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ABSTRACT
Large language models (LLMs) have shown unprecedented abilities
in generating linguistically coherent and syntactically correct out-
put. However, they often return incorrect and inconsistent answers
to input questions. Due to the complexity and uninterpretability of
the internally learned representations, it is challenging to modify
LLMs such that they provide correct and consistent results. To ad-
dress this challenge, recent research has focused on controlling the
outputs of LLMs through methods like constrained optimization
and probabilistic inference. While these approaches mark signifi-
cant progress, they have limitations in terms of usability, efficiency,
and linguistic coherence. Some methods require extensive fine-
tuning, making them less practical for general use, while others
compromise the linguistic quality of the output. To address these
limitations, we explore adding constraints to the prompt. Our ex-
perimental findings reveal that this approach reduces the need for
fine-tuning and enhances the generation quality, leading to im-
provements in efficiency and linguistic coherence of the generated
output.
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1 INTRODUCTION
Large language models (LLMs) have shown unprecedented abilities
in processing natural languages [9]. They effectively generalize to
perform various tasks with few or no training examples. Thus, there
is a rapidly growing interest in using them to solve data-driven
problems, such as, interactive question answering.

Nonetheless, LLMs often provide incorrect answers to input
queries and perform inaccurate inferences [9]. Several studies indi-
cate the recent LLMs provide up to 40% erroneous answers to factual
questions [9]. These erroneous results are important obstacle for
use of LLMs in real-world applications.

To address the problem of inaccurate answers returned by LLMs,
we should recognize that LLMs are not knowledge bases, but
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rather probabilistic or approximate models of factual infor-
mation. LLMs may over-generalize patterns and relationships ob-
served in the sub-sequences of pretraining data, which might lead
to returning spurious relationships and inaccurate results. The un-
interpretable mixture of linguistic patterns and factual information
has made it challenging to eliminate incorrect information.

One approach is to augment LLMs with additional and poten-
tially relevant information from external data sources [6, 8], i.e.,
retrieval-based LLMs.These methods often add extra information to
the context considered during pretraining. This line of research have
improved the accuracy of LLMs to a limited degree, as it does not
address the core issue of having spurious and incorrect information
in LLMs. It is unclear whether adding more relevant information
eliminate inaccurate information stored in the model. Moreover,
finding sufficiently many relevant data sources, particularly for
long-tail entities, may pose challenges.

It is challenging to ensure that an LLM learns accurate gener-
alizations and returns correct answers as it may require perfect
knowledge of unobserved data. Even with perfect knowledge of
unobserved data, it is challenging to guarantee that LLMs learn
accurate generalizations and returns correct answers. Nevertheless,
we may be able to restrict its decoding to adhere to declarative
constraints in the domain to avoid generating incorrect results.

Constraints are essentially rules or guidelines that govern the
behavior or output of a system. They can be defined by human
experts or learned from data in an unsupervised manner [2, 10].
Compared to retrieval-based augmentation, we argue that con-
straints offer a more robust and adaptable framework for
reducing inconsistencies in LLMs. There are two key advantages
to using constraints. First, their ability to encapsulate rules govern-
ing the underlying domain enables a system to generalize beyond
particular instances in a dataset, i.e., out of distribution generaliza-
tion. Second, that constraints are a form of high-level knowledge,
effectively abstracting large quantities of data. Their compressed
representation offers a flexible and efficient method of augmenting
LLMs by (1) allowing for soft incorporation of constraints (e.g. ad-
here to a constraint with 80% probability), (2) reducing the size of
information used as context to LLMs, and (3) providing a structured
way to control the output of LLMs.

There has been recent effort on limiting the output of LLMs so
they follow given constraints, e.g., contain certain keywords [3, 7].
These methods use constrained optimization or probabilistic in-
ference over the sequences generated by the LLM to reduce the
probability of the outputs with invalid patterns. These efforts are
steps in the right direction but fall short of ensuring usable, scalable,
and linguistically coherent outputs from LLMs. For instance, Neuro-
Logic [7] requires task-specific fine-tuning, which is impractical as
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LLMs grow in size. On the other hand, Sequential Monte Caro [3]
is compatible with off-the-shelf models, but often fails to maintain
linguistic coherence due to its simple masking decoding strategy.
Both methods, applied only during decoding, don’t address the
LLM’s potential to learn and represent spurious relationships. This
is hard to control due to the difficulty in interpreting LLMs’ learned
representations. For instance, the learned spurious relationship
about one entity might impact how an LLM answers a question
about a different but related entity.

