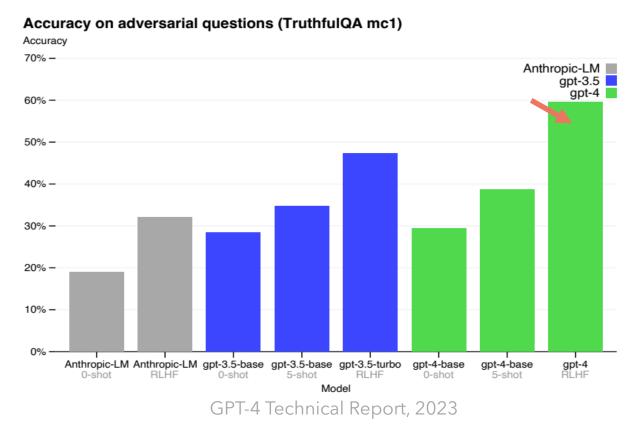
Towards Consistent Language Models Using Controlled Prompting and Decoding

Jasmin Mousavi, Arash Termehchy

LLMs hallucinate

• Produce information inconsistent with common knowledge

GPT-4: 40% hallucination rate



Causes of inconsistencies

- Data quality issues
- Biases in data
 - human biases (gender)
 - misconceptions (conspiracies)
- Over-generalizing patterns in data

GPT-2: Scrapes text from all outbound links from Reddit with at least 3 karma

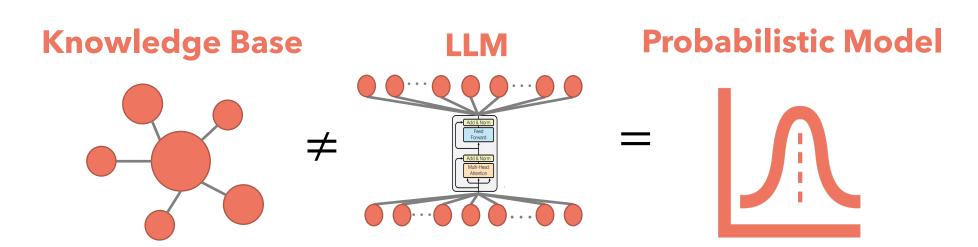
which have been curated/filtered by humans. Manually filtering a full web scrape would be exceptionally expensive so as a starting point, we scraped all outbound links from Reddit, a social media platform, which received at least 3 karma. This can be thought of as a heuristic indicator for whether other users found the link interesting, educational, or just funny.

Causes of inconsistencies

- Data quality issues
- Biases in data
 - human biases (gender)
 - misconceptions (conspiracies)
- Over-generalizing patterns in data

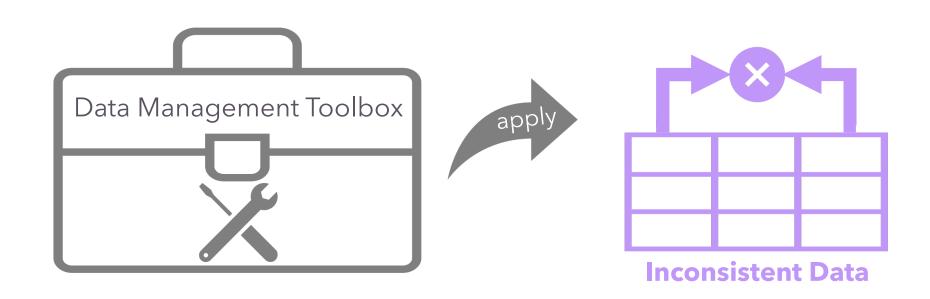
Causes of inconsistencies

- Data quality issues
- Biases in data
 - human biases (gender)
 - misconceptions (conspiracies)
- Over-generalizing patterns in data



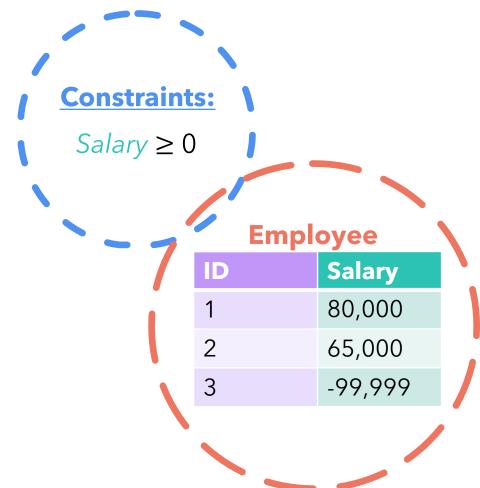
We have seen the problem of inconsistencies before...

