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ABSTRACT
It is known that annotating entities in unstructured and
semi-structured datasets by their concepts improves the ef-
fectiveness of answering queries over these datasets. Ideally,
one would like to annotate entities of all relevant concepts in
a dataset. However, it takes substantial time and computa-
tional resources to annotate concepts in large datasets and an
organization may have sufficient resources to annotate only a
subset of relevant concepts. Clearly, it would like to annotate
a subset of concepts that provides the most effective answers
to queries over the dataset. We propose a formal framework
that quantifies the amount by which annotating entities of
concepts from a taxonomy in a dataset improves the effec-
tiveness of answering queries over the dataset. Because the
problem is NP -hard, we propose an efficient approximation
for the problem. Our extensive empirical studies validate
our framework and show the accuracy and efficiency of our
algorithm.
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1 INTRODUCTION
Taxonomies provide shared understandings of concepts in
domains of interest [1]. In particular, they facilitate query
answering over unstructured and semi-structured datasets in
these domains. For example, assume that a user likes to find
information about types of pains caused by Trachoma over
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<article>
Granular conjunctivitis causes pain in the outer surface or cornea.
</article>
<article>
Stye may lead to pain on the eyelids.
</article>
<article>
GAS caused infections cause pain in tissues.
</article>

Figure 1: Medical article excerpts.

excerpts of the medical articles in Figure 1. In the absence
of any structured data, she may explore this dataset us-
ing inherently ambiguous keyword queries and submit query
Q1:Trachoma pain. Unfortunately, the article about Tra-
choma in Figure 1 refers to this infection by its other name,
Granular conjunctivitis. Because all articles contain the term
pain, the query interface may return all articles, two of which
do not have any information about Trachoma.

Given a taxonomy, we can annotate entities in an unstruc-
tured dataset by their concepts in the taxonomy. Users may
also learn the taxonomy and use its concepts in their queries.
Figure 3 depicts fragments of the Medical Subject Heading
(MeSH) taxonomy, in which nodes denote concepts and edges
show subclass relationships [6]. Figure 2 shows the medical
article excerpts in Figure 1 whose entities are annotated by
their concepts from MeSH taxonomy. Now, our user may
mention the concept Trachoma in her query and the query
interface will return only the articles that contain entities
from this concept.

Organizations often use available taxonomies to annotate
their datasets so that more users can effectively search and
explore their data. For example, the U.S. National Library of
Medicine annotates the articles in MEDLINE/PubMED using
concepts in the MeSH taxonomy [6]. Many organizations
also use taxonomies to extract entities in general domains.
For instance, researchers have used the ProBase taxonomy
to extract concepts in general domains from Web data [15].
Also, Google and Bing ask organizations to annotate their
Web documents by concepts in Schema.org taxonomy, which
is developed for datasets in general domains.

Ideally, one would like to annotate the instances of all
concepts in a given taxonomy from a dataset to answer
all queries effectively. An organization has to spend time,
financial and computational resources, and manual labor to
accurately annotate entities of a concept in a large dataset
[3, 4, 8, 13]. It usually has to develop or obtain a complex
program called a concept annotator to annotate instances of
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<article>
<Trachoma>Granular conjunctivitis</Trachoma> causes pain in the
outer surface or cornea.
</article>
<article>
<Hordeolum>Stye</Hordeolum> may lead to pain on the eyelids.
</article>
<article>
<Ecthyma>GAS caused infections</Ecthyma> cause pain in tissues.
</article>

Figure 2: Annotated medical article excerpts.

a concept in a dataset. One may also use machine learning
algorithms to develop an extractor for a concept to avoid
hand-tuned programming rules. However, these machine
learning algorithms need relevant features which are usually
unclear from the dataset. Developers have to find the relevant
features through trial and error over numerous iterations [2].
Furthermore, the structure and content of underlying datasets
evolve over time; annotators should be regularly rewritten
and repaired.

