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ABSTRACT
Join is arguably the most costly and frequently used operation
in relational query processing. Join algorithms usually spend the
majority of their time on scanning and attempting to join the parts
of the base relations that do not satisfy the join condition and do not
generate any results. This causes slow response time, particularly,
in interactive and exploratory environments where users would
like real-time performance. In this paper, we outline our vision on
using online learning and adaptation to execute joins efficiently. In
our approach, scan operators that precede a join, learn which parts
of the relations are more likely to join during the query execution
and produce more results faster by doing fewer I/O accesses. Our
empirical studies using standard benchmarks indicate that this
approach outperforms similar methods considerably.
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1 INTRODUCTION
It has been a long-standing challenge to efficiently join large re-
lations. This difficulty is more prominent in interactive and ex-
ploratory environments, where the users expect real-time perfor-
mance. The inherent difficulty of processing join queries is due to
the need to inspect all information in the participating relations and
find tuples that satisfy the join condition. Traditionally, database
systems improve the efficiency of join by precomputing certain data
structures, e.g., indexes, or sorting the relations, e.g., sort-merge
join. These methods, however, are not applicable for many cases
where: 1) The precomputed data structures are not available; 2)
Preprocessing the data is costly. For instance, indexes may not be
available over some join attributes in the database or it may take
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a long time to build one. Furthermore, if the index is large and
stored on the disk, updating the index can be costly. Similarly, it
may take a while or require too much main memory to sort large re-
lations. These methods usually fall short of satisfying user’s desired
response time for large relations.

To overcome these challenges, researchers have proposed join
algorithms that process subsets of input relations to provide the
users with a sufficiently large subset of answers [4, 5, 8, 11, 13].
These approaches enable users to receive and inspect a subset of
the answers in a short time or efficiently estimate downstream
aggregation functions, which are useful in many applications, such
as interactive data exploration and analysis. While the state-of-the-
art approaches are successful in lowering the response time, they
either require large amounts of memory [8], a preprocessed data
structure or statistics of the underlying data [5, 13].

To address these limitations, we propose a novel approach for
join computation. We use online learning to find the parts of the
base relations that are most likely to produce new join results
during the query execution. This way, the database system is able
to generate a sample of the join results with fewer I/O accesses
than the current approaches. As a concrete instantiation of our
approach, we outline the high-level description of bandit join for
binary joins. Bandit join learns the promising data blocks for one
of the base relations during the join computation. It is challenging
to learn an effective model online over large relations as they may
contain numerous blocks. We show how to address this challenge
by extending a multi-armed bandit algorithm [1]. Also, bandit join
processes joins with a small memory footprint. Our empirical study
using a standard benchmark indicates that bandit join outperforms
similar methods considerably.

2 FRAMEWORK
A join operator is preceded by two scan operators over two relations.
In each iteration of the join computation, each scan operator reads
blocks from its corresponding relation on the secondary storage
and sends them to the join operator. The join operator checks if the
received tuples satisfy the join condition. Ideally, the scan operators
should send the tuples that have a higher chance of joining to reduce
the number of I/O accesses. In bandit join, a scan operator learns
an effective strategy of pinpointing blocks that have higher chance
of generating fresh joint tuples while processing the join. Next, we
explain our framework.

Agents & Actions: Each scan operator is an agent in our learn-
ing framework. With some abuse of notation, we refer to the scan
operators over relations R and S as agent/operator R and S in the
join of relations R and S . At each iteration (or round) of processing
the join, each scan operator reads one or more blocks from its base
relation and sends them to the join operator. There is usually a limit
on the number of blocks each agent can read and send to the join
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operator from its relation due to the limited amount of available
main memory to the join operator. To simplify our explanation, in
this paper, we assume that at each round, each agent reads only
one block. Thus, we define the set of actions available to each agent
in each round as the set of blocks that it can read from its base
relation. In the setting considered in this paper and in the absence of
auxiliary data structures, such as indexes, an agent can access every
block of its relation using sequential scanning. We note that more
actions can be defined in other settings (e.g., if there are indexes on
relation), which we leave for the future work. As we assume that
the relations are stored on the secondary storage, each agent has
to perform some I/O access(es) to read a block from the secondary
storage. Since the dominating cost of performing joins is the time
to perform I/O access, agents should ideally process the join and
deliver the desired results using the smallest possible number of
I/O accesses. We will discuss how this overhead may impact the
strategies of each agent in the succeeding paragraph. Thus, one
may view the join processing is as a collaborative effort, i.e., game,
of two aforementioned agents with the goal of generating desired
results using the least number of I/O accesses.