To overcome these limitations, we augment the prompt with
domain-specific constraints. Promptingwith constraints offers three
advantages. First, it leverages LLMs’ in-context learning capabilities,
thereby reducing the need for fine-tuning. Second, it can introduce
domain knowledge not present in the training data, e.g., each pa-
tient is a human. Hence, the modified prompt might convey more
information about the domain than the original one. Third, it ex-
presses the properties of entities that are consistent with constraints
in the domain. Moreover, consistent answers depend on the context
of the domain constraints, i.e., different domains require different
lines of reasoning. By incorporating these constraints into the in-
put context, LLMs can generate higher quality output distributions,
enabling the decoder to work more effectively.

In this paper, we explore the use of constraints within prompts
to improve the limitations of NeuroLogic [7] and Sequential Monte
Carlo [3] decoding strategies. We conduct empirical results for
integrating constraints in Llama-2 [12] on the CommonGen bench-
mark [4], without fine-tuning (Section 5). We identify and discuss
the trade-offs between generation quality, constraint satisfaction,
and efficiency. We find that optimizing all these aspects is not pos-
sible by just adding constraints to the prompt or decoder alone.
However, combining constraints in both prompting and decoding,
shows improvement. Specifically, compared to using only decoder
strategies, adding constraints to prompts leads to improvements
in efficiency and generation quality. These results underscore the
effectiveness of end-to-end strategies, where prompts and decoders
work together in addressing inconsistencies in LLMs.

2 BACKGROUND
Constraints. In our problem, a constraint is defined over the
sequence of tokens, i.e., words, generated by an LLM. Given a
generated sequence of words 𝑆 , let us define an indicator function
𝐼 (𝑤 𝑗 , 𝑆) that returns true if a word𝑤 𝑗 occurs in 𝑆 .

A set of constraints can be formulated in Conjunctive Normal
Form (CNF) as a conjunction (∧) of clauses ∧𝑛

𝑖
𝐶𝑖 , where each clause

𝐶𝑖 is a disjunction (∨) of literals:

(𝐼 (𝑤11, 𝑆) ∨ · · · ∨ 𝐼 (𝑤1𝑘1 , 𝑆))︸                                ︷︷                                ︸
𝐶1

∧ · · · ∧ (𝐼 (𝑤𝑛1, 𝑆) ∨ · · · ∨ 𝐼 (𝑤𝑛𝑘𝑛 , 𝑆))︸                                 ︷︷                                 ︸
𝐶𝑛

where each constraint 𝐼 (𝑤 𝑗 , 𝑆) represents a literal.
For example, suppose we would like to generate a sentence

that uses the concepts from the set of keywords 𝑥 = [dog, run,
field]. Therefore, the objective is to generate an output sequence 𝑆
that contains all keywords in 𝑥 or its inflections (e.g., dog = [dog,
dogs, dogging, dogged]). This expressed in CNF is: (𝐼 (dog, 𝑆) ∨
𝐼 (dogs, 𝑆) ∨ 𝐼 (dogging, 𝑆) ∨ 𝐼 (dogged, 𝑆)) ∧ (𝐼 (run, 𝑆) ∨ 𝐼 (runs, 𝑆) ∨
𝐼 (running, 𝑆) ∨ 𝐼 (ran, 𝑆)) ∧ (𝐼 (field, 𝑆) ∨ 𝐼 (fields, 𝑆)).

Constraint Satisfaction. Given a set of constraints 𝐶 expressed
in CNF and sequence 𝑆 , constraint satisfaction refers to the process
of checking if sequence 𝑆 violates constraints in 𝐶 . This process is
gauged using two key metrics: coverage and satisfaction.

Coverage is a number between 0 and 1, calculated as the propor-
tion of clauses in 𝐶 that evaluate to true: 1

|𝐶 |
∑ |𝐶 |
𝑖=1𝐶𝑖 where |𝐶 | is

the number of clauses in 𝐶 . Satisfaction is a Boolean assignment (0
or 1) that assesses whether 𝑆 adheres to all clauses in 𝐶: ∧ |𝐶 |

𝑖=1𝐶𝑖 .