Because of limited financial or computational resources, an
organization may not be able to afford to develop and main-
tain annotator for all concepts in a taxonomy. Also, many
users may need an annotated dataset quickly and cannot
wait days to get an updated and fully annotated collections.
It may afford to annotate only a subset of concepts in a
taxonomy. Similarly, many users may not have the time to
learn all concepts in a large taxonomy and may prefer to
learn and use a relatively small subset of the taxonomy in
their queries. For example, an organization may annotate
entities in Figure 1 with only concepts Eye-Infection and
Skin-Infection from MeSH taxonomy and get the collection
in Figure 4. Intuitively, a query interface may provide less
effective answers to queries over the dataset in Figure 4 than
the one in Figure 2. Assume that a user wants to find in-
formation about the type of pain associated with Trachoma.
She may mention the concept Eye-Infection in her query.
The query interface may return the articles about Trachoma
and the one about Hordeolum. Nevertheless, the annotation
in Figure 4 still helps the query interface not to return the
non-relevant article about the skin infection. Clearly, we
would like to select a subset of concepts whose required time
and/or resources for annotation do not exceed our budget
and most improves the effectiveness of answering queries.

Currently, concept annotation experts have to use their
intuitions to find cost-effective subsets of concepts from an
input taxonomy. We call this problem the Cost-Effective
Conceptual Design (CECD) and make the following contri-
butions. We develop a framework that quantifies the amount
of improvement in the effectiveness of answering queries by
annotating the dataset by a subset of concepts from a taxon-
omy in Section 3. We also formally define the CECD problem
over tree-shaped taxonomies in Section 3. As the CECD
problem is NP-hard, we propose an efficient approximation
algorithm for it in Section 4. We evaluate the accuracy of our
framework, and effectiveness and efficiency of our algorithm
using a large real-world dataset, real-world taxonomies, and
a sample of a real-world query workload in Section 5. The
proofs of our theorems can be found in [14].

Infections

Eye-Infections Skin-Infections Bone-Infections

HordeolumTrachoma Ecthyma Erysipelas PeriostitisSpondylitis

Figure 3: Fragments of MeSH taxonomy
<article>
<Eye-Infections>Granular conjunctivitis</Eye-

Infections> causes pain
in the the outer surface or cornea.
</article>
<article>
<Eye-Infections>Stye</Eye-Infections> may lead to pain on the eyelids.
</article>
<article>
<Skin-Infections>GAS caused infections</Skin-

Infections> cause pain
in tissues.
</article>

Figure 4: Medical article excerpts annotated with more
general concepts.

2 RELATED WORK
In our prior work, we have examined the problem of selecting
cost effective designs from an unorganized set of concepts
for annotation [13]. Nevertheless, the concepts in most real-
world domains are maintained in taxonomies rather than
unorganized sets. As the framework proposed in [13] does not
consider superclass/subclass relationships between concepts,
it cannot measure the effectiveness gained by designs over
taxonomies. Because taxonomies have richer structures than
unorganized sets of concepts, they provide new opportunities
and challenges for finding cost-effective conceptual designs.
We show in Section 3.4 that because the algorithms in [13]
do not consider the structure of taxonomy, they select the
designs that provide very ineffective answers. Our empirical
results over real-world datasets in Section 5.2 also indicate
that the algorithms in [13] deliver considerably less effective
designs than the ones that take the structure of the taxonomy
into account.

There is a large body of work on building large-scale data
management systems for annotating and extracting entities
and relationships from unstructured data sources [2, 3, 5, 15].
In particular, researchers have proposed several techniques
to optimize the running time and/or required computational
power of concept annotation programs by processing only
a subset of the underlying collection that is more likely to
contain mentions to entities of a given concept [4]. Our work
complements these efforts by finding a cost-effective set of
concepts in the design phase rather than a set of relevant
documents in query time.

3 COST-EFFECTIVE DESIGN
3.1 Basic Definitions
Similar to previous works, we do not rigorously define the
notion of named entity [1]. We define a named entity (entity
for short) as a unique name in some (possibly infinite) do-
main. A concept is a set of entities, i.e., its instances. Some
examples of concepts are person and country. An entity of
concept person is Albert Einstein. Concept C is a subclass
of concept D iff we have C ⊂ D. We call D a superclass
of C. For example, person is a superclass of scientist. We
define taxonomy X = (R, C,R) as a rooted tree, with root
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Infections