Reward & History: The reward of an action in each round of
the join execution is the number of new joint tuples produced at
that round. The join operator sends this reward to each agent, i.e.,
scan operator, at the end of each round. The goal of both agents is to
maximize the long-term reward of the game. The exact formula for
the long-term reward depends on the underlying application. We
consider the reward up to round t to be the total number of distinct
joint tuples produced up to that round. Other reward functions,
such as discounted geometric sum, are possible. The history of the
game at round t for agent with relation R, HR (t), is the sequence of
pairs (ai , ri ), 0 ≤ i ≤ t −1, where ai and ri are the action performed
by the agent R and its reward at round i of the game, respectively.

Join Strategies: Based on the performance of sent blocks in the
previous rounds of the game, an agent may decide to send a certain
block in the current round. More precisely, the strategy of agent R
at round t is a mapping fromHR (t) to the set of its available actions.
Ideally, an agent should adopt a strategy that maximizes its reward,
i.e., send a block that leads to the most number of fresh joint tuples.

Fixed Strategies & Adaptive Strategies: An agent may follow
a fixed strategy to perform the join. For example, modeling the
(block-based) nested loop join algorithm using our framework, the
scan operator for the inner relation follows a fixed strategy of
sending the next block (or tuple) in each round of the algorithm
except for the round where it exhausts all the tuples in the relation.
In this case, it sends the block at the beginning of its relation.
Similarly, the scan operator for the outer relation sends a fixed
block during a single scan of the inner relation and then moves
to the next available block on its relation as soon as the scan of
the inner relation is done. Nevertheless, if the underlying relations
contain sufficiently many blocks, i.e., the join has sufficiently large
number of rounds, an agent may achieve a higher long-term reward
by adapting and modifying its strategy during the join. For instance,
this agent can leverage its experience from the previous rounds of
the join to modify its strategy and get a potentially greater reward
in the next round(s). Using the history of the join, an agent may
learn that block b1 joins with significantly more tuples in the other

relation than block b2. Thus, if it sends tuples from b1 to the join
operator more often than b2, it may generate k answers by reading
fewer blocks of the other relation which would reduce the I/O cost
of scanning the other relation’s blocks.

Exploration vs Exploitation: Since the success rate of tuples
are not known at the start of the join, the agent has to learn them
while performing the join. Such a learning method may first ex-
plore various actions or sequences of actions and then exploit this
knowledge to choose promising actions in the later rounds of the
join. The key element in this approach is to balance exploration
and exploitation [1]. If an agent mostly explores possible sequence
of actions, to gain more knowledge, it may end up scanning many
blocks of the relation before generating any join results. On the
other hand, if the agent mostly exploits the knowledge gained from
the previous rounds of the join and performs a limited amount of
exploration, it may not find the optimal strategy which in turn leads
to a less efficient join.

3 LEARNING AND EXECUTING AN
EFFECTIVE JOIN STRATEGY

Learning an effective join strategy has three challenges: 1) Prior to
executing the join, the agent does not know which blocks or tuples
would result in the highest rewards, therefore, learning should take
place while processing the join. Clearly, the learning algorithm
should find a reasonably accurate strategy within relatively small
number of rounds. Otherwise, the learning may take as much time
as join algorithms that examine every possible pair of blocks or
tuples, e.g., nested loop join. 2) Users would often like to receive
partial results in a short time. Since the learning phase may take a
while, it may take a considerable amount of time for the operators to
generate some results. Thus, the operators should combine learning
a good strategy and producing output tuples in order to satisfy users’
need. 3) Once all join results of an optimal block(s) or (group of)
tuple(s) are generated, this block or tuple will deliver zero rewards.
Thus, the agent should detect an exhausted optimal block, and
proceed to find the next best block.

We propose bandit join, an online learning and joining algorithm
that overcomes the mentioned challenges. Bandit join consists of
super-rounds. At each super-round, agent R explores a limited num-
ber of blocks from the outer relation to learn the block with the
maximum reward rmax ∈ R. Then, R reuses rmax until all possible
results of rmax are generated and the inner relation S is exhausted.
Next, R removes rmax from its set of available blocks. At this point,
the algorithm has completed one super-round. The algorithm starts
a new super-round to learn and use the next best block in R with the
largest reward. This process continues until the required number of
join results is generated. In our algorithm, agent S follows a fixed
strategy of sequentially scanning blocks from its base relation S
and sending them to the join operator. We plan to extend our algo-
rithm to enable relation S to also adapt and find its best performing
blocks.