3 CURRENT CONSTRAINED DECODING
STRATEGIES

We leverage two decoding strategies with varying levels of sat-
isfaction: soft constraint decoding with NeuroLogic [7] and hard
constraint decoding with Sequential Monte Carlo [3].

NeuroLogic (NL) [7] is an inference time decoding algorithm
that uses a variant of beam-search. The objective is to optimize the
probability of generating sequences while also steering towards
constraints using a penalty term. Due to the interest of using off-
the-shelf models, we chose not to fine-tune an LLM for using the
NeuroLogic decoder. It is important to note, however, their experi-
ments were conducted using a fine-tuned model.

SequentialMonte Carlo (SMC) [3] is an inference timemasked
decoding algorithm. They model sequence generation as a proba-
bilistic inference problem using a variant of Sequential Monte Carlo
with particle filtering. In SMC, a user writes a program that specifies
the desired constraints in a sequential manner. The user may also
specify the number of particles used, where each particle acts as
a weighted sample of the posterior distribution. We programmed
constraints, i.e. contains certain keywords, as an infilling problem,
where keywords are sampled with a masked vocabulary.

4 PROMPTINGWITH CONSTRAINTS
Integrating structured data, such as constraints, into prompts poses
challenges for LLMs, as they have been trained on unstructured
data and impose restrictions on context length, e.g., 4096 tokens for
Llama-2 [12]. It is unclear whether the LLM’s low-dimensional rep-
resentation can accurately and reliably reflect these domain-specific
constraints. Hence, it is challenging to ensure constraint satisfac-
tion solely through prompt augmentation. Nonetheless, prompting
with constraints can still bias the output distribution, allowing the
decoder to work more effectively.

For input prompt 𝑃 = “write a sentence", we construct two
prompting techniques for constraints with varying representations.

Conjunctive Normal Form (CNF) prompting style models
constraints, i.e., keywords, in conjunctive normal form. For example,
the keywords [dog, run, field] in conjunctive normal form is (dog
∨ dogs ∨ ... ) ∧ (run ∨ running ∨ ... ) ∧ (field ∨ fields). We can
translate this constraint to text by converting ∨ to or and ∧ to and.
Hence, our final prompt is “Write a sentence using the words (dog
or dogs or ... ) and (run or running or ... ) and (field or fields)".

Abstract (ABS) prompting style describes an abstract instance
of a constraint, e.g., “Given a set of words 𝑥 , write a sentence using
all words in 𝑥 or inflections of 𝑥". Since ABS prompts do not include
specific instances of keyword inflections, it is more compressed
than CNF prompts.
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4.1 Prompting and Decoding with Constraints
Augmenting either the prompt or the decoder in isolation can help
reduce inconsistencies in LLMs, but each approach has its draw-
backs. While decoders can offer satisfaction guarantees, they may
slow down inference and reduce generation quality due to signifi-
cant shifts in output distribution. In contrast, prompting maintains
generation quality but lacks the ability to ensure constraint satisfac-
tion. To overcome the limitations of each method individually, we
propose exploring an end-to-end approach, integrating constraints
in both prompting and decoding. Additionally, we aim to investi-
gate how various prompting techniques impact the effectiveness of
decoder strategies.

5 EMPIRICAL RESULTS
In this section we present our empirical results for integrating
constraints with LLMs using the CommonGen benchmark [4]. We
identify the risks and trade-offs of augmenting LLMs with con-
straints for the prompt only (Section 4) and decoder only (Section
3) strategies, in terms of generation quality, constraint satisfac-
tion, and time. We also explore whether injecting constraints into
both prompt + decoder (Section 4.1), will help or hurt any risks and
trade-offs that exist in the prompt or decoder alone.