Eye-Infections Skin-Infections Bone-Infections

HordeolumTrachoma Ecthyma ErysipelasPeriostitisSpondylitis

Figure 5: The concepts in red, Eye-Infections and Skin-
Infections, denote the design. The blue curves denote the
partitions of design and the dashed curve shows the free
concepts of the design.

concept R, vertex set C and edge set R. C is a finite set
of concepts. For C,D ∈ C we have (C,D) ∈ R iff D is a
subclass of C. Every concept in C that is not a superclass of
any other concept in C is a leaf concept. The leaf concepts
are leaf nodes in taxonomy X . For instance, the concept
Trachoma is a leaf concept in Figure 3. Let child(C) denote
the children of concept C. For simplicity, we assume that
∪D∈child(C)D = C for all concepts C in a taxonomy.

Each dataset is a set of documents. Dataset DS is in the
domain of taxonomy X iff some entities of concepts in X
appear in some documents in DS. For instance, the set of
documents in Figure 1 are in the domain of the taxonomy in
Figure 3. An entity in X may appear in several documents
and multiple times in a document in a dataset. For brevity,
we refer to the occurrences of entities of a concept in a dataset
as the occurrences of the concept in the dataset. A query q
over DS is a pair (C, T ), where C ∈ C and T is a set of terms,
e.g., (person, {Michael Jordan}). Empirical studies on real
world query logs indicate that the majority of entity-centric
queries refer to a single entity [10].

3.2 Conceptual Design
Conceptual design (design) S over taxonomy X = (R, C,R)
is a non-empty subset of C \ {R}. A design divides the set of
leaf nodes in C into some subsets defined as follows.

Definition 3.1. Let S be a design over taxonomy X =
(R, C,R) and C ∈ S. The partition of C, denoted as part(C),
is a subset of leaf nodes in C such that for all D ∈ part(C),
the lowest ancestor of D in S is C or D = C.

Consider the taxonomy described in Figure 5. Let design
S be {Eye-Infections, Skin-Infections}. The partitions of S
are {Trachoma,Hordeolum} and {Ecthyma,Erysipelas}.
Also, part(Eye-Infections) = {Trachoma,Hordeolum} and
part(Skin-Infections) = {Ecthyma,Erysipelas}. The equal-
ity D = C in Definition 3.1 happens where C itself is a leaf
node. For each design S, the set of leaf concepts that do
not belong to any partition are called free concepts and de-
noted as free(S). These concepts neither belong to S nor
are descendant of a concept in S. For example, consider de-
sign {Eye-Infections, Skin-Infections} over the taxonomy de-
scribed in Figure 5. The free concepts of S are {Periostitis,
Spondylitis} as they are not in any partition of S. Let DS
be a dataset in the domain of taxonomy X = (R, C,R) and
S be a design over X . S is the design of dataset DS iff
for all concepts C ∈ S, all occurrences of concepts in the
partition of C are annotated by C. In this case, we say DS
is an instance of S. For example, consider the design T =
{Eye-Infection, Skin-Infection} over the taxonomy in Figure 3.

The dataset in Figure 4 is an instance of T as all instances of
concepts Trachoma and Hordeolum that belong to the parti-
tion of Eye-Infection, are annotated by Eye-Infection and all
instances of concepts Ecthyma and Erysipelas that are in the
partition of Skin-Infection, are annotated by Skin-Infection
in the dataset.

3.3 Design Queriability
Let Q be a set of queries over dataset DS. Given design S
over taxonomy X =(R, C,R), we would like to measure the
degree by which S improves the effectiveness of answering
queries in Q over DS. The value of this function should be
larger for the designs that help the query interface to answer a
larger number of queries in Q more effectively. Let the query
interface return k candidate answers for query Q inQ over the
unannotated dataset. The effectiveness of returned answers
is usually measured using standard metrics of precision and
recall [7]. The precision of the returned list of answers is the
fraction of relevant answers for Q in the list. The recall of a
returned list of answers is the ratio of the returned relevant
answers to the number of total relevant answers for Q in
the dataset. Precision-oriented metrics, such as precision
at k (p@k for short), are also used to measure the ranking
qualities of the results for queries [7]. If a design helps the
query interface to replace some non-relevant answers with
relevant ones in the returned list for query Q, it improves both
the precision and recall of Q in the top k returned answers.
Hence, we estimate the amount by which a design increases
the fraction of relevant answers in the top k returned answers
for Q.