In our framework, considering that the relations are not sorted by
their join attribute, we assume reading the next block sequentially
is equivalent to randomly sampling the joint attribute. This assump-
tion has been used frequently in join computation with success, e.g.,
[8]. Therefore, one may also view the strategy of agent S as picking



Bandit Join: Preliminary Results aiDM’20, June 14–19, 2020, Portland, OR, USA

10 50 100

200

400

600

K

Ti
m
e
(m

ill
i-s
ec
on

ds
)

Block nested loop join
Bandit join

(a) Response time of Q14 (z = 0)
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(b) Response time of Q14 (z = 1)
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(c) Response time of Q12 (z = 0)
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(d) Response time of Q12 z = 1
Figure 1: Response time of bandit join compared to block nested loop join for different values of k

random blocks from relation S . That is, the reward distribution
for the blocks of R is fixed. Thus, agent R may use multi-armed
bandit (MAB) algorithms to learn the best performing blocks online
[3]. Nevertheless, MAB algorithm usually need to try each action
multiple times in (semi-)random orders to find the most effective
one. This will be very time-consuming in our setting as R may have
numerous blocks to explore where accessing each of them require
spending many I/O accesses without having any index. Thus, to
find rmax at each super-round, bandit join models relation scan-
ning as an infinitely many-armed bandit problem [1, 2, 17]. These
problems assume the set of available arms/actions is too large to
be fully explored. Thus, they aim at effectively estimating the most
rewarding action(s) using a sufficiently small sample of the set of
actions. Each action has a reward with an unknown probabilistic
distribution that can be sampled during the exploration phase.

There are different algorithms to solve infinitely many-armed
bandit problems. Bandit join usesm-run algorithm [1] to find the
rmax at each super-round withm = |S |. Operator R first starts by
sequentially scanning its relation and maintains a mapping from
the scanned blocks’ addresses to their total observed rewards in
the main memory. As long as the current block r ∈ R produces a
join result, R keeps reusing this block. As soon as r fails to produce
a result, R reads the next block in the subsequent round. If there
is a block that hasm consecutive successes, operator R stops its
scan and declares that block as the estimated rmax . Otherwise,
it stops scanning after reading m distinct blocks. In this case, R
picks the block with maximum reward from the set of seen blocks
whose positions and rewards are maintained in the memory. At
this point, the learning phase of one super-round is finished and R
reuses rmax to generate all of its joining tuples. For the next super-
round, instead of re-running the strategies, the operators leverage
the information gained from the previous super-round(s) to learn
the next most rewarding block with a relatively small number of I/O
accesses. A high level pseudo code of the bandit join is presented
in Algorithm 1.

It is proved that them-run algorithm achieves a success propor-
tion to the asymptotically optimal one, by settingm equal to the
square root of the total number of trials [1], which in our setting
is the number of blocks in relation S . For R to deliver a reward
close to asymptotically optimal one, the reward distribution of its
underlying relation, i.e., R, should not be too skewed, e.g., one block
of R joins with every tuple in S and the rest do not join with any
[1]. Our empirical studies using standard benchmarks indicate that
this method learns reasonably effective blocks even when the re-
ward distributions of R is relatively skewed. For formal results on

optimality and assumptions of them-run algorithm, we refer the
reader to [1].

Algorithm 1: Bandit_Join(R, S, join_condition, k)
reward← create an empty dictionary
while Size(result) < k and HasNext(R) do

while Size(reward) ≤ m do
r← NextBlock(R)
if not HasNext(S) then

Reset(S)
s← NextBlock(S)
while Join(r, s) , ∅ do

Append(result, Join(r, s))
if Size(result) ≥ k then

return
Increment(reward[r])
s← NextBlock(S)

r← ArgMax(reward)
RemoveFromDictionary(reward, r)
// join tuple r with the rest of relation S
Append(result, Join(r, S))

4 EXPERIMENTS
We evaluate our method against block nested loop join (BNLJ) [7].

Dataset and Queries: We use TPC-H 1 to generate the queries
and databases for our experiments. We experiment with 3 different
database scales s ∈ {1, 2, 3} with 1.5, 3, and 4.5 million tuples
respectively. We use TPC-H queries, Q12 and Q14. Note that, we
only process and evaluate the join part of these queries to avoid
the overhead introduced by the other operators.
Q12 : SELECT * FROM order JOIN lineitem ON o_key = l_orderkey

Q14: SELECT * FROM part JOIN lineitem ON p_key = l_partkey

We run each query 10 times and report the average time to obtain
k join results. The reported time includes learning and execution
times.