 Data management community spent decades solving this problem using declarative constraints



Approach to eliminating inconsistencies

- Given: inconsistent dataset and declarative constraints
- <u>Goal</u>: give information that is *consistent* with **constraints**

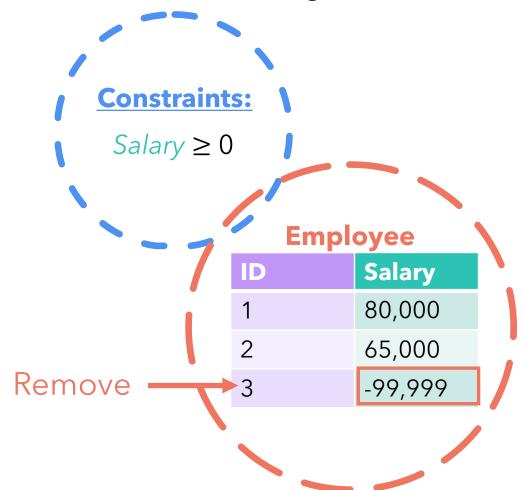


Eliminating inconsistencies: data cleaning

- Data repair
 - Example: remove last row

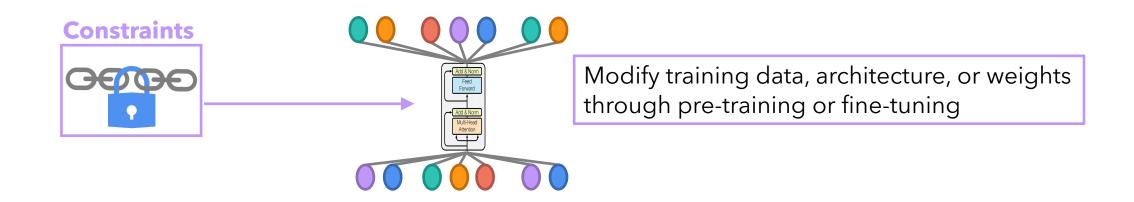
Employee

ID	Salary
1	80,000
2	65,000



Data cleaning applied to LLMs

Information stored implicitly through weights

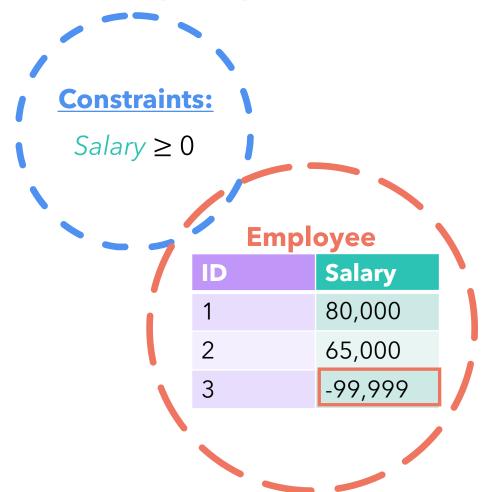


Limitation: Training is **expensive**

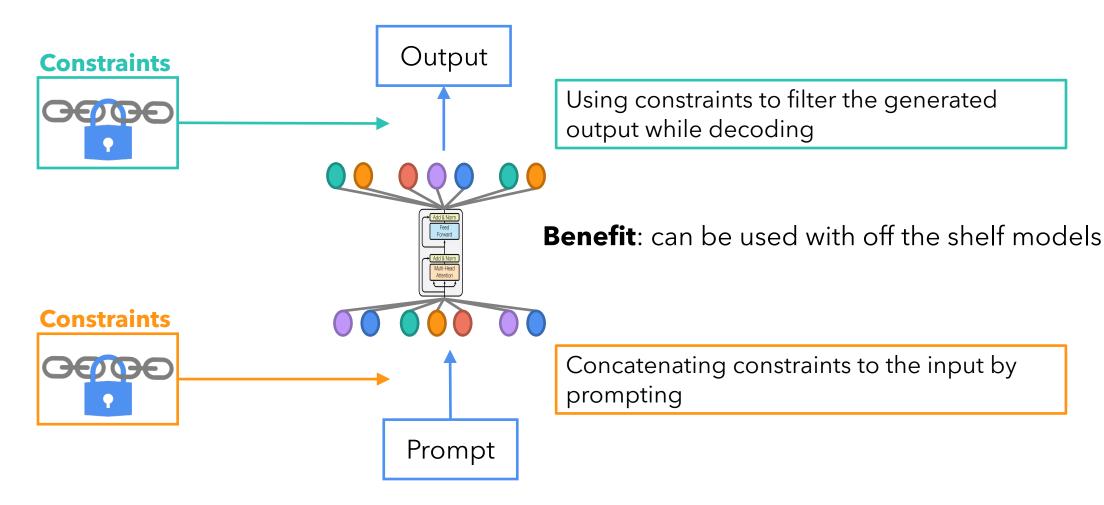
Eliminating inconsistencies: consistent query answering