Let Q : (C, T ) be a query in Q such that C belongs to the
partition of P ∈ S. The query interface may consider only
the documents that contain information about entities anno-
tated by P to answer Q. For instance, consider query Q1 =
(Trachoma, pain) over the dataset in Figure 4 whose design
is {Eye-Infections, Skin-Infections}. The query interface may
examine only the entities annotated by Eye-Infections in this
dataset to answer Q1. Thus, the query interface will avoid
non-relevant results that otherwise may have been placed in
the top k answers for Q. The query interface may further
rank these answers according to a ranking function, such as
the traditional TF-IDF scoring methods [7]. Our model is
orthogonal to the ranking scheme of the candidate answers.

Nevertheless, only a fraction of documents with entities
annotated by concept P contain information about entities in
C. For instance, to answer query (Trachoma, pain) over the
dataset in Figure 4, the query interface has to examine all
documents that contain instances of concept Eye-Infections.
Some documents in this set do not have any entity of concept
Trachoma. We like to estimate the fraction of the results
for Q : (C, T ) that contains entities of concept C. Given
all other conditions are the same, the larger this fraction is,
the more likely it is that the query interface delivers more
relevant answers in the top k results for Q. Let d(C) denote
the fraction of documents that contain entities of concept C
in dataset DS. We call d(C) the frequency of C over DS. Let
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d(P ) be the total frequency of leaf concepts in the partition
of P . The fraction of the documents that contain information
about entities in C is d(C)

d(P )
. For example, assume that the

mentions to entities of concept Trachoma appear more fre-
quently in dataset DS than the ones of concept Hordeolum.
Also, assume that we annotate only Eye-Infections in DS.
Given query (Hordeolum, pain), it is more likely for articles
about Trachoma to appear in the top k answers than the ones
about Hordeolum. Hence, the total contribution of partition
P in improving precision and recall of answering queries with
some concept C ∈ part(P ) is

∑
C∈part(P )

d(C)
d(P )

.
We call the fraction of queries in Q whose concept is C

the popularity of C in Q and denote it by u(C). Consider
designs S1 and S2 over taxonomy X . Assume that design S1
and S2 equally improve the values of precision (recall) for
queries of all concepts except for C1, C2 ∈ C. Also, let the
precision (recall) of C1 be improved more by S1 than by S2.
Similarly, assume that the precision (recall) of C2 is increased
more by S2 than by S1. Given all other conditions are the
same, if we have u(C1) > u(C2), design S1 improves the
total precision (recall) of queries in Q more than S2. Hence,
we should take into account the popularities of concepts to
compute the amount of improvement achieved by a design
over Q. Therefore, we modify the formula to estimate the
contribution of partition P in improving precision (recall) of
answering queries in Q as

∑
C∈part(P )

u(C) d(C)
d(P )

. Given all
other conditions are the same, the larger this value is, the
more likely it is that the query interface will achieve larger
values of precision (recall) in the top k answers over queries
in Q.

Annotators may make mistakes in identifying the correct
concepts of entities [8]. An annotator may recognize some
instances concepts that are not P as the ones in P . For ex-
ample, the annotator of concept person may identify Lincoln,
the movie, as a person. The accuracy of annotating concept
P over DS is the number of correct annotations of P divided
by the number of all annotations of P in DS. We denote the
accuracy of annotating concept P over DS as pr(P ). Hence,
we refine our estimate to:

∑
C∈part(P )

u(C) d(C)
d(P )

pr(P ).
So far, we have estimated the relative improvement gained

by S for queries whose concepts belong to some partitions in
S. Consider query Q : (C, T ) such that C does not belong
to any partition in S, i.e., C is a free concept. The query
interface has to examine all documents in the dataset to
answer Q. Thus, the fraction of returned answers for Q that
contains some instance of C is d(C). The more instances
of C appear in the dataset DS, the more likely it is that
the returned answers to Q refer to entities in C. Hence, it
is more likely that they contain some relevant answers for
Q. Using a similar argument as the one used for non-free
concepts, the total contribution of the free concepts of design
S is

∑
C∈free(S) u(C)d(C). The following function estimates

the relative improvement in the precision (recall) in the top
k answers for all concepts.