5.1 Experimental Setup
LLM. We use Llama-2 [12] as our pretrained language model across
all experiments.
Dataset. The CommonGen dataset [4] is a benchmark designed
for controlling language model generation with constraints, i.e.,
contain certain keywords. Given a set of keywords, the goal is to
generate a sentence using all the keywords or the infections of the
keywords. Each set contains 3-5 keywords. The dataset is split into
train, validation, and test sets. Typically, those using the Common-
Gen dataset would first fine-tune their model using the training set.
However, we focus on using inference-based algorithms that can
be used with off-the-shelf models without fine-tuning. Our results
are conducted over the test set.
In-Context Examples. We supply the prompt with additional
in-context examples, i.e., n-shot, extracted from the training set.
Constraints. In CommonGen, constraints can be defined for a set
of keywords [𝑤1,𝑤2,𝑤3] as follows. If 𝑆 is a sentence, then 𝑆 must
contain𝑤1 or one of its inflections,𝑤2 or one of its inflections, and
𝑤3 or one of its inflections. The objective is to generate sentences
that adhere to this constraint. A key characteristic of this constraint
is its allowance for multiple valid outputs, stemming from the
underspecificity of the input. This leads to a wide array of possible
sentences that represent instances of the constraint.
Metrics. Generation Quality is measured using automatic metrics,
such as ROUGE [5], BLEU [11], CIDEr [13], and SPICE [1]. These
metrics generate a quality score for the generated sentence based
on human generated reference sentences, where a perfect score is
100. Constraint Satisfaction measures the method’s ability to fully
satisfy the constraint (used all keywords or their inflections), i.e.,
satisfied. We also calculate coverage, which is an average over the
percentage of keywords (or their inflections) used in the generated
sequence. Time is computed as the time taken (in seconds) for
generating a sequence, i.e., inference time.

5.2 Results & Analysis
Results over all experiments can be found in Table 1.
Prompt Only. We aim to understand how varying constraint
representation, i.e., ABS vs. CNF, and in-context examples, i.e., n-
shot, impact generation quality, constraint satisfaction, and time.

Across most experiments ABS prompting achieves higher sat-
isfaction than CNF prompting. This suggests that LLMs can un-
derstand abstract, high-level descriptions of constraints. Given the
fact that CNF prompts include all the inflections, one would ex-
pect higher constraint satisfaction across all experiments, however,
this is not the case. With the exception of CNF 1-shot, ABS style
prompting obtains higher satisfaction than CNF. ABS prompting
outperforms CNF prompting in terms of generation quality across
all experiments. CNF style prompts are inherently more structured
and further from ‘natural language’ compared to ABS style prompts.
This suggests structured prompts are less beneficial andmay require
a fine-tuning strategy.

Increasing input length does not have significant impacts on
inference time. Despite ABS prompts having a smaller constraint
representation size than CNF prompts, there is little change in
inference time across all n-shot experiments. In-context examples
boosts quality in both prompting strategies, but hurts satisfaction
in CNF 2-shot. Including more than one in-context example worsens
constraint satisfaction for CNF style prompts. This suggests that
extending the input context with inflections for every in-context
example may lead to noisy, sub-optimal distributions for generation.
DecoderOnly. In this sectionwe discover the impacts of the output
layer, i.e., decoder, on generation quality, constraint satisfaction,
and time. We compare two decoding strategies: soft constraint
decoding, i.e., beam-based NL and hard constraint decoding, i.e.,
masked-based SMC.

In the absence of fine-tuning, beam-based/soft constraint decod-
ing, i.e., NL, encounters challenges in both generation quality and
constraint satisfaction. Compared with SMC, NL is more depen-
dent on a high quality output distributions. This suggest that soft
constraint decoding requires higher quality output distributions.

Increasing the number of particles for SMC decoding does not
yield quality or satisfaction improvements while increasing infer-
ence time. This observation indicates that the underlying distribu-
tion may be of low quality, as increasing the number of particles
does not enhance performance. Moreover, in cases of uncertainty,
the decoder will not see benefits by increasing computational re-
sources. Although the SMC decoder achieves 100% constraint satis-
faction, this achievement comes at the cost of significantly increased
inference time. For example, the longest inference time recorded
among the tested prompting strategies was only 1.85 seconds, in
contrast, SMC with 8 particles required a considerably longer du-
ration of 22.92 seconds for generation. This indicates a substantial
increase in computational time required to achieve complete con-
straint satisfaction with masked decoding strategies, such as SMC.