Modify query to get consistent results

ID	Salary
1	80,000
2	65,000

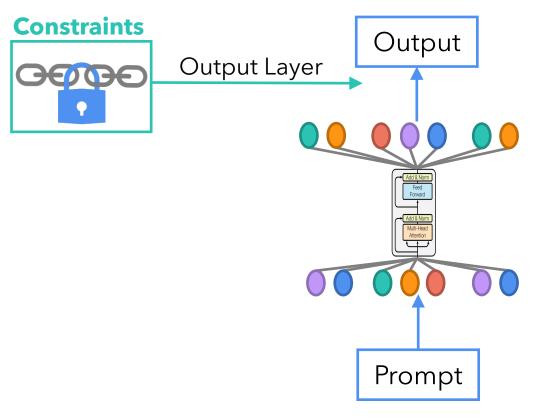


Consistent query answering applied to LLMs



There are methods to apply constraints at decoder

Constrained decoding



During generation, predicting the next token with constraints

We evaluate constrained decoding methods

• LLM: Llama-2

Dataset: CommonGen

Constraint: contains key words or their inflections

expressed in CNF

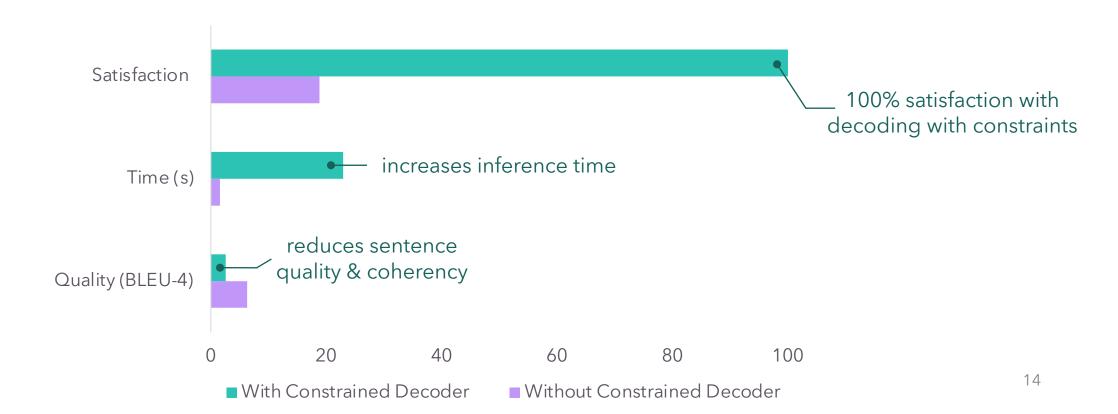
Constrained decoder:

Sequential Monte Carlo

 Applies constraints to tokens using sequential Monte Carlo inference

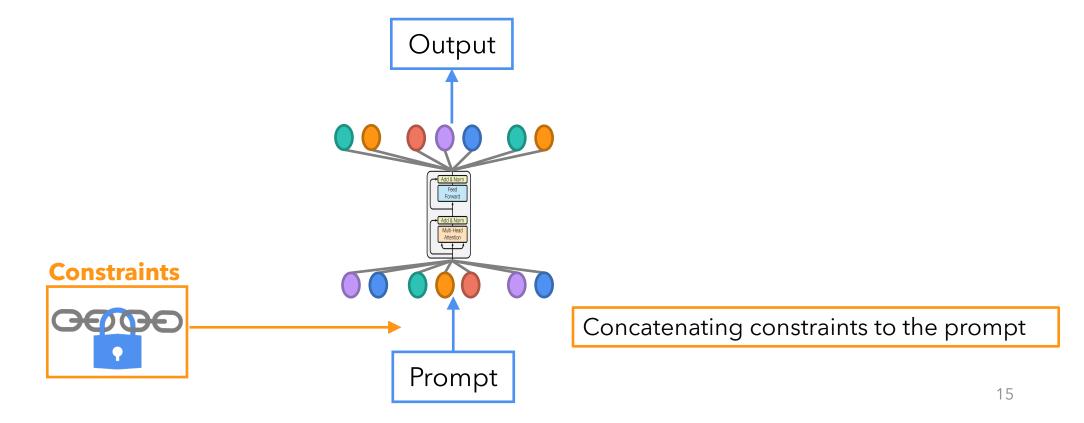
Empirical study: constrained decoding

- **Satisfaction**: all CNF clauses in constraint C are met
- **Time**: inference time (seconds)
- Quality: similarity between output and human references (BLEU-4)



Let's put constraints in the prompt: constrained prompting

- No overhead of inference time
- No quality overhead
 - Constrained decoders alter output distributions during generation



Challenges of using constrained prompting

- Limited context length
 - Constraints could be long
 - Domains often have multiple constraints

Constraint (CommonGen)

Write a sentence using the words (word1a or word1b or ...) and (word2a or word2b or ...) and ...

- Ensuring LLM understands constraints
 - Logical constraints may be too hard to understand

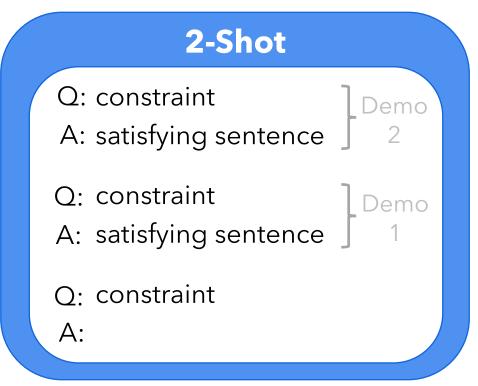
Abstraction: minimizing/generalizing constraints

- Reduces length
- Preserves or generalizes meaning
- Closer to natural language

Write a sentence using the words (word1a or word1b or ...) and (word2a or word2b or ...) write a sentence using all words in x or inflections of x

In-context demonstrations: help LLM understand constraints

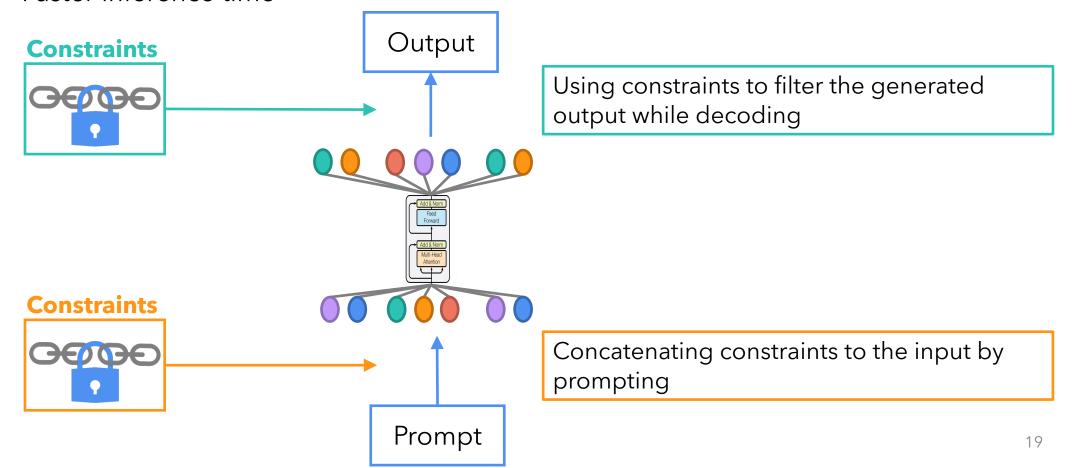
- In-context learning using a few examples
- Demonstration:
 - constraint
 - sentence satisfying the constraint



2 demonstrations

Combining constrained prompting & decoding

- Guarantees satisfaction
- Possibly smaller search space for decoder
 - Faster inference time



Empirical study setup

• **LLM**: Llama-2

Dataset: CommonGen

• **Constraint**: contains key words or their inflections

expressed in CNF

Constrained decoder:

NeuroLogic

 Applies constraints to tokens using a beam-based look ahead strategy

Sequential Monte Carlo

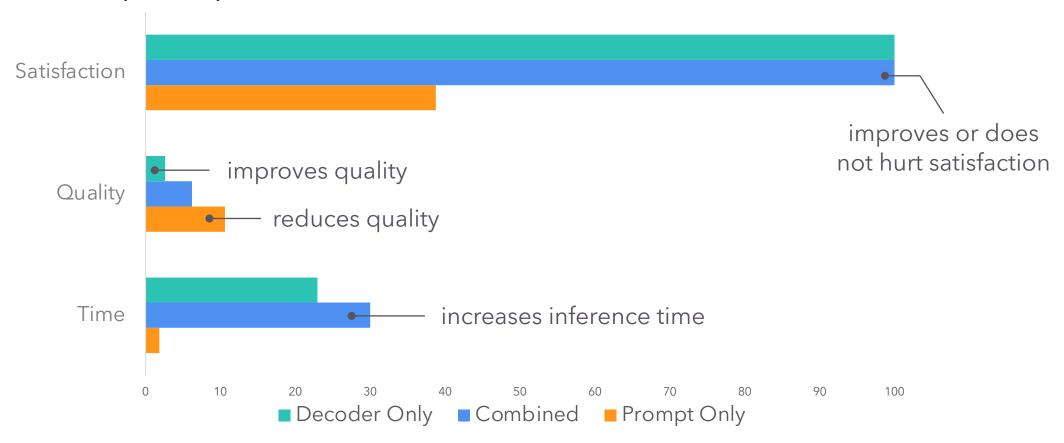
 Applies constraints to tokens using sequential Monte Carlo inference

Constrained prompting delivers higher quality and inference time, but lower satisfaction

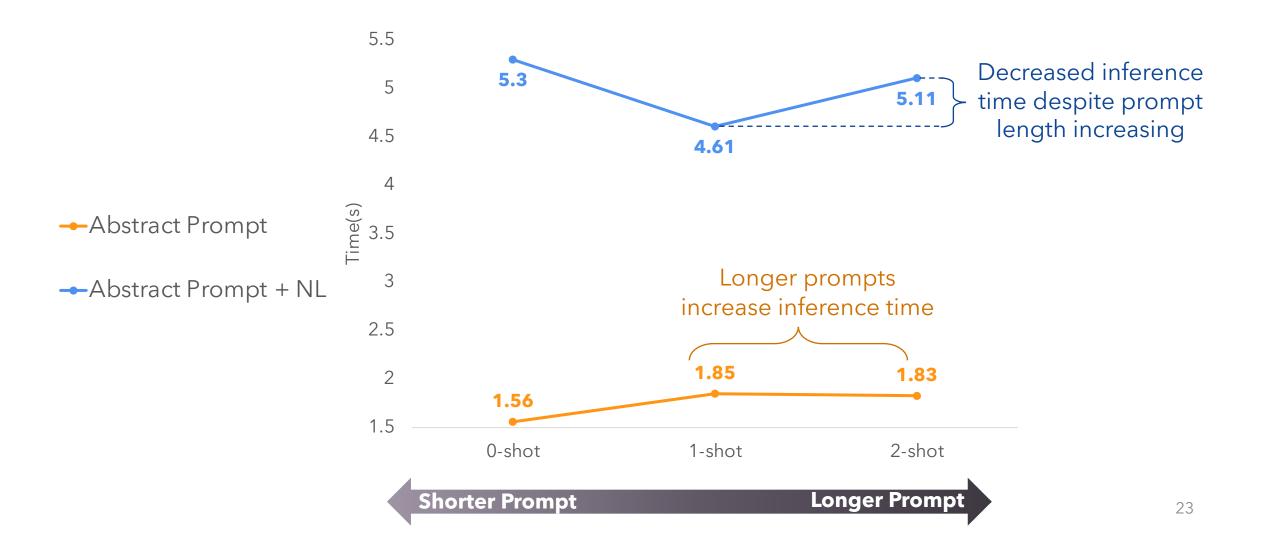
SMC decoder

Constrained prompting & decoding improves satisfaction and quality in some cases, but hurts time

Abstract prompt + 2-shot + SMC decoder



Constraint prompting can reduce the search space for decoders in some cases



Conclusion

1

We use declarative **constraints** to *eliminate* inconsistencies in LLMs

2

Constrained prompting reduces inconsistencies efficiently and with high quality

3

Constrained prompting and decoding achieve higher satisfaction and quality

5

Future work

- constraint abstraction
- where to apply which constraint