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1 Quick Dataset Download Links

This document presents four 15-Device WiFi 802.11B datasets that have been captured after the hardware warm-up
period of each device (12 minutes after the activation of the devices). These datasets (download links given below)
are described and used in the paper titled Distinguishable IQ Feature Representation for Domain-Adaptation Learn-
ing of WiFi Device Fingerprints in IEEE Transactions on Machine Learning in Communications and Networking.

The datasets can be downloaded and used for research, but we would like to request that any use that results in
technical or other publications should include a citation to the following paper:

Copy and paste the bibtex below:

@ARTICLE{elmaghbub2023dis,

author={Elmaghbub, Abdurrahman and Hamdaoui, Bechir},

journal={IEEE Transactions on Machine Learning in Communications and Networking},

title={Distinguishable IQ Feature Representation for Domain-Adaptation Learning of WiFi Device

Fingerprints},

year={2024},

doi={10.1109/TMLCN.2024.3446743}}

The links to each of the tested setups are:

• Scenario 1: Cross-Day Wired Scenario.

• Scenario 2: Cross-Day Wireless Scenario

• Scenario 3: Cross-Location Scenario

• Scenario 4: Random-Deployment Scenario

2 Dataset Description

These WiFi fingerprint datasets were collected at the NetSTAR lab at Oregon State University, as part of an NSF
project [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 6]. The testbed used for
collecting the datasets consists of 15 Pycom devices (both FiPy and LoPy4) and an Ettus USRP B210 receiver,
operating at a center frequency of 2.412GHz, used for recording the received signals sampled at 45MS/s. Our
WiFi datasets contain 150GB of WiFi transmissions of 15 Pycom devices captured over 3 consecutive days in both
wired and wireless connections and at 4 different locations for the different location scenarios. Utilizing GNURadio
software, we configured USRP receivers to capture WiFi transmissions. Subsequently, we visualized their time
and spectrum domains, applied preprocessing techniques, and stored the samples in files. Our investigation into
hardware stabilization during warm-up periods informed this process [17]. As a result, all packets within these
datasets were captured post-warm-up, hence we refer to them as stable datasets.

https://ieeexplore.ieee.org/document/10640139
https://ieeexplore.ieee.org/document/10640139
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Wired-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Wireless-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Location-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Location-Dataset/Random-Location/


Figure 1: Structure and organization of the dataset: Wireless-Datasets, Wired-Datasets and Location-Datasets.

2.1 Description of the different scenarios

The datasets contain WiFi 802.11b transmissions from 15 Pycom devices captured in four different scenarios: Wired,
Wireless, Different Locations, and Random Deployment:

• Scenario 1: Cross-Day Wired Scenario: To rule out the impact of the wireless channel, we connected
our transmitters directly to the USRP receiver via SMA cabling, and collected data over three days, gener-
ating more than 5000 WiFi frames/device/day. Wired-Dataset directory contains three subdirectories, each
representing a different day. Within each day’s subdirectory, there are 15 Hierarchical Data Format version 5
(HDF5) files corresponding to the 15 Pycom devices. Dataset link: Cross-Day Wired Scenario.

• Scenario 2: Cross-Day Wireless Scenario: Instead of wiring the transmitters to the USRP receiver,
we placed them at a fixed location, 1m away from the USRP receiver which uses a VERT900 antenna to
capture the signal. We repeated this experiment over three days. This setup generated more than 5000 WiFi
frames/device/day. Wireless-Dataset directory contains 3 subdirectories, each representing a different day and
containing 15 HDF5 files (one for each of the 15 Pycom devices). Dataset link: Cross-Day Wireless Scenario.

• Scenario 3: Cross-Location Scenario: For each transmitter, we collected data at three different locations,
A, B, and C, which are 1m, 2m, and 3m away from the USRP receiver, respectively. This is to allow the
study of the impact of location. This experiment was carried out in one day and generated more than 5000
WiFi frames/device/location. Location-Dataset directory contains three subdirectories, each representing a
location and having 15 HDF5 files (one for each device). Dataset link: Cross-Location Scenario.

• Scenario 4: Random Deployment Scenario: We collected datasets for testing random-location scenarios,
with an enrolment phase (data for training) and a deployment phase (data for testing). In the enrolment phase,
all the transmitters transmitted from the same location, 1m away from the receiver, and in the deployment
phase, the transmitters were located randomly within 3m away from the receiver. The enrollment data was
collected in the morning while the random deployment data was collected at night (of that same day). The
Random-Location directory contains two subdirectories, representing the enrollment and deployment scenarios
and each containing 15 HDF5 (one for each device). Dataset link: Random Deployment Scenario.

Refer to Fig. 1 for help with the organization and notation of the files.

https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Wired-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Wireless-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Location-Dataset/
https://research.engr.oregonstate.edu/hamdaoui/RFFP-dataset/Stable-WiFi-Dataset/Location-Dataset/Random-Location


2.2 Data Collection Description

We initiated the data-capturing process 12 minutes after the devices were activated, thereby ensuring an initial
settling and warm-up period [17]. Each device was configured to operate over WiFi Channel 1 with a center
frequency of 2412MHz and a bandwidth of 20MHz. The transmitters were programmed to transmit identical IEEE
802.11b frames with a duration of 559us back to back, separated by a small gap. We captured the first two minutes
of transmissions using the USRP B210 at a sample rate of 45MSps. The captured signals were then digitally
down-converted to the baseband and stored as IQ samples on our computer. To avoid any data dependency on the
identity of the WiFi transmitter, all transmitters were configured to broadcast the same packets, which include the
same spoofed MAC address and a payload of zero-bytes. Finally, we extracted the WiFi packets from the raw IQ
sample files and stored them in HDF5 formatted files in the same order they were received. This method allowed
us to maintain the integrity of the captured signals and ensured that they were accurately represented in the final
dataset.

2.3 File format description

After storing the raw binary data, encompassing a continuous 2-minute capture session, we proceeded to extract the
WiFi packets and archive them into HDF5 formatted files. We extracted packets by employing a power threshold
and leveraging our knowledge of the packet length. This approach ensured precise capture of both the packet’s
inception and termination, while effectively filtering out noise and corrupted packets. Each HDF5 file comprises a
dataset named ‘data’, structured with dimensions N x 50340. Here, N denotes the count of WiFi packets contained
within the file. Meanwhile, the columns of this dataset correspond to time-domain In-phase (I) and Quadrature
(Q) values of the packet. To specify, within each packet: The initial 25170 samples correspond to the I components
of the packet, and the subsequent 25170 samples correspond to the Q components of the packet.

3 Code Example

This is an example of using Python to read a dataset from one of the files:

import h5py

#Change the file path

filePath = r'C:\Users\AbdurrahmanElmaghbub\Downloads\dev2.h5'
with h5py.File(filePath , 'r') as file:

data = file['data'][:] # 'data' is the name of the dataset.

# Now data has all the packets of this capture.

print(data.shape) #(N, 50340)
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