Despite the improvements in constraint satisfaction, decoder
only strategies degrade generation quality and increase time.
Prompt & Decoder. Although prompt only strategies have higher
performance on generation quality and time, they cannot provide
any guarantees on constraint satisfaction. Conversely, decoding
strategies optimize over constraint satisfaction, but at the cost of
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Method
Generation Quality Constraint Satisfaction Time

ROUGE-L BLEU-4 CIDEr SPICE Coverage Satisfied Seconds
Prompt Only
ABS 0-shot 25.37 06.29 04.34 13.81 51.61 18.84 01.56
ABS 1-shot 29.46 08.41 06.22 18.49 74.49 35.34 01.85
ABS 2-shot 31.34 10.60 07.33 20.06 76.74 38.74 01.83
CNF 0-shot 22.82 03.74 02.37 12.13 42.17 11.09 01.84
CNF 1-shot 29.60 08.07 05.88 18.77 77.47 38.88 01.51
CNF 2-shot 30.93 09.92 06.81 19.22 74.48 34.34 01.46
Decoder Only
NL [7], beam=8 10.05 00.00 00.08 02.67 02.41 00.00 03.46
NL [7], beam=32 10.36 00.00 00.06 02.31 01.12 00.00 12.47
NL [7], beam=64 9.74 00.23 00.04 02.59 00.96 00.00 24.01
SMC [3], particle=8 23.10 02.60 01.71 15.37 100.0 100.0 22.92
SMC [3], particle=16 22.86 02.52 01.62 15.55 100.0 100.0 22.96
SMC [3], particle=32 22.92 02.64 01.69 15.26 100.0 100.0 23.17
Prompt & Decoder
ABS 0-shot + NL [7], beam=8 36.54 14.82 10.72 20.65 95.93 83.43 05.30
ABS 1-shot + NL [7], beam=8 39.07 19.25 12.13 23.25 94.13 76.55 04.61
ABS 2-shot + NL [7], beam=8 39.39 19.76 12.26 23.65 93.81 75.48 05.11
CNF 0-shot + NL [7], beam=8 15.41 03.98 01.56 06.42 09.38 01.00 07.47
CNF 1-shot + NL [7], beam=8 39.66 25.73 13.30 24.18 79.91 39.08 09.37
CNF 2-shot + NL [7], beam=8 39.81 25.35 12.84 23.57 75.49 27.99 11.30
ABS 0-shot + SMC [3], particle=8 25.86 04.00 02.79 18.80 100.0 100.0 25.33
ABS 1-shot + SMC [3], particle=8 27.86 05.66 04.46 20.27 100.0 100.0 25.14
ABS 2-shot + SMC [3], particle=8 28.62 06.17 04.90 20.55 100.0 100.0 29.96
CNF 0-shot + SMC [3], particle=8 26.27 04.07 03.14 19.85 100.0 100.0 27.51
CNF 1-shot + SMC [3], particle=8 27.40 04.65 03.84 20.29 100.0 100.0 34.10
CNF 2-shot + SMC [3], particle=8 28.44 05.93 04.54 20.70 100.0 100.0 48.76

Table 1: Performance results on generation quality, constraint satisfaction, and time over the CommonGen test set for different
generation methods: decoder only, prompt only, and prompt + decoder. With the exception of time, a perfect score is 100.

generation quality and time. In this section we aim answer whether
the prompt and decoder can work together to improve the disad-
vantages of using the prompt or decoder alone, i.e., an end-to-end
system. More specifically, we would like to understand how differ-
ent strategies work together and whether they induce any trade-offs
between our metrics.

Augmenting the prompt with constraints enhances generation
quality and constraint satisfaction, indicating that prompting re-
sults in a higher-quality output distribution for the decoder to
operates on. Notably, the NL decoder, although underperforming
as a standalone decoder, shows remarkable improvement in quality
when combined with prompts. This demonstrates that soft con-
straint decoder performance depends on the quality of the output
distribution. Although prompting improves quality in SMC, it has
significant impacts on time. Checking for hard constraints within
the SMC decoding strategy is less scalable when compared to the im-
plementation of soft constraints in NL. In contrast, the NL decoder
benefits in both quality and time. Due to the higher quality output
distributions produced with prompting, the NL decoder spent less
time searching, leading to reductions in inference time.

Across most experiments, the NL decoder achieves higher gen-
eration quality than SMC. The use of soft constraints in NL results
in less drastic distribution changes compared to SMC, allowing
for higher quality generation, albeit with a trade-off in constraint
satisfaction. Despite the NL decoder leveraging CNF formula, it
exhibits higher satisfaction levels with ABS style prompts. This in-
dicates that structured prompts could potentially limit the model’s
performance by producing sub-optimal output distributions for
the decoder. It suggests that high-level concepts and relationships
might be more effective inputs to the model when optimizing the
output distribution for decoding.
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