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LLMs hallucinate
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• Produce inconsistent information and inaccurate results

GPT-4: 40% hallucination rate 

GPT-4 Technical Report, 2023



Over-reliance on generalization
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• LLMs over-generalize patterns and relationships from 
pretraining data
– Causes inconsistent and inaccurate results
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How do we resolve inconsistencies?
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Leverage Constraints!

• Abstracts data into logical rules
– Reduces what is injected into LLMs

• Incorporated softly
• Provides a structured way of 

controlling the output of LLMs
+

Constraints LLM



Decoding under constraints: current efforts 
towards reducing inconsistencies in LLMs 
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• Ensuring the output of LLMs is consistent with domain constraints

Output

Input

Output Layer

Constraints

[1] Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs , 2023
[2] NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints , 2021

During generation, predicting the next 
token with constraints using probabilistic 
inference [1] or constraint optimization [2] 
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Limitations of decoding with constraints (on 
CommonGen dataset)
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• CommonGen constraints = contains key words or their inflections

CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning, 2019

100% satisfaction with 
decoding with constraints 

increases inference time

reduces sentence 
quality & coherency



Can prompting mitigate the limitations of 
constrained decoding?
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• Adding constraints to the input of LLMs

Output

Input

Output Layer

Constraints

During generation, predicting the next 
token with constraints using probabilistic 
inference [1] or constraint optimization [2] 

Input Layer

Constraints

Concatenating constraints to the prompt

[1] Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs , 2023
[2] NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints , 2021



Challenges with adding 
constraints to the prompt

1. How to represent constraints in 
the prompt
– Constraints are symbolic

2. Limited context length
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Input



Prompting with Constraints in Conjunctive 
Normal Form (CNF)
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Conjunctive Normal FormCNF

Write a sentence using the words (word1a
or word1b or … ) and (word2a or word2b
or … ) and (word3a or word3b or … )

• Constraints = contains key words or their inflections
– Can be represented in CNF!

• Convert CNF constraint  to text



Addressing context length through abstraction
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AbstractABS

Given a set of words x, write a sentence 
using all words in x or inflections of x

• Abstract constraint representation
– Reduces length of constraint supplied to the prompt
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Prompting improves time and quality but 
cannot guarantee satisfaction
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Lower 
inference 

time

Higher 
quality

Low 
satisfaction!



Empirical study: prompting and decoding with constraints 
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• CommonGen dataset [3] constraints = contains key words or their inflections
[1] Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs , 2023
[2] NeuroLogic Decoding: (Un)supervised Neural Text Generation with Predicate Logic Constraints , 2021
[3] CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning, 2019

Output

Input

Output Layer

Constraints

Input Layer

Constraints

Two Prompting Strategies:
• Conjunctive Normal Form (CNF)
• Abstract (ABS)

Two SOTA decoding strategies: 
• Hard Constraint Decoding [1]
• Soft Constraint Decoding [2]
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Longer PromptShorter Prompt

Longer prompts 
increase inference time

Decreased inference 
time despite prompt 

length increasing 
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Longer PromptShorter Prompt

Longer prompts 
increase inference time
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length increasing 



Irrelevant context hurts satisfaction
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Longer PromptShorter Prompt
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Key Takeaways 
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Decoding with 
constraints 
improves
satisfaction, but 
hurts quality 
and time

1
Prompting with 
constraints 
improves
quality and 
time, but hurts
satisfaction

2
Prompting 
reduces search 
space for 
decoders using 
search 
strategies

3
In-context 
examples 
improves
quality, but 
may decrease
satisfaction

4
Challenging to 
optimize over 
all metrics at 
the same time
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Thank you!