Definition 3.2. The queriability of design S from taxonomy
X over dataset DS and query workload Q is

QU(S) =
∑
P∈S

∑
C∈part(P )

u(C) d(C) pr(P )

d(P )
+

∑
C∈free(S)

u(C)d(C)

Similar to the definition of annotation benefit proposed in
[13], the first term in the formula of queriability reflects the
amount of improvement in query answering from concepts
in the design, and the second term reflects the benefit from
concepts not in the design. However, the queriability also uses
structural information of the taxonomies to help estimate
the improvement in the effectiveness of query answering.

Similar to other optimization problems in data manage-
ment, such as query optimization, the complete information
about the parameters of the objective function, i.e. frequen-
cies and popularities of concepts, may not be available at
the design-time. Nevertheless, our empirical results in Sec-
tion 5 and in our technical report [14] indicate that one can
effectively estimate these parameters using a small sample
of the full dataset. We leave more principled approaches to
parameter estimation for future work.

3.4 Cost-Effective Conceptual Design
Problem

We have reviewed the literature on concept annotation and
information extraction and talked to the experts to build a
reasonable and general cost model for concept annotation.
The types of costs for creating annotated datasets vary based
on the methodology used for developing concept annotators.
One may categorize the available methodologies to rule-based
methods and approaches based on machine-learning tech-
niques [8]. In rule-based annotation, developers write a set
of rules for each concept to detect and extract its instances
in a dataset. Rule-based approach is the dominating method
in commercial information extraction systems [5].

If one adapts a machine-learning approach to annotate
the entities of a concept, he has to provide a set of training
examples for the concept, which may be costly and time-
consuming. This stage is particularly resource-intensive in
specific domains, such as medicine. Researchers have pro-
posed the idea of distant supervision to reduce the overhead
of providing training data for concept extraction. However,
distant supervision typically requires knowledge-bases in the
domain of extraction with instances of the extracted concepts,
which is not always available. One may also generate train-
ing data for a concept by coding how the concept appears
in the unstructured dataset in a programming language [9].
This method, however, needs a domain expert to learn a
programming language and code her knowledge in a piece
of program. Furthermore, the developer has to distinguish
and select relevant features for each concept. All concepts
may share some general features. However, developers have
to also engineer considerable number of features specific to
each concept [11]. For example, an informative feature for
zip-code is that its instances have 5 digits and a helpful fea-
ture for person is that its entities start with a capital letter.
These features may be given to a classifier or a probabilistic
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graphical model, or coded as first order logic formulas in a
Markov Logic Network. After developing the concept annota-
tor, domain experts may review and evaluate the annotation
of each concept [6]. This process may repeat multiple times
to generate accurate annotations of the concept. As most
underlying datasets frequently evolve, the aforementioned
steps have to be redone after a while for each concept in both
approaches [3].

Given taxonomy X = (R, C,R) and dataset DS, one may
assign a real number to each concept C ∈ C that reflects the
amount of resources required for the annotations of C in DS.
Let function w : C → R+ map each concept C ∈ C to a real
number that reflects the cost of annotating C in DS. The
cost of annotating a dataset under design S is the sum of
the costs of all concepts in S. Budget B is a positive real
number that represents the amount of available resources for
annotating the dataset. We define Cost-Effective Conceptual
Design problem (CECD) as follows.

Problem 3.3. Given taxonomy X , dataset DS in the
domain of X , query workload Q, and budget B, find design S
over X that has the maximum queriability and

∑
C∈S w(C) ≤

B.

Given a tree taxonomy such that all nodes other than
its root are leaf concepts, the problem of CECD over tree
taxonomies becomes the general case of CECD over a set
of concepts [13]. Since the problem of CECD over a set of
concepts is NP-hard [13], the problem of CECD over tree
taxonomies is NP-hard. Because the algorithms in [13] do
not consider the superclass/subclass relationships between
concepts, they do not effectively solve CECD for tree tax-
onomies. Our experiments in Section 5.2 show that these
algorithms find less accurate solutions to CECD over tree
taxonomies than the ones that consider superclass/subclass
relationships.

4 APPROXIMATION ALGORITHM
We propose an approximation algorithms called Level-wise
algorithm to solve the problem of CECD using a greedy
approach. It returns a design whose concepts are all from a
same level of the input taxonomy. Our algorithm finds the
design with maximum queriability for each level using APM
algorithm proposed in [13], which finds the cost-effective
subset of concepts over a set of concepts. Our algorithm
eventually delivers the design with largest queriability across
all levels.

Precisely, let C[i] be the set of all concepts of depth i in
X For any concept E ∈ C[i] we define its popularity ui(E)
to be the total popularity of its descendant leaves in X .
Level-wise algorithm calls APM to find the cost-effective
subset of concepts for every C[i]. It provides APM with the
popularities and costs of concept in C[i]. Level-wise algorithm
then compares various selected designs across C[i]s and keeps
the answer with maximum queriability, denoted as sollevel.
The algorithm also computes the queriability delivered by
picking only the leaf node with maximum popularity in X
called solmax. The algorithm returns the solution with greatest

Taxonomy T1 T2 T3 T4 T5 T6 T7 T8
#Concept 10 17 17 28 63 185 279 387

#Height 2 2 3 7 6 8 8 9
#Total queries 648 256 146 4219 4888 4728 5216 5259

#Documents 68k 267k 88k 1470k 1470k 1470k 1470k 1470k

Table 1: The sizes and heights of taxonomies and the sizes
of their corresponding query workloads and datasets.

T1 T2 T3
budget Oracle QM Oracle QM Oracle QM

U
n
if
or

m
C

os
t 0.1 0.149 0.149 0.241 0.232 0.222 0.210

0.2 0.168 0.168 0.303 0.285 0.281 0.269
0.3 0.177 0.177 0.318 0.315 0.304 0.304
0.4 0.192 0.192 0.320 0.318 0.306 0.304
0.5 0.193 0.193 0.326 0.324 0.306 0.306
0.6 0.195 0.195 0.326 0.326 0.306 0.306
0.7 0.195 0.195 0.326 0.326 0.306 0.306

R
an

d
om

C
os

t 0.1 0.124 0.124 0.264 0.262 0.248 0.239
0.2 0.163 0.163 0.302 0.295 0.288 0.281
0.3 0.179 0.177 0.317 0.316 0.304 0.304
0.4 0.187 0.183 0.323 0.318 0.306 0.306
0.5 0.193 0.192 0.326 0.323 0.306 0.306
0.6 0.194 0.194 0.326 0.325 0.306 0.306
0.7 0.195 0.195 0.326 0.326 0.306 0.306

Table 2: Average p@3 for Oracle and QM. Statistically sig-
nificant differences between Oracle and QM are marked
in bold.

queriability among sollevel and solmax. The APM algorithm
runs in O(|C| log |C|) time, where |C| is the size of its input
set of concepts. Thus, the time complexity of Level-wise
algorithm is O(h|C| log |C|) over taxonomy X = (R, C,R),
where h is the number of levels in X . If the taxonomy is not
balanced, the popularities of all concepts in some level l may
not sum up to 1. Hence, the algorithm does not consider
leaf concepts that are not descendant of any concept in l. To
resolve this problem, when running APM algorithm for level
l, we consider leaf concepts that are not descendant of any
concept in level l as members of l.

Sometimes, it may be easier to use and manage designs
whose concepts are not subclass/superclass of each other. We
call such a design a disjoint design. One may restrict the
feasible solutions in the CECD problem to disjoint designs.
We call this case of CECD, disjoint CECD. Recent empirical
results suggest that the distribution of concept frequencies
over a large collection generally follows a power law distri-
bution [15]. We show that the Level-wise algorithm has a
bounded and reasonably small worst-case approximation ratio
for CECD with disjoint solution given that the distribution
of concept frequencies follows a power law distribution.

Theorem 4.1. Let X = (R, C,R) be a taxonomy with
height h and the minimum accuracy of prmin = minC∈C pr(C).
The Level-wise algorithm is a O(h+log |C|

prmin
)-approximation for

the CECD problem with disjoint solution on X and budget B
given that the distribution of frequencies in C follows a power
law distribution.

Because concept annotation algorithms are reasonably accu-
rate, prmin is generally large [8].