Experiment Setup and Implementation:We implement ban-
dit join inside PostgreSQL 11.5 database management system, on
a Linux server with Intel(R) Xeon(R) 2.30GHz cores and 500GB
of memory. The size of available cache and memory of the Post-
greSQL server is set to the minimum possible value of 128KB. This
will allow the database to only cache a few blocks of the relations
and will mitigate the impact of caching on the reported results.
Multi-threading is turned off and its impact on bandit join will
1available at: http://www.tpc.org/tpch/
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be examined in the follow-up works. We set the group size of the
bandit join to 32 tuples. This number can be adjusted to match the
exact number of the tuples in a block based on the size of each row
in the relation.

4.1 Comparison with The Baseline
As our baseline, we implement BNLJ (improved version of Post-
gresSQL’s nested loop). One of the parameters that impact the join
processing time is the probability distribution of the join attribute
values and more specifically the skew in the data [6]. We evaluate
the query run-time over data-sets with different skews by assuming
a Zipfian distribution with parameter z over the data [6]. Setting
z = 0will result in uniform distribution. As we increase the value of
z, the distribution becomes more skewed. The skew in the value of
join attributes will impact the join selectivity. If the skew is equal to
zero (e.g., when we have a uniform distribution), the join selectivity
of different tuples will be similar to each other and the range of join
selectivities will be small. However, if the skew is high, the join
selectivity of different tuples will have a high variance and a large
range. Thus, them-run algorithm identifies rmax more effectively.

Figure 1a shows the running time of Q14 using BNLJ and bandit
join over a dataset with zero skew (uniform distribution). Block
nested loop outperforms bandit join for k = 10 and k = 50 because,
with uniform distribution, it is difficult for bandit join to learn
the best tuple group in a few rounds. However, as we increase k ,
bandit join has more time to learn and outperforms BNLJ. Figure 1b
shows the results for datasets with slight skew (z = 1). This figure
shows that for a slightly skewed data, the bandit join can learn
an approximately good tuple group. But BNLJ is more likely to
stick with a “useless” tuple group. Figures 1c and 1d show the same
results forQ12. These results conformwith the previous ones except
when k = 50 and z = 0, bandit join does a better job. One reason
for this is that Q14 has a higher join selectivity than Q12 in this
experiment. The average join selectivity of Q14 in this experiment
is 30.06 which means that BNLJ can produce k = 50 in a few rounds
without the need to learn the best tuple group.
4.2 Scalability
Next, we evaluate the impact of dataset size on the performance
of bandit join and BNLJ with k = 100 and z = 1. Figure 2 shows
the response time of bandit join and BNLJ on three datasets with
different sizes. We see that as the dataset size grows, bandit join
outperforms BNLJ with a larger margin. Note that Q12 is a primary
key to primary key join. In this setting,m-run algorithm can not
learn the optimal tuple/group. However, bandit join skips a tuple
group at the first failure. Thus, if we read a tuple group that has a
very low join selectivity and is very unlikely to produce a result,
bandit join will skip that tuple group after one try but BNLJ will
stick with it until it exhausts the inner relation.

5 RELATEDWORK
There has been several approaches to utilize machine learning tech-
niques in designing some components of database managements
systems, such as query optimization [10, 14–16] and indexing [12].
The authors in [12] outline potential offline learning techniques to
sort a relation. Our approach differs with these methods in viewing
query operators as potentially adaptive agents that communicate
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Figure 2: Impact of dataset size on the response time.
with other operators/agents and collaboratively learn query evalu-
ation strategies online. It also focuses on join evaluation. As it uses
online learning during query execution, it produces results faster
than the offline methods, which have to spend significant time to
learn a model without using it.

6 ONGOINGWORK
We believe bandit join introduces an exciting research path in query
processing by treating each query operator as a learning agent and
modeling query processing as amulti-agent collaboration, i.e., game.
In this setting, agents interact with the common goal of achieving
maximum efficiency in query processing. We plan to extend our
work for the case where both scan operators learn and also for
queries with more operators as well as more varieties of operators.
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