipation
(top solid line), and the modelled bathymetry (bottom dashed line) and the modelled
dissipation (top dashed line). The arrows indicate the direction of the adjustment of the
modelled bathymetry.

1026 A. van Dongeren et al. / Coastal Engineering 55 (2008) 1016–1027
Prior error parameterizations: We have implemented an ad hoc
estimate of the error on the basis of knowledge of the response of
various sections of the bathymetry to waves and currents (Eq. (9)). A
better parameterization of the crude Tr parameter in this equation
would include a space-dependent parameter which depends on wave
height and period reflecting present understanding of sediment
transport and bathymetric change. This sort of improved parameter-
ization essentially adds system knowledge to the model. This paper
provides a proof-of-concept of the assimilation approach and includes
all of the ingredients required for accurate bathymetric updating. It is
clear, now, that some of the ingredients deserve further attention.

7. Conclusions

In this paper an assimilation model is presented that is capable
of estimating the sub- and intertidal bathymetry based on the dif-
ference between remotely sensed quantities of the roller energy
dissipation rate, wave celerities and intertidal bed elevation and the
corresponding computed quantities for a large number of time
instances. The present method is an improvement over the previous
method by Aarninkhof et al. (2005a,b) because of the use of a formal
inverse model with fewer free parameters and the incorporation of
wave celerity and intertidal bathymetry in addition to roller energy
dissipation, all of which make the model more robust and reduces the
overall error to about 0.3–0.5 m (rms). Moreover, error estimates of
the bathymetry are computed. The simulations show that the model-
predicted bathymetry falls within +/− one standard deviation of the
observed (in-situ measured) bathymetry.

The application to the Duck case shows that over a short time span
(including one major storm) the model is capable of predicting the
bathymetry accurately given a sequence of remotely observed inputs.
The model was then applied to the longer term (1½ year) case at the
multi-barred beach of Egmond, where the model (using the same
settings) was also capable of predicting the profile change. Finally,
tests that varied the tunable (within limits) parameters show that the
model results for the Duck case are fairly insensitive to settings of the
measurement error, the simulation length, and the initial uncertainty.
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Appendix A

The bed update routine (Eq. (7)) requires the computation of the
gradients dfi

dh
for every source. For the three sources considered in this

paper the evaluation is as follows

A.1. Celerity

In the case of celerity we substitute f=c and compute

dc
dh

¼ d
dh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
k
tanh khð Þ

r� �
ðA1Þ

using the linear dispersion relation in which k is the wave number
at the peak frequency. Taking the derivatives with respect to h, and
after some manipulation we find

dc
dh

¼ 2kfp
coshkh sinhkhþ kh

ðA2Þ

where fp is the peak frequency.

A.2. Roller dissipation

In the case of roller dissipation we substitute f=Dr. However, the
derivative

dDr

dh cannot be computed analytically and we will use
derivative of the organized wave dissipation with respect to h, so dDw

dh
as a proxy. For the dissipation rate of organized wave motion we use
the dissipation formula of Baldock et al. (1998). The computation of
the derivative is straightforward by chain rule

dDw

dh
¼ dDw

dC
dC
dHb

dHb

dh
ðA3Þ

where

Dw ¼ 0:25qgfpH2
rmse

�C 1þ Cð Þ
C ¼ Hb

Hrms

� �2

Hb ¼ 0:88
k

tanh
gkh
0:88

� �
g ¼ 0:29þ 0:76kh:

ðA4Þ

Then

ADw

AC
¼ �0:25qgfpH2

rmsCe
�C

AC
AHb

¼ 2
Hb

H2
rms

:
ðA5Þ

After some manipulation we find

AHb

Ah
¼ 1

cosh 2 0:29khþ0:76 khð Þ2
0:88

� � ½ 0:29þ 2T0:76khð Þ

�kh
sinhkh coshkhþ kh

þ 1
� �� þ 0:88 tanh 0:29khþ0:76 khð Þ2

0:88

� �
sinhkh coshkhþ kh

:

ðA6Þ

Eqs. (A5) and (A6) are collected and inserted into Eq. (A3).
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A.3. Intertidal bathymetry

In the case of observed intertidal bathymetry, we substitute f=hs.
The gradient with respect to depth is simply unity.
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