5 EXPERIMENTS
Taxonomies and dataset: We have extracted 8 tree tax-
onomies from YAGO ontology version 2008-w40-2 [12] to
validate our model and evaluate effectiveness and efficiency
of our proposed algorithm. YAGO organizes its concepts
using subclass relationships in a DAG with a single root.
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T1 T2 T3 T4 T5 T6 T7 T8
budget APM LW APM LW APM LW APM LW APM LW APM LW APM LW APM LW

U
n
if
or

m
C

os
t

0.1 0.089 0.103 0.234 0.232 0.208 0.210 0.158 0.179 0.178 0.206 0.229 0.240 0.243 0.254 0.250 0.259
0.2 0.149 0.164 0.253 0.285 0.258 0.269 0.177 0.212 0.214 0.227 0.244 0.248 0.259 0.261 0.262 0.263
0.3 0.164 0.164 0.292 0.316 0.288 0.297 0.191 0.231 0.228 0.242 0.247 0.248 0.260 0.261 0.262 0.263
0.4 0.164 0.183 0.320 0.318 0.297 0.304 0.215 0.240 0.237 0.248 0.248 0.248 0.261 0.261 0.263 0.263
0.5 0.183 0.192 0.323 0.323 0.304 0.306 0.229 0.241 0.241 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.6 0.192 0.194 0.323 0.326 0.304 0.306 0.229 0.241 0.249 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.7 0.193 0.195 0.323 0.326 0.306 0.306 0.235 0.241 0.249 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.8 0.195 0.195 0.323 0.326 0.306 0.306 0.239 0.241 0.249 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.9 0.195 0.195 0.323 0.326 0.306 0.306 0.241 0.241 0.250 0.250 0.248 0.248 0.261 0.261 0.263 0.263

R
an

d
om

C
os

t

0.1 0.097 0.104 0.239 0.257 0.240 0.235 0.177 0.189 0.183 0.210 0.231 0.240 0.245 0.256 0.255 0.259
0.2 0.111 0.145 0.263 0.291 0.263 0.283 0.180 0.212 0.216 0.230 0.245 0.248 0.259 0.261 0.262 0.263
0.3 0.122 0.175 0.300 0.317 0.275 0.301 0.188 0.230 0.231 0.242 0.247 0.248 0.260 0.261 0.263 0.263
0.4 0.164 0.185 0.321 0.320 0.294 0.305 0.212 0.239 0.239 0.248 0.248 0.248 0.261 0.261 0.263 0.263
0.5 0.185 0.192 0.323 0.322 0.301 0.306 0.223 0.241 0.245 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.6 0.192 0.195 0.323 0.325 0.304 0.306 0.228 0.241 0.248 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.7 0.194 0.195 0.325 0.325 0.306 0.306 0.235 0.241 0.249 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.8 0.195 0.195 0.325 0.326 0.306 0.306 0.239 0.241 0.249 0.250 0.248 0.248 0.261 0.261 0.263 0.263
0.9 0.195 0.195 0.326 0.326 0.306 0.306 0.240 0.241 0.250 0.250 0.248 0.248 0.261 0.261 0.263 0.263

Table 3: Average p@3 for APM and LW over T1-T8. Statistically significant differences between APM and LW are
marked in bold.

We have created the breath-first tree of YAGO and selected
the concepts to create the taxonomies. We have used the
collection of English Wikipedia articles from the Wikipedia
dump of October 8, 2008 that is annotated by concepts from
YAGO ontology in our experiments [12]. For each taxonomy
in our sets of taxonomies, we have extracted a subset of the
original Wikipedia collection where each document contains
at least a mention to an entity of a concept in the taxonomy.
We use each dataset in the experiments over its corresponding
taxonomy. Table 1 shows the properties of the taxonomies
and their corresponding dataset.
Query Workload: We use a subset of Bing query log whose
target URLs, i.e., relevant answers, are Wikipedia articles.
Because the query log does not have the concepts behind its
queries, we adapt an automatic approach to find the most
specific concept associated with each query. We label each
query by the concept of the matching instance in its relevant
answer(s). Using this method, we create a query workload
per each of our datasets. Table 1 shows the information
about our query workloads. We use two-fold cross validation
to calculate the popularities, u, of concepts in each taxonomy
over their corresponding query workload.
Query Interface: We index our datasets using Lucene
(lucene. apache.org). Given a query, we rank its candidate
answers using BM25 ranking formula [7]. Then, we apply the
information about the concepts in the query and documents
to return the answers whose matching instances have the
same concept as the concept of the query. If the concept in
the query has not been annotated from the collection, the
query interface returns the list of document ranked by BM25
method without any modification. We have implemented our
query interface and algorithms in Java 1.7 and performed our
experiments on a Linux server with 64 GB of main memory
and two quad core processors.
Effectiveness Metric: Because all queries in our query
workloads have one or two relevant answers, we measure the
ranking quality of answering queries over a dataset using
precision at top 3 answers (p@3) [7]. One may also use larger
number of top answers to measure precision and ranking
quality of the results. However, since the total number of

relevant answers in our query workloads are less than three,
the maximum possible values for p@k, and consequently the
reported values, will be very small. Thus, using larger values
of k makes comparing and analyzing the effectiveness of query
results rather hard. We have reported the results using other
effectiveness metrics, such as MRR and recall, at [14]. We
measure the statistical significance of our results using the
paired-t-test at a significant level of 0.05.
Cost Models: We use two models for generating costs of
concept annotation. First, we assign a randomly generated
cost to each concept in a taxonomy. The results reported for
this model are averaged over 5 sets of random cost assign-
ments per budget. We call this model random cost model.
If there is not any reliable estimation available for the cost
of annotating concepts, an organization may assume that
all concepts are equally costly. Hence, in our second cost
model, we assume that all concepts in the input taxonomy
have equal cost. We name this model uniform cost model.
We use a range of budgets between 0 and 1 with a step size of
0.1 where 1 means sufficient budget to annotate all concepts
in a taxonomy.

5.1 Validating Queriability Function
Oracle: Given a fixed budget, Oracle enumerates all feasi-
ble designs over the taxonomy, and picks the design with
maximum value of average p@3.
Queriability Maximization (QM): QM enumerates all
feasible designs over the taxonomy and returns the one with
the maximum queriability as computed in Section 3.3.

As these algorithms enumerate all feasible designs, it is
not possible to run them over large taxonomies. Hence, we
run these algorithms over small taxonomies: T1, T2, and T3.
Table 2 shows the average p@3 of Oracle and QM over T1,
T2, T3 under uniform cost model and random cost model.
We do not show the values of average p@3 for budgets greater
than 0.7 as they are equal to the average p@3 for budgets
0.7. Generally, the designs picked by QM deliver close p@3
values to the ones selected by Oracle.
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5.2 Effectiveness of the Proposed
Algorithm

We compare the level-wise (LW) algorithm with the APM
algorithm from [13] that finds a design over a set of concepts.
We use all concepts in the taxonomy as a set for an input
to APM and set ε = 0.01 for both APM and LW. Table 3
shows the values of average p@3 for APM and LW over all
taxonomies and cost models. Overall, the designs returned
by LW improve the effectiveness of answering queries for
all taxonomies more than the ones returned by APM. As
APM does not consider the structural information of the
taxonomy, it often picks popular concepts that are ancestor
or descendant of each other. LW uses structural information
of the taxonomy and avoid this problem. Nevertheless, we
observe less significant improvement of LW over APM for
larger taxonomies such as T6, T7 and T8. Due to very skewed
distributions of concept popularity in T6, T7 and T8, budget
of 0.3 is usually sufficient to create a design that includes all
concepts which appear in the query workloads. Hence, LW
generally performs significantly better than APM for budget
less than 0.3 for T6, T7 and T8. For larger budgets, both
APM and LW return the designs with the same average p@3.

5.3 Efficiency of the Proposed Algorithm
We measure the running times of LW over moderate and
large taxonomies, i.e., T4, T5, T6, T7 and T8. The average
running times of LW for T4, T5, T6, T7 and T8 are 2, 2, 5, 6
and 6 seconds per budget, respectively. Thus, LW is efficient
for a design time task.

6 CONCLUSION
We introduced the problem of cost-effective conceptual design
using taxonomies. We proposed an efficient approximation
(LW) algorithm for the problem over tree taxonomies. Our
empirical results show that LW is generally effective and
scalable.